/* * Mesa 3-D graphics library * Version: 6.5 * * Copyright (C) 2006 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* * SimplexNoise1234 * Copyright (c) 2003-2005, Stefan Gustavson * * Contact: stegu@itn.liu.se */ /** * \file * \brief C implementation of Perlin Simplex Noise over 1, 2, 3 and 4 dims. * \author Stefan Gustavson (stegu@itn.liu.se) * * * This implementation is "Simplex Noise" as presented by * Ken Perlin at a relatively obscure and not often cited course * session "Real-Time Shading" at Siggraph 2001 (before real * time shading actually took on), under the title "hardware noise". * The 3D function is numerically equivalent to his Java reference * code available in the PDF course notes, although I re-implemented * it from scratch to get more readable code. The 1D, 2D and 4D cases * were implemented from scratch by me from Ken Perlin's text. * * This file has no dependencies on any other file, not even its own * header file. The header file is made for use by external code only. */ #include "main/imports.h" #include "prog_noise.h" #define FASTFLOOR(x) ( ((x)>0) ? ((int)x) : (((int)x)-1) ) /* * --------------------------------------------------------------------- * Static data */ /** * Permutation table. This is just a random jumble of all numbers 0-255, * repeated twice to avoid wrapping the index at 255 for each lookup. * This needs to be exactly the same for all instances on all platforms, * so it's easiest to just keep it as static explicit data. * This also removes the need for any initialisation of this class. * * Note that making this an int[] instead of a char[] might make the * code run faster on platforms with a high penalty for unaligned single * byte addressing. Intel x86 is generally single-byte-friendly, but * some other CPUs are faster with 4-aligned reads. * However, a char[] is smaller, which avoids cache trashing, and that * is probably the most important aspect on most architectures. * This array is accessed a *lot* by the noise functions. * A vector-valued noise over 3D accesses it 96 times, and a * float-valued 4D noise 64 times. We want this to fit in the cache! */ unsigned char perm[512] = { 151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180, 151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180 }; /* * --------------------------------------------------------------------- */ /* * Helper functions to compute gradients-dot-residualvectors (1D to 4D) * Note that these generate gradients of more than unit length. To make * a close match with the value range of classic Perlin noise, the final * noise values need to be rescaled to fit nicely within [-1,1]. * (The simplex noise functions as such also have different scaling.) * Note also that these noise functions are the most practical and useful * signed version of Perlin noise. To return values according to the * RenderMan specification from the SL noise() and pnoise() functions, * the noise values need to be scaled and offset to [0,1], like this: * float SLnoise = (SimplexNoise1234::noise(x,y,z) + 1.0) * 0.5; */ static float grad1(int hash, float x) { int h = hash & 15; float grad = 1.0f + (h & 7); /* Gradient value 1.0, 2.0, ..., 8.0 */ if (h & 8) grad = -grad; /* Set a random sign for the gradient */ return (grad * x); /* Multiply the gradient with the distance */ } static float grad2(int hash, float x, float y) { int h = hash & 7; /* Convert low 3 bits of hash code */ float u = h < 4 ? x : y; /* into 8 simple gradient directions, */ float v = h < 4 ? y : x; /* and compute the dot product with (x,y). */ return ((h & 1) ? -u : u) + ((h & 2) ? -2.0f * v : 2.0f * v); } static float grad3(int hash, float x, float y, float z) { int h = hash & 15; /* Convert low 4 bits of hash code into 12 simple */ float u = h < 8 ? x : y; /* gradient directions, and compute dot product. */ float v = h < 4 ? y : h == 12 || h == 14 ? x : z; /* Fix repeats at h = 12 to 15 */ return ((h & 1) ? -u : u) + ((h & 2) ? -v : v); } static float grad4(int hash, float x, float y, float z, float t) { int h = hash & 31; /* Convert low 5 bits of hash code into 32 simple */ float u = h < 24 ? x : y; /* gradient