/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "_cv.h" CV_IMPL CvKalman* cvCreateKalman( int DP, int MP, int CP ) { CvKalman *kalman = 0; CV_FUNCNAME( "cvCreateKalman" ); __BEGIN__; if( DP <= 0 || MP <= 0 ) CV_ERROR( CV_StsOutOfRange, "state and measurement vectors must have positive number of dimensions" ); if( CP < 0 ) CP = DP; /* allocating memory for the structure */ CV_CALL( kalman = (CvKalman *)cvAlloc( sizeof( CvKalman ))); memset( kalman, 0, sizeof(*kalman)); kalman->DP = DP; kalman->MP = MP; kalman->CP = CP; CV_CALL( kalman->state_pre = cvCreateMat( DP, 1, CV_32FC1 )); cvZero( kalman->state_pre ); CV_CALL( kalman->state_post = cvCreateMat( DP, 1, CV_32FC1 )); cvZero( kalman->state_post ); CV_CALL( kalman->transition_matrix = cvCreateMat( DP, DP, CV_32FC1 )); cvSetIdentity( kalman->transition_matrix ); CV_CALL( kalman->process_noise_cov = cvCreateMat( DP, DP, CV_32FC1 )); cvSetIdentity( kalman->process_noise_cov ); CV_CALL( kalman->measurement_matrix = cvCreateMat( MP, DP, CV_32FC1 )); cvZero( kalman->measurement_matrix ); CV_CALL( kalman->measurement_noise_cov = cvCreateMat( MP, MP, CV_32FC1 )); cvSetIdentity( kalman->measurement_noise_cov ); CV_CALL( kalman->error_cov_pre = cvCreateMat( DP, DP, CV_32FC1 )); CV_CALL( kalman->error_cov_post = cvCreateMat( DP, DP, CV_32FC1 )); cvZero( kalman->error_cov_post ); CV_CALL( kalman->gain = cvCreateMat( DP, MP, CV_32FC1 )); if( CP > 0 ) { CV_CALL( kalman->control_matrix = cvCreateMat( DP, CP, CV_32FC1 )); cvZero( kalman->control_matrix ); } CV_CALL( kalman->temp1 = cvCreateMat( DP, DP, CV_32FC1 )); CV_CALL( kalman->temp2 = cvCreateMat( MP, DP, CV_32FC1 )); CV_CALL( kalman->temp3 = cvCreateMat( MP, MP, CV_32FC1 )); CV_CALL( kalman->temp4 = cvCreateMat( MP, DP, CV_32FC1 )); CV_CALL( kalman->temp5 = cvCreateMat( MP, 1, CV_32FC1 )); #if 1 kalman->PosterState = kalman->state_pre->data.fl; kalman->PriorState = kalman->state_post->data.fl; kalman->DynamMatr = kalman->transition_matrix->data.fl; kalman->MeasurementMatr = kalman->measurement_matrix->data.fl; kalman->MNCovariance = kalman->measurement_noise_cov->data.fl; kalman->PNCovariance = kalman->process_noise_cov->data.fl; kalman->KalmGainMatr = kalman->gain->data.fl; kalman->PriorErrorCovariance = kalman->error_cov_pre->data.fl; kalman->PosterErrorCovariance = kalman->error_cov_post->data.fl; #endif __END__; if( cvGetErrStatus() < 0 ) cvReleaseKalman( &kalman ); return kalman; } CV_IMPL void cvReleaseKalman( CvKalman** _kalman ) { CvKalman *kalman; CV_FUNCNAME( "cvReleaseKalman" ); __BEGIN__; if( !_kalman ) CV_ERROR( CV_StsNullPtr, "" ); kalman = *_kalman; /* freeing the memory */ cvReleaseMat( &kalman->state_pre ); cvReleaseMat( &kalman->state_post ); cvReleaseMat( &kalman->transition_matrix ); cvReleaseMat( &kalman->control_matrix ); cvReleaseMat( &kalman->measurement_matrix ); cvReleaseMat( &kalman->process_noise_cov ); cvReleaseMat( &kalman->measurement_noise_cov ); cvReleaseMat( &kalman->error_cov_pre ); cvReleaseMat( &kalman->gain ); cvReleaseMat( &kalman->error_cov_post ); cvReleaseMat( &kalman->temp1 ); cvReleaseMat( &kalman->temp2 ); cvReleaseMat( &kalman->temp3 ); cvReleaseMat( &kalman->temp4 ); cvReleaseMat( &kalman->temp5 ); memset( kalman, 0, sizeof(*kalman)); /* deallocating the structure */ cvFree( _kalman ); __END__; } CV_IMPL const CvMat* cvKalmanPredict( CvKalman* kalman, const CvMat* control ) { CvMat* result = 0; CV_FUNCNAME( "cvKalmanPredict" ); __BEGIN__; if( !kalman ) CV_ERROR( CV_StsNullPtr, "" ); /* update the state */ /* x'(k) = A*x(k) */ CV_CALL( cvMatMulAdd( kalman->transition_matrix, kalman->state_post, 0, kalman->state_pre )); if( control && kalman->CP > 0 ) /* x'(k) = x'(k) + B*u(k) */ CV_CALL( cvMatMulAdd( kalman->control_matrix, control, kalman->state_pre, kalman->state_pre )); /* update error covariance matrices */ /* temp1 = A*P(k) */ CV_CALL( cvMatMulAdd( kalman->transition_matrix, kalman->error_cov_post, 0, kalman->temp1 )); /* P'(k) = temp1*At + Q */ CV_CALL( cvGEMM( kalman->temp1, kalman->transition_matrix, 1, kalman->process_noise_cov, 1, kalman->error_cov_pre, CV_GEMM_B_T )); result = kalman->state_pre; __END__; return result; } CV_IMPL const CvMat* cvKalmanCorrect( CvKalman* kalman, const CvMat* measurement ) { CvMat* result = 0; CV_FUNCNAME( "cvKalmanCorrect" ); __BEGIN__; if( !kalman || !measurement ) CV_ERROR( CV_StsNullPtr, "" ); /* temp2 = H*P'(k) */ CV_CALL( cvMatMulAdd( kalman->measurement_matrix, kalman->error_cov_pre, 0, kalman->temp2 )); /* temp3 = temp2*Ht + R */ CV_CALL( cvGEMM( kalman->temp2, kalman->measurement_matrix, 1, kalman->measurement_noise_cov, 1, kalman->temp3, CV_GEMM_B_T )); /* temp4 = inv(temp3)*temp2 = Kt(k) */ CV_CALL( cvSolve( kalman->temp3, kalman->temp2, kalman->temp4, CV_SVD )); /* K(k) */ CV_CALL( cvTranspose( kalman->temp4, kalman->gain )); /* temp5 = z(k) - H*x'(k) */ CV_CALL( cvGEMM( kalman->measurement_matrix, kalman->state_pre, -1, measurement, 1, kalman->temp5 )); /* x(k) = x'(k) + K(k)*temp5 */ CV_CALL( cvMatMulAdd( kalman->gain, kalman->temp5, kalman->state_pre, kalman->state_post )); /* P(k) = P'(k) - K(k)*temp2 */ CV_CALL( cvGEMM( kalman->gain, kalman->temp2, -1, kalman->error_cov_pre, 1, kalman->error_cov_post, 0 )); result = kalman->state_post; __END__; return result; }