/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "_cv.h" /* The function calculates center of gravity and central second order moments */ static void icvCompleteMomentState( CvMoments* moments ) { double cx = 0, cy = 0; double mu20, mu11, mu02; assert( moments != 0 ); moments->inv_sqrt_m00 = 0; if( fabs(moments->m00) > DBL_EPSILON ) { double inv_m00 = 1. / moments->m00; cx = moments->m10 * inv_m00; cy = moments->m01 * inv_m00; moments->inv_sqrt_m00 = sqrt( fabs(inv_m00) ); } /* mu20 = m20 - m10*cx */ mu20 = moments->m20 - moments->m10 * cx; /* mu11 = m11 - m10*cy */ mu11 = moments->m11 - moments->m10 * cy; /* mu02 = m02 - m01*cy */ mu02 = moments->m02 - moments->m01 * cy; moments->mu20 = mu20; moments->mu11 = mu11; moments->mu02 = mu02; /* mu30 = m30 - cx*(3*mu20 + cx*m10) */ moments->mu30 = moments->m30 - cx * (3 * mu20 + cx * moments->m10); mu11 += mu11; /* mu21 = m21 - cx*(2*mu11 + cx*m01) - cy*mu20 */ moments->mu21 = moments->m21 - cx * (mu11 + cx * moments->m01) - cy * mu20; /* mu12 = m12 - cy*(2*mu11 + cy*m10) - cx*mu02 */ moments->mu12 = moments->m12 - cy * (mu11 + cy * moments->m10) - cx * mu02; /* mu03 = m03 - cy*(3*mu02 + cy*m01) */ moments->mu03 = moments->m03 - cy * (3 * mu02 + cy * moments->m01); } static void icvContourMoments( CvSeq* contour, CvMoments* moments ) { int is_float = CV_SEQ_ELTYPE(contour) == CV_32FC2; if( contour->total ) { CvSeqReader reader; double a00, a10, a01, a20, a11, a02, a30, a21, a12, a03; double xi, yi, xi2, yi2, xi_1, yi_1, xi_12, yi_12, dxy, xii_1, yii_1; int lpt = contour->total; a00 = a10 = a01 = a20 = a11 = a02 = a30 = a21 = a12 = a03 = 0; cvStartReadSeq( contour, &reader, 0 ); if( !is_float ) { xi_1 = ((CvPoint*)(reader.ptr))->x; yi_1 = ((CvPoint*)(reader.ptr))->y; } else { xi_1 = ((CvPoint2D32f*)(reader.ptr))->x; yi_1 = ((CvPoint2D32f*)(reader.ptr))->y; } CV_NEXT_SEQ_ELEM( contour->elem_size, reader ); xi_12 = xi_1 * xi_1; yi_12 = yi_1 * yi_1; while( lpt-- > 0 ) { if( !is_float ) { xi = ((CvPoint*)(reader.ptr))->x; yi = ((CvPoint*)(reader.ptr))->y; } else { xi = ((CvPoint2D32f*)(reader.ptr))->x; yi = ((CvPoint2D32f*)(reader.ptr))->y; } CV_NEXT_SEQ_ELEM( contour->elem_size, reader ); xi2 = xi * xi; yi2 = yi * yi; dxy = xi_1 * yi - xi * yi_1; xii_1 = xi_1 + xi; yii_1 = yi_1 + yi; a00 += dxy; a10 += dxy * xii_1; a01 += dxy * yii_1; a20 += dxy * (xi_1 * xii_1 + xi2); a11 += dxy * (xi_1 * (yii_1 + yi_1) + xi * (yii_1 + yi)); a02 += dxy * (yi_1 * yii_1 + yi2); a30 += dxy * xii_1 * (xi_12 + xi2); a03 += dxy * yii_1 * (yi_12 + yi2); a21 += dxy * (xi_12 * (3 * yi_1 + yi) + 2 * xi * xi_1 * yii_1 + xi2 * (yi_1 + 3 * yi)); a12 += dxy * (yi_12 * (3 * xi_1 + xi) + 2 * yi * yi_1 * xii_1 + yi2 * (xi_1 + 3 * xi)); xi_1 = xi; yi_1 = yi; xi_12 = xi2; yi_12 = yi2; } double db1_2, db1_6, db1_12, db1_24, db1_20, db1_60; if( fabs(a00) > FLT_EPSILON ) { if( a00 > 0 ) { db1_2 = 0.5; db1_6 = 0.16666666666666666666666666666667; db1_12 = 0.083333333333333333333333333333333; db1_24 = 0.041666666666666666666666666666667; db1_20 = 0.05; db1_60 = 0.016666666666666666666666666666667; } else { db1_2 = -0.5; db1_6 = -0.16666666666666666666666666666667; db1_12 = -0.083333333333333333333333333333333; db1_24 = -0.041666666666666666666666666666667; db1_20 = -0.05; db1_60 = -0.016666666666666666666666666666667; } /* spatial moments */ moments->m00 = a00 * db1_2; moments->m10 = a10 * db1_6; moments->m01 = a01 * db1_6; moments->m20 = a20 * db1_12; moments->m11 = a11 * db1_24; moments->m02 = a02 * db1_12; moments->m30 = a30 * db1_20; moments->m21 = a21 * db1_60; moments->m12 = a12 * db1_60; moments->m03 = a03 * db1_20; icvCompleteMomentState( moments ); } } } /* summarizes moment values for all tiles */ static void icvAccumulateMoments( double *tiles, CvSize size, CvSize tile_size, CvMoments * moments ) { int x, y; for( y = 0; y < size.height; y += tile_size.height ) { for( x = 0; x < size.width; x += tile_size.width, tiles += 10 ) { double dx = x, dy = y; double dxm = dx * tiles[0], dym = dy * tiles[0]; /* + m00 ( = m00' ) */ moments->m00 += tiles[0]; /* + m10 ( = m10' + dx*m00' ) */ moments->m10 += tiles[1] + dxm; /* + m01 ( = m01' + dy*m00' ) */ moments->m01 += tiles[2] + dym; /* + m20 ( = m20' + 2*dx*m10' + dx*dx*m00' ) */ moments->m20 += tiles[3] + dx * (tiles[1] * 2 + dxm); /* + m11 ( = m11' + dx*m01' + dy*m10' + dx*dy*m00' ) */ moments->m11 += tiles[4] + dx * (tiles[2] + dym) + dy * tiles[1]; /* + m02 ( = m02' + 2*dy*m01' + dy*dy*m00' ) */ moments->m02 += tiles[5] + dy * (tiles[2] * 2 + dym); /* + m30 ( = m30' + 3*dx*m20' + 3*dx*dx*m10' + dx*dx*dx*m00' ) */ moments->m30 += tiles[6] + dx * (3. * tiles[3] + dx * (3. * tiles[1] + dxm)); /* + m21 (= m21' + dx*(2*m11' + 2*dy*m10' + dx*m01' + dx*dy*m00') + dy*m20') */ moments->m21 += tiles[7] + dx * (2 * (tiles[4] + dy * tiles[1]) + dx * (tiles[2] + dym)) + dy * tiles[3]; /* + m12 (= m12' + dy*(2*m11' + 2*dx*m01' + dy*m10' + dx*dy*m00') + dx*m02') */ moments->m12 += tiles[8] + dy * (2 * (tiles[4] + dx * tiles[2]) + dy * (tiles[1] + dxm)) + dx * tiles[5]; /* + m03 ( = m03' + 3*dy*m02' + 3*dy*dy*m01' + dy*dy*dy*m00' ) */ moments->m03 += tiles[9] + dy * (3. * tiles[5] + dy * (3. * tiles[2] + dym)); } } icvCompleteMomentState( moments ); } /****************************************************************************************\ * Spatial Moments * \****************************************************************************************/ #define ICV_DEF_CALC_MOMENTS_IN_TILE( __op__, name, flavor, srctype, temptype, momtype ) \ static CvStatus CV_STDCALL icv##name##_##flavor##_CnCR \ ( const srctype* img, int step, CvSize size, int cn, int coi, double *moments ) \ { \ int x, y, sx_init = (size.width & -4) * (size.width & -4), sy = 0; \ momtype mom[10]; \ \ assert( img && size.width && (size.width | size.height) >= 0 ); \ memset( mom, 0, 10 * sizeof( mom[0] )); \ \ if( coi ) \ img += coi - 1; \ step /= sizeof(img[0]); \ \ for( y = 0; y < size.height; sy += 2 * y + 1, y++, img += step ) \ { \ temptype x0 = 0; \ temptype x1 = 0; \ temptype x2 = 0; \ momtype x3 = 0; \ int sx = sx_init; \ const srctype* ptr = img; \ \ for( x = 0; x < size.width - 3; x += 4, ptr += cn*4 ) \ { \ temptype p0 = __op__(ptr[0]), p1 = __op__(ptr[cn]), \ p2 = __op__(ptr[2*cn]), p3 = __op__(ptr[3*cn]); \ temptype t = p1; \ temptype a, b, c; \ \ p0 += p1 + p2 + p3; /* p0 + p1 + p2 + p3 */ \ p1 += 2 * p2 + 3 * p3; /* p1 + p2*2 + p3*3 */ \ p2 = p1 + 2 * p2 + 6 * p3; /* p1 + p2*4 + p3*9 */ \ p3 = 2 * p2 - t + 9 * p3; /* p1 + p2*8 + p3*27 */ \ \ a = x * p0 + p1; /* x*p0 + (x+1)*p1 + (x+2)*p2 + (x+3)*p3 */ \ b = x * p1 + p2; /* (x+1)*p1 + 2*(x+2)*p2 + 3*(x+3)*p3 */ \ c = x * p2 + p3; /* (x+1)*p1 + 4*(x+2)*p2 + 9*(x+3)*p3 */ \ \ x0 += p0; \ x1 += a; \ a = a * x + b; /*(x^2)*p0+((x+1)^2)*p1+((x+2)^2)*p2+((x+3)^2)*p3 */ \ x2 += a; \ x3 += ((momtype)(a + b)) * x + c; /*x3 += (x^3)*p0+((x+1)^3)*p1 + */ \ /* ((x+2)^3)*p2+((x+3)^3)*p3 */ \ } \ \ /* process the rest */ \ for( ; x < size.width; sx += 2 * x + 1, x++, ptr += cn ) \ { \ temptype p = __op__(ptr[0]); \ temptype xp = x * p; \ \ x0 += p; \ x1 += xp; \ x2 += sx * p; \ x3 += ((momtype)sx) * xp; \ } \ \ { \ temptype py = y * x0; \ \ mom[9] += ((momtype)py) * sy; /* m03 */ \ mom[8] += ((momtype)x1) * sy; /* m12 */ \ mom[7] += ((momtype)x2) * y; /* m21 */ \ mom[6] += x3; /* m30 */ \ mom[5] += x0 * sy; /* m02 */ \ mom[4] += x1 * y; /* m11 */ \ mom[3] += x2; /* m20 */ \ mom[2] += py; /* m01 */ \ mom[1] += x1; /* m10 */ \ mom[0] += x0; /* m00 */ \ } \ } \ \ for( x = 0; x < 10; x++ ) \ moments[x] = (double)mom[x]; \ \ return CV_OK; \ } ICV_DEF_CALC_MOMENTS_IN_TILE( CV_NOP, MomentsInTile, 8u, uchar, int, int ) ICV_DEF_CALC_MOMENTS_IN_TILE( CV_NOP, MomentsInTile, 16u, ushort, int, int64 ) ICV_DEF_CALC_MOMENTS_IN_TILE( CV_NOP, MomentsInTile, 16s, short, int, int64 ) ICV_DEF_CALC_MOMENTS_IN_TILE( CV_NOP, MomentsInTile, 32f, float, double, double ) ICV_DEF_CALC_MOMENTS_IN_TILE( CV_NOP, MomentsInTile, 64f, double, double, double ) ICV_DEF_CALC_MOMENTS_IN_TILE( CV_NONZERO, MomentsInTileBin, 8u, uchar, int, int ) ICV_DEF_CALC_MOMENTS_IN_TILE( CV_NONZERO, MomentsInTileBin, 16s, ushort, int, int ) ICV_DEF_CALC_MOMENTS_IN_TILE( CV_NONZERO_FLT, MomentsInTileBin, 32f, int, int, int ) ICV_DEF_CALC_MOMENTS_IN_TILE( CV_NONZERO_FLT, MomentsInTileBin, 64f, int64, double, double ) #define icvMomentsInTile_8s_CnCR 0 #define icvMomentsInTile_32s_CnCR 0 #define icvMomentsInTileBin_8s_CnCR icvMomentsInTileBin_8u_CnCR #define icvMomentsInTileBin_16u_CnCR icvMomentsInTileBin_16s_CnCR #define icvMomentsInTileBin_32s_CnCR 0 CV_DEF_INIT_FUNC_TAB_2D( MomentsInTile, CnCR ) CV_DEF_INIT_FUNC_TAB_2D( MomentsInTileBin, CnCR ) ////////////////////////////////// IPP moment functions ////////////////////////////////// icvMoments_8u_C1R_t icvMoments_8u_C1R_p = 0; icvMoments_32f_C1R_t icvMoments_32f_C1R_p = 0; icvMomentInitAlloc_64f_t icvMomentInitAlloc_64f_p = 0; icvMomentFree_64f_t icvMomentFree_64f_p = 0; icvGetSpatialMoment_64f_t icvGetSpatialMoment_64f_p = 0; typedef CvStatus (CV_STDCALL * CvMomentIPPFunc) ( const void* img, int step, CvSize size, void* momentstate ); CV_IMPL void cvMoments( const void* array, CvMoments* moments, int binary ) { static CvFuncTable mom_tab; static CvFuncTable mombin_tab; static int inittab = 0; double* tiles = 0; void* ippmomentstate = 0; CV_FUNCNAME("cvMoments"); __BEGIN__; int type = 0, depth, cn, pix_size; int coi = 0; int x, y, k, tile_num = 1; CvSize size, tile_size = { 32, 32 }; CvMat stub, *mat = (CvMat*)array; CvFunc2DnC_1A1P func = 0; CvMomentIPPFunc ipp_func = 0; CvContour contour_header; CvSeq* contour = 0; CvSeqBlock block; if( CV_IS_SEQ( array )) { contour = (CvSeq*)array; if( !CV_IS_SEQ_POLYGON( contour )) CV_ERROR( CV_StsBadArg, "The passed sequence is not a valid contour" ); } if( !inittab ) { icvInitMomentsInTileCnCRTable( &mom_tab ); icvInitMomentsInTileBinCnCRTable( &mombin_tab ); inittab = 1; } if( !moments ) CV_ERROR( CV_StsNullPtr, "" ); memset( moments, 0, sizeof(*moments)); if( !contour ) { CV_CALL( mat = cvGetMat( mat, &stub, &coi )); type = CV_MAT_TYPE( mat->type ); if( type == CV_32SC2 || type == CV_32FC2 ) { CV_CALL( contour = cvPointSeqFromMat( CV_SEQ_KIND_CURVE | CV_SEQ_FLAG_CLOSED, mat, &contour_header, &block )); } } if( contour ) { icvContourMoments( contour, moments ); EXIT; } type = CV_MAT_TYPE( mat->type ); depth = CV_MAT_DEPTH( type ); cn = CV_MAT_CN( type ); pix_size = CV_ELEM_SIZE(type); size = cvGetMatSize( mat ); if( cn > 1 && coi == 0 ) CV_ERROR( CV_StsBadArg, "Invalid image type" ); if( size.width <= 0 || size.height <= 0 ) { EXIT; } if( type == CV_8UC1 ) ipp_func = (CvMomentIPPFunc)icvMoments_8u_C1R_p; else if( type == CV_32FC1 ) ipp_func = (CvMomentIPPFunc)icvMoments_32f_C1R_p; if( ipp_func && !binary ) { int matstep = mat->step ? mat->step : CV_STUB_STEP; IPPI_CALL( icvMomentInitAlloc_64f_p( &ippmomentstate, cvAlgHintAccurate )); IPPI_CALL( ipp_func( mat->data.ptr, matstep, size, ippmomentstate )); icvGetSpatialMoment_64f_p( ippmomentstate, 0, 0, 0, cvPoint(0,0), &moments->m00 ); icvGetSpatialMoment_64f_p( ippmomentstate, 1, 0, 0, cvPoint(0,0), &moments->m10 ); icvGetSpatialMoment_64f_p( ippmomentstate, 0, 1, 0, cvPoint(0,0), &moments->m01 ); icvGetSpatialMoment_64f_p( ippmomentstate, 2, 0, 0, cvPoint(0,0), &moments->m20 ); icvGetSpatialMoment_64f_p( ippmomentstate, 1, 1, 0, cvPoint(0,0), &moments->m11 ); icvGetSpatialMoment_64f_p( ippmomentstate, 0, 2, 0, cvPoint(0,0), &moments->m02 ); icvGetSpatialMoment_64f_p( ippmomentstate, 