directions, and compute dot product. */ float v = h < 16 ? y : z; float w = h < 8 ? z : t; return ((h & 1) ? -u : u) + ((h & 2) ? -v : v) + ((h & 4) ? -w : w); } /** * A lookup table to traverse the simplex around a given point in 4D. * Details can be found where this table is used, in the 4D noise method. * TODO: This should not be required, backport it from Bill's GLSL code! */ static unsigned char simplex[64][4] = { {0, 1, 2, 3}, {0, 1, 3, 2}, {0, 0, 0, 0}, {0, 2, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {1, 2, 3, 0}, {0, 2, 1, 3}, {0, 0, 0, 0}, {0, 3, 1, 2}, {0, 3, 2, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {1, 3, 2, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {1, 2, 0, 3}, {0, 0, 0, 0}, {1, 3, 0, 2}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {2, 3, 0, 1}, {2, 3, 1, 0}, {1, 0, 2, 3}, {1, 0, 3, 2}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {2, 0, 3, 1}, {0, 0, 0, 0}, {2, 1, 3, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {2, 0, 1, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {3, 0, 1, 2}, {3, 0, 2, 1}, {0, 0, 0, 0}, {3, 1, 2, 0}, {2, 1, 0, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {3, 1, 0, 2}, {0, 0, 0, 0}, {3, 2, 0, 1}, {3, 2, 1, 0} }; /** 1D simplex noise */ GLfloat _mesa_noise1(GLfloat x) { int i0 = FASTFLOOR(x); int i1 = i0 + 1; float x0 = x - i0; float x1 = x0 - 1.0f; float t1 = 1.0f - x1 * x1; float n0, n1; float t0 = 1.0f - x0 * x0; /* if(t0 < 0.0f) t0 = 0.0f; // this never happens for the 1D case */ t0 *= t0; n0 = t0 * t0 * grad1(perm[i0 & 0xff], x0); /* if(t1 < 0.0f) t1 = 0.0f; // this never happens for the 1D case */ t1 *= t1; n1 = t1 * t1 * grad1(perm[i1 & 0xff], x1); /* The maximum value of this noise is 8*(3/4)^4 = 2.53125 */ /* A factor of 0.395 would scale to fit exactly within [-1,1], but */ /* we want to match PRMan's 1D noise, so we scale it down some more. */ return 0.25f * (n0 + n1); } /** 2D simplex noise */ GLfloat _mesa_noise2(GLfloat x, GLfloat y) { #define F2 0.366025403f /* F2 = 0.5*(sqrt(3.0)-1.0) */ #define G2 0.211324865f /* G2 = (3.0-Math.sqrt(3.0))/6.0 */ float n0, n1, n2; /* Noise contributions from the three corners */ /* Skew the input space to determine which simplex cell we're in */ float s = (x + y) * F2; /* Hairy factor for 2D */ float xs = x + s; float ys = y + s; int i = FASTFLOOR(xs); int j = FASTFLOOR(ys); float t = (float) (i + j) * G2; float X0 = i - t; /* Unskew the cell origin back to (x,y) space */ float Y0 = j - t; float x0 = x - X0; /* The x,y distances from the cell origin */ float y0 = y - Y0; float x1, y1, x2, y2; int ii, jj; float t0, t1, t2; /* For the 2D case, the simplex shape is an equilateral triangle. */ /* Determine which simplex we are in. */ int i1, j1; /* Offsets for second (middle) corner of simplex in (i,j) coords */ if (x0 > y0) { i1 = 1; j1 = 0; } /* lower triangle, XY order: (0,0)->(1,0)->(1,1) */ else { i1 = 0; j1 = 1; } /* upper triangle, YX order: (0,0)->(0,1)->(1,1) */ /* A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and */ /* a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where */ /* c = (3-sqrt(3))/6 */ x1 = x0 - i1 + G2; /* Offsets for middle corner in (x,y) unskewed coords */ y1 = y0 - j1 + G2; x2 = x0 - 1.0f + 2.0f * G2; /* Offsets for last corner in (x,y) unskewed coords */ y2 = y0 - 1.0f + 2.0f * G2; /* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */ ii = i % 256; jj = j % 256; /* Calculate the contribution from the three corners */ t0 = 0.5f - x0 * x0 - y0 * y0; if (t0 < 0.0f) n0 = 0.0f; else { t0 *= t0; n0 = t0 * t0 * grad2(perm[ii + perm[jj]], x0, y0); } t1 = 0.5f - x1 * x1 - y1 * y1; if (t1 < 0.0f) n1 = 0.0f; else { t1 *= t1; n1 = t1 * t1 * grad2(perm[ii + i1 + perm[jj + j1]], x1, y1); } t2 = 0.5f - x2 * x2 - y2 * y2; if (t2 < 0.0f) n2 = 0.0f; else { t2 *= t2; n2 = t2 * t2 * grad2(perm[ii + 1 + perm[jj + 1]], x2, y2); } /* Add contributions from each corner to get the final noise value. */ /* The result is scaled to return values in the interval [-1,1]. */ return 40.0f * (n0 + n1 + n2); /* TODO: The scale factor is preliminary! */ } /** 3D simplex noise */ GLfloat _mesa_noise3(GLfloat x, GLfloat y, GLfloat z) { /* Simple skewing factors for the 3D case */ #define F3 0.333333333f #define G3 0.166666667f float n0, n1, n2, n3; /* Noise contributions from the four corners */ /* Skew the input space to determine which simplex cell we're in */ float s = (x + y + z) * F3; /* Very nice and simple skew factor for 3D */ float xs = x + s; float ys = y + s; float zs = z + s; int i = FASTFLOOR(xs); int j = FASTFLOOR(ys); int k = FASTFLOOR(zs); float t = (float) (i + j + k) * G3; float X0 = i - t; /* Unskew the cell origin back to (x,y,z) space */ float Y0 = j - t; float Z0 = k - t; float x0 = x - X0; /* The x,y,z distances from the cell origin */ float y0 = y - Y0; float z0 = z - Z0; float x1, y1, z1, x2, y2, z2, x3, y3, z3; int ii, jj, kk; float t0, t1, t2, t3; /* For the 3D case, the simplex shape is a slightly irregular tetrahedron. */ /* Determine which simplex we are in. */ int i1, j1, k1; /* Offsets for second corner of simplex in (i,j,k) coords */ int i2, j2, k2; /* Offsets for third corner of simplex in (i,j,k) coords */ /* This code would benefit from a backport from the GLSL version! */ if (x0 >= y0) { if (y0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } /* X Y Z order */ else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } /* X Z Y order */ else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } /* Z X Y order */ } else { /* x0<y0 */ if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } /* Z Y X order */ else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } /* Y Z X order */ else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } /* Y X Z order */ } /* A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in * (x,y,z), a step of (0,1,0) in (i,j,k) means a step of * (-c,1-c,-c) in (x,y,z), and a step of (0,0,1) in (i,j,k) means a * step of (-c,-c,1-c) in (x,y,z), where c = 1/6. */ x1 = x0 - i1 + G3; /* Offsets for second corner in (x,y,z) coords */ y1 = y0 - j1 + G3; z1 = z0 - k1 + G3; x2 = x0 - i2 + 2.0f * G3; /* Offsets for third corner in (x,y,z) coords */ y2 = y0 - j2 + 2.0f * G3; z2 = z0 - k2 + 2.0f * G3; x3 = x0 - 1.0f + 3.0f * G3;/* Offsets for last corner in (x,y,z) coords */ y3 = y0 - 1.0f + 3.0f * G3; z3 = z0 - 1.0f + 3.0f * G3; /* Wrap the integer indices at 256 to avoid indexing perm[] out of bounds */ ii = i % 256; jj = j % 256; kk = k % 256; /* Calculate the contribution from the four corners */ t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0; if (t0 < 0.0f) n0 = 0.0f; else { t0 *= t0; n0 = t0 * t0 * grad3(perm[ii + perm[jj + perm[kk]]], x0, y0, z0); } t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1; if (t1 < 0.0f) n1 = 0.0f; else { t1 *= t1; n1 = t1 * t1 * grad3(perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]], x1, y1, z1); } t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2; if (t2 < 0.0f) n2 = 0.0f; else { t2 *= t2; n2 = t2 * t2 * grad3(perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]], x2, y2, z2); } t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3; if (t3 < 0.0f) n3 = 0.0f; else { t3 *= t3; n3 = t3 * t3 * grad3(perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]], x3, y3, z3); } /* Add contributions from each corner to get the final noise value. * The result is scaled to stay just inside [-1,1] */ return 32.0f * (n0 + n1 + n2 + n3); /* TODO: The scale factor is preliminary! */ } /** 4D simplex noise */ GLfloat _mesa_noise4(GLfloat x, GLfloat y, GLfloat z, GLfloat w) { /* The skewing and unskewing factors are hairy again for the 4D case */ #define F4 0.309016994f /* F4 = (Math.sqrt(5.0)-1.0)/4.0 */ #define G4 0.138196601f /* G4 = (5.0-Math.sqrt(5.0))/20.0 */ float n0, n1, n2, n3, n4; /* Noise contributions from the five corners */ /* Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in */ float s = (x + y + z + w) * F4; /* Factor for 4D skewing */ float xs = x + s; float ys = y + s; float zs = z + s; float ws = w + s; int i = FASTFLOOR(xs); int j = FASTFLOOR(ys); int k = FASTFLOOR(zs); int l = FASTFLOOR(ws); float t = (i + j + k + l) * G4; /* Factor for 4D unskewing */ float X0 = i - t; /* Unskew the cell origin back to (x,y,z,w) space */ float Y0 = j - t; float Z0 = k - t; float