3, 0, 0, cvPoint(0,0), &moments->m30 ); icvGetSpatialMoment_64f_p( ippmomentstate, 2, 1, 0, cvPoint(0,0), &moments->m21 ); icvGetSpatialMoment_64f_p( ippmomentstate, 1, 2, 0, cvPoint(0,0), &moments->m12 ); icvGetSpatialMoment_64f_p( ippmomentstate, 0, 3, 0, cvPoint(0,0), &moments->m03 ); icvCompleteMomentState( moments ); EXIT; } func = (CvFunc2DnC_1A1P)(!binary ? mom_tab.fn_2d[depth] : mombin_tab.fn_2d[depth]); if( !func ) CV_ERROR( CV_StsBadArg, cvUnsupportedFormat ); if( depth >= CV_32S && !binary ) tile_size = size; else tile_num = ((size.width + tile_size.width - 1)/tile_size.width)* ((size.height + tile_size.height - 1)/tile_size.height); CV_CALL( tiles = (double*)cvAlloc( tile_num*10*sizeof(double))); for( y = 0, k = 0; y < size.height; y += tile_size.height ) { CvSize cur_tile_size = tile_size; if( y + cur_tile_size.height > size.height ) cur_tile_size.height = size.height - y; for( x = 0; x < size.width; x += tile_size.width, k++ ) { if( x + cur_tile_size.width > size.width ) cur_tile_size.width = size.width - x; assert( k < tile_num ); IPPI_CALL( func( mat->data.ptr + y*mat->step + x*pix_size, mat->step, cur_tile_size, cn, coi, tiles + k*10 )); } } icvAccumulateMoments( tiles, size, tile_size, moments ); __END__; if( ippmomentstate ) icvMomentFree_64f_p( ippmomentstate ); cvFree( &tiles ); } /*F/////////////////////////////////////////////////////////////////////////////////////// // Name: cvGetHuMoments // Purpose: Returns Hu moments // Context: // Parameters: // mState - moment structure filled by one of the icvMoments[Binary]*** function // HuState - pointer to output structure containing seven Hu moments // Returns: // CV_NO_ERR if success or error code // Notes: //F*/ CV_IMPL void cvGetHuMoments( CvMoments * mState, CvHuMoments * HuState ) { CV_FUNCNAME( "cvGetHuMoments" ); __BEGIN__; if( !mState || !HuState ) CV_ERROR_FROM_STATUS( CV_NULLPTR_ERR ); { double m00s = mState->inv_sqrt_m00, m00 = m00s * m00s, s2 = m00 * m00, s3 = s2 * m00s; double nu20 = mState->mu20 * s2, nu11 = mState->mu11 * s2, nu02 = mState->mu02 * s2, nu30 = mState->mu30 * s3, nu21 = mState->mu21 * s3, nu12 = mState->mu12 * s3, nu03 = mState->mu03 * s3; double t0 = nu30 + nu12; double t1 = nu21 + nu03; double q0 = t0 * t0, q1 = t1 * t1; double n4 = 4 * nu11; double s = nu20 + nu02; double d = nu20 - nu02; HuState->hu1 = s; HuState->hu2 = d * d + n4 * nu11; HuState->hu4 = q0 + q1; HuState->hu6 = d * (q0 - q1) + n4 * t0 * t1; t0 *= q0 - 3 * q1; t1 *= 3 * q0 - q1; q0 = nu30 - 3 * nu12; q1 = 3 * nu21 - nu03; HuState->hu3 = q0 * q0 + q1 * q1; HuState->hu5 = q0 * t0 + q1 * t1; HuState->hu7 = q1 * t0 - q0 * t1; } __END__; } /*F/////////////////////////////////////////////////////////////////////////////////////// // Name: cvGetSpatialMoment // Purpose: Returns spatial moment(x_order, y_order) which is determined as: // m(x_o,y_o) = sum (x ^ x_o)*(y ^ y_o)*I(x,y) // 0 <= x_o, y_o; x_o + y_o <= 3 // Context: // Parameters: // mom - moment structure filled by one of the icvMoments[Binary]*** function // x_order - x order of the moment // y_order - y order of the moment // Returns: // moment value or large negative number (-DBL_MAX) if error // Notes: //F*/ CV_IMPL double cvGetSpatialMoment( CvMoments * moments, int x_order, int y_order ) { int order = x_order + y_order; double moment = -DBL_MAX; CV_FUNCNAME( "cvGetSpatialMoment" ); __BEGIN__; if( !moments ) CV_ERROR_FROM_STATUS( CV_NULLPTR_ERR ); if( (x_order | y_order) < 0 || order > 3 ) CV_ERROR_FROM_STATUS( CV_BADRANGE_ERR ); moment = (&(moments->m00))[order + (order >> 1) + (order > 2) * 2 + y_order]; __END__; return moment; } /*F/////////////////////////////////////////////////////////////////////////////////////// // Name: cvGetCentralMoment // Purpose: Returns central moment(x_order, y_order) which is determined as: // mu(x_o,y_o) = sum ((x - xc)^ x_o)*((y - yc) ^ y_o)*I(x,y) // 0 <= x_o, y_o; x_o + y_o <= 3, // (xc, yc) = (m10/m00,m01/m00) - center of gravity // Context: // Parameters: // mom - moment structure filled by one of the icvMoments[Binary]*** function // x_order - x order of the moment // y_order - y order of the moment // Returns: // moment value or large negative number (-DBL_MAX) if error // Notes: //F*/ CV_IMPL double cvGetCentralMoment( CvMoments * moments, int x_order, int y_order ) { int order = x_order + y_order; double mu = 0; CV_FUNCNAME( "cvGetCentralMoment" ); __BEGIN__; if( !moments ) CV_ERROR_FROM_STATUS( CV_NULLPTR_ERR ); if( (x_order | y_order) < 0 || order > 3 ) CV_ERROR_FROM_STATUS( CV_BADRANGE_ERR ); if( order >= 2 ) { mu = (&(moments->m00))[4 + order * 3 + y_order]; } else if( order == 0 ) mu = moments->m00; __END__; return mu; } /*F/////////////////////////////////////////////////////////////////////////////////////// // Name: cvGetNormalizedCentralMoment // Purpose: Returns normalized central moment(x_order,y_order) which is determined as: // nu(x_o,y_o) = mu(x_o, y_o)/(m00 ^ (((x_o + y_o)/2) + 1)) // 0 <= x_o, y_o; x_o + y_o <= 3, // (xc, yc) = (m10/m00,m01/m00) - center of gravity // Context: // Parameters: // mom - moment structure filled by one of the icvMoments[Binary]*** function // x_order - x order of the moment // y_order - y order of the moment // Returns: // moment value or large negative number (-DBL_MAX) if error // Notes: //F*/ CV_IMPL double cvGetNormalizedCentralMoment( CvMoments * moments, int x_order, int y_order ) { int order = x_order + y_order; double mu = 0; double m00s, m00; CV_FUNCNAME( "cvGetCentralNormalizedMoment" ); __BEGIN__; mu = cvGetCentralMoment( moments, x_order, y_order ); CV_CHECK(); m00s = moments->inv_sqrt_m00; m00 = m00s * m00s; while( --order >= 0 ) m00 *= m00s; mu *= m00; __END__; return mu; } /* End of file. */