W0 = l - t; float x0 = x - X0; /* The x,y,z,w distances from the cell origin */ float y0 = y - Y0; float z0 = z - Z0; float w0 = w - W0; /* For the 4D case, the simplex is a 4D shape I won't even try to describe. * To find out which of the 24 possible simplices we're in, we need to * determine the magnitude ordering of x0, y0, z0 and w0. * The method below is a good way of finding the ordering of x,y,z,w and * then find the correct traversal order for the simplex we're in. * First, six pair-wise comparisons are performed between each possible pair * of the four coordinates, and the results are used to add up binary bits * for an integer index. */ int c1 = (x0 > y0) ? 32 : 0; int c2 = (x0 > z0) ? 16 : 0; int c3 = (y0 > z0) ? 8 : 0; int c4 = (x0 > w0) ? 4 : 0; int c5 = (y0 > w0) ? 2 : 0; int c6 = (z0 > w0) ? 1 : 0; int c = c1 + c2 + c3 + c4 + c5 + c6; int i1, j1, k1, l1; /* The integer offsets for the second simplex corner */ int i2, j2, k2, l2; /* The integer offsets for the third simplex corner */ int i3, j3, k3, l3; /* The integer offsets for the fourth simplex corner */ float x1, y1, z1, w1, x2, y2, z2, w2, x3, y3, z3, w3, x4, y4, z4, w4; int ii, jj, kk, ll; float t0, t1, t2, t3, t4; /* * simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some * order. Many values of c will never occur, since e.g. x>y>z>w * makes x<z, y<w and x<w impossible. Only the 24 indices which * have non-zero entries make any sense. We use a thresholding to * set the coordinates in turn from the largest magnitude. The * number 3 in the "simplex" array is at the position of the * largest coordinate. */ i1 = simplex[c][0] >= 3 ? 1 : 0; j1 = simplex[c][1] >= 3 ? 1 : 0; k1 = simplex[c][2] >= 3 ? 1 : 0; l1 = simplex[c][3] >= 3 ? 1 : 0; /* The number 2 in the "simplex" array is at the second largest coordinate. */ i2 = simplex[c][0] >= 2 ? 1 : 0; j2 = simplex[c][1] >= 2 ? 1 : 0; k2 = simplex[c][2] >= 2 ? 1 : 0; l2 = simplex[c][3] >= 2 ? 1 : 0; /* The number 1 in the "simplex" array is at the second smallest coordinate. */ i3 = simplex[c][0] >= 1 ? 1 : 0; j3 = simplex[c][1] >= 1 ? 1 : 0; k3 = simplex[c][2] >= 1 ? 1 : 0; l3 = simplex[c][3] >= 1 ? 1 : 0; /* The fifth corner has all coordinate offsets = 1, so no need to look that up. */ x1 = x0 - i1 + G4; /* Offsets for second corner in (x,y,z,w) coords */ y1 = y0 - j1 + G4; z1 = z0 - k1 + G4; w1 = w0 - l1 + G4; x2 = x0 - i2 + 2.0f * G4; /* Offsets for third corner in (x,y,z,w) coords */ y2 = y0 - j2 + 2.0f * G4; z2 = z0 - k2 + 2.0f * G4; w2 = w0 - l2 + 2.0f * G4; x3 = x0 - i3 + 3.0f * G4; /* Offsets for fourth corner in (x,y,z,w) coords */ y3 = y0 - j3 + 3.0f * G4; z3 = z0 - k3 + 3.0f * G4; w3 = w0 - l3 + 3.0f * G4; x4 = x0 - 1.0f + 4.0f * G4; /* Offsets for last corner in (x,y,z,w) coords */ y4 = y0 - 1.0f + 4.0f * G4; z4 = z0 - 1.0f + 4.0f * G4; w4 = w0 - 1.0f + 4.0f * G4; /* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */ ii = i % 256; jj = j % 256; kk = k % 256; ll = l % 256; /* Calculate the contribution from the five corners */ t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0; if (t0 < 0.0f) n0 = 0.0f; else { t0 *= t0; n0 = t0 * t0 * grad4(perm[ii + perm[jj + perm[kk + perm[ll]]]], x0, y0, z0, w0); } t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1; if (t1 < 0.0f) n1 = 0.0f; else { t1 *= t1; n1 = t1 * t1 * grad4(perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]], x1, y1, z1, w1); } t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2; if (t2 < 0.0f) n2 = 0.0f; else { t2 *= t2; n2 = t2 * t2 * grad4(perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]], x2, y2, z2, w2); } t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3; if (t3 < 0.0f) n3 = 0.0f; else { t3 *= t3; n3 = t3 * t3 * grad4(perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]], x3, y3, z3, w3); } t4 = 0.6f - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4; if (t4 < 0.0f) n4 = 0.0f; else { t4 *= t4; n4 = t4 * t4 * grad4(perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]], x4, y4, z4, w4); } /* Sum up and scale the result to cover the range [-1,1] */ return 27.0f * (n0 + n1 + n2 + n3 + n4); /* TODO: The scale factor is preliminary! */ }