/* * (C) Copyright IBM Corporation 2004, 2005 * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sub license, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * IBM, * AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <inttypes.h> #include <assert.h> #include <string.h> #include "glxclient.h" #include "indirect.h" #include <GL/glxproto.h> #include "glxextensions.h" #include "indirect_vertex_array.h" #include "indirect_vertex_array_priv.h" #define __GLX_PAD(n) (((n)+3) & ~3) /** * \file indirect_vertex_array.c * Implement GLX protocol for vertex arrays and vertex buffer objects. * * The most important function in this fill is \c fill_array_info_cache. * The \c array_state_vector contains a cache of the ARRAY_INFO data sent * in the DrawArrays protocol. Certain operations, such as enabling or * disabling an array, can invalidate this cache. \c fill_array_info_cache * fills-in this data. Additionally, it examines the enabled state and * other factors to determine what "version" of DrawArrays protocoal can be * used. * * Current, only two versions of DrawArrays protocol are implemented. The * first version is the "none" protocol. This is the fallback when the * server does not support GL 1.1 / EXT_vertex_arrays. It is implemented * by sending batches of immediate mode commands that are equivalent to the * DrawArrays protocol. * * The other protocol that is currently implemented is the "old" protocol. * This is the GL 1.1 DrawArrays protocol. The only difference between GL * 1.1 and EXT_vertex_arrays is the opcode used for the DrawArrays command. * This protocol is called "old" because the ARB is in the process of * defining a new protocol, which will probably be called wither "new" or * "vbo", to support multiple texture coordinate arrays, generic attributes, * and vertex buffer objects. * * \author Ian Romanick <ian.d.romanick@intel.com> */ static void emit_DrawArrays_none(GLenum mode, GLint first, GLsizei count); static void emit_DrawArrays_old(GLenum mode, GLint first, GLsizei count); static void emit_DrawElements_none(GLenum mode, GLsizei count, GLenum type, const GLvoid * indices); static void emit_DrawElements_old(GLenum mode, GLsizei count, GLenum type, const GLvoid * indices); static GLubyte *emit_element_none(GLubyte * dst, const struct array_state_vector *arrays, unsigned index); static GLubyte *emit_element_old(GLubyte * dst, const struct array_state_vector *arrays, unsigned index); static struct array_state *get_array_entry(const struct array_state_vector *arrays, GLenum key, unsigned index); static void fill_array_info_cache(struct array_state_vector *arrays); static GLboolean validate_mode(struct glx_context * gc, GLenum mode); static GLboolean validate_count(struct glx_context * gc, GLsizei count); static GLboolean validate_type(struct glx_context * gc, GLenum type); /** * Table of sizes, in bytes, of a GL types. All of the type enums are be in * the range 0x1400 - 0x140F. That includes types added by extensions (i.e., * \c GL_HALF_FLOAT_NV). This elements of this table correspond to the * type enums masked with 0x0f. * * \notes * \c GL_HALF_FLOAT_NV is not included. Neither are \c GL_2_BYTES, * \c GL_3_BYTES, or \c GL_4_BYTES. */ const GLuint __glXTypeSize_table[16] = { 1, 1, 2, 2, 4, 4, 4, 0, 0, 0, 8, 0, 0, 0, 0, 0 }; /** * Free the per-context array state that was allocated with * __glXInitVertexArrayState(). */ void __glXFreeVertexArrayState(struct glx_context * gc) { __GLXattribute *state = (__GLXattribute *) (gc->client_state_private); struct array_state_vector *arrays = state->array_state; if (arrays) { if (arrays->stack) { free(arrays->stack); arrays->stack = NULL; } if (arrays->arrays) { free(arrays->arrays); arrays->arrays = NULL; } free(arrays); state->array_state = NULL; } } /** * Initialize vertex array state of a GLX context. * * \param gc GLX context whose vertex array state is to be initialized. * * \warning * This function may only be called after struct glx_context::gl_extension_bits, * struct glx_context::server_minor, and __GLXcontext::server_major have been * initialized. These values are used to determine what vertex arrays are * supported. * * \bug * Return values from malloc are not properly tested. */ void __glXInitVertexArrayState(struct glx_context * gc) { __GLXattribute *state = (__GLXattribute *) (gc->client_state_private); struct array_state_vector *arrays; unsigned array_count; int texture_units = 1, vertex_program_attribs = 0; unsigned i, j; GLboolean got_fog = GL_FALSE; GLboolean got_secondary_color = GL_FALSE; arrays = calloc(1, sizeof(struct array_state_vector)); state->array_state = arrays; arrays->old_DrawArrays_possible = !state->NoDrawArraysProtocol; arrays->new_DrawArrays_possible = GL_FALSE; arrays->DrawArrays = NULL; arrays->active_texture_unit = 0; /* Determine how many arrays are actually needed. Only arrays that * are supported by the server are create. For example, if the server * supports only 2 texture units, then only 2 texture coordinate arrays * are created. * * At the very least, GL_VERTEX_ARRAY, GL_NORMAL_ARRAY, * GL_COLOR_ARRAY, GL_INDEX_ARRAY, GL_TEXTURE_COORD_ARRAY, and * GL_EDGE_FLAG_ARRAY are supported. */ array_count = 5; if (__glExtensionBitIsEnabled(gc, GL_EXT_fog_coord_bit) || (gc->server_major > 1) || (gc->server_minor >= 4)) { got_fog = GL_TRUE; array_count++; } if (__glExtensionBitIsEnabled(gc, GL_EXT_secondary_color_bit) || (gc->server_major > 1) || (gc->server_minor >= 4)) { got_secondary_color = GL_TRUE; array_count++; } if (__glExtensionBitIsEnabled(gc, GL_ARB_multitexture_bit) || (gc->server_major > 1) || (gc->server_minor >= 3)) { __indirect_glGetIntegerv(GL_MAX_TEXTURE_UNITS, &texture_units); } if (__glExtensionBitIsEnabled(gc, GL_ARB_vertex_program_bit)) { __indirect_glGetProgramivARB(GL_VERTEX_PROGRAM_ARB, GL_MAX_PROGRAM_ATTRIBS_ARB, &vertex_program_attribs); } arrays->num_texture_units = texture_units; arrays->num_vertex_program_attribs = vertex_program_attribs; array_count += texture_units + vertex_program_attribs; arrays->num_arrays = array_count; arrays->arrays = calloc(array_count, sizeof(struct array_state)); arrays->arrays[0].data_type = GL_FLOAT; arrays->arrays[0].count = 3; arrays->arrays[0].key = GL_NORMAL_ARRAY; arrays->arrays[0].normalized = GL_TRUE; arrays->arrays[0].old_DrawArrays_possible = GL_TRUE; arrays->arrays[1].data_type = GL_FLOAT; arrays->arrays[1].count = 4; arrays->arrays[1].key = GL_COLOR_ARRAY; arrays->arrays[1].normalized = GL_TRUE; arrays->arrays[1].old_DrawArrays_possible = GL_TRUE; arrays->arrays[2].data_type = GL_FLOAT; arrays->arrays[2].count = 1; arrays->arrays[2].key = GL_INDEX_ARRAY; arrays->arrays[2].old_DrawArrays_possible = GL_TRUE; arrays->arrays[3].data_type = GL_UNSIGNED_BYTE; arrays->arrays[3].count = 1; arrays->arrays[3].key = GL_EDGE_FLAG_ARRAY; arrays->arrays[3].old_DrawArrays_possible = GL_TRUE; for (i = 0; i < texture_units; i++) { arrays->arrays[4 + i].data_type = GL_FLOAT; arrays->arrays[4 + i].count = 4; arrays->arrays[4 + i].key = GL_TEXTURE_COORD_ARRAY; arrays->arrays[4 + i].old_DrawArrays_possible = (i == 0); arrays->arrays[4 + i].index = i; arrays->arrays[4 + i].header[1] = i + GL_TEXTURE0; } i = 4 + texture_units; if (got_fog) { arrays->arrays[i].data_type = GL_FLOAT; arrays->arrays[i].count = 1; arrays->arrays[i].key = GL_FOG_COORDINATE_ARRAY; arrays->arrays[i].old_DrawArrays_possible = GL_TRUE; i++; } if (got_secondary_color) { arrays->arrays[i].data_type = GL_FLOAT; arrays->arrays[i].count = 3; arrays->arrays[i].key = GL_SECONDARY_COLOR_ARRAY; arrays->arrays[i].old_DrawArrays_possible = GL_TRUE; arrays->arrays[i].normalized = GL_TRUE; i++; } for (j = 0; j < vertex_program_attribs; j++) { const unsigned idx = (vertex_program_attribs - (j + 1)); arrays->arrays[idx + i].data_type = GL_FLOAT; arrays->arrays[idx + i].count = 4; arrays->arrays[idx + i].key = GL_VERTEX_ATTRIB_ARRAY_POINTER; arrays->arrays[idx + i].old_DrawArrays_possible = 0; arrays->arrays[idx + i].index = idx; arrays->arrays[idx + i].header[1] = idx; } i += vertex_program_attribs; /* Vertex array *must* be last becuase of the way that * emit_DrawArrays_none works. */ arrays->arrays[i].data_type = GL_FLOAT; arrays->arrays[i].count = 4; arrays->arrays[i].key = GL_VERTEX_ARRAY; arrays->arrays[i].old_DrawArrays_possible = GL_TRUE; assert((i + 1) == arrays->num_arrays); arrays->stack_index = 0; arrays->stack = malloc(sizeof(struct array_stack_state) * arrays->num_arrays * __GL_CLIENT_ATTRIB_STACK_DEPTH); } /** * Calculate the size of a single vertex for the "none" protocol. This is * essentially the size of all the immediate-mode commands required to * implement the enabled vertex arrays. */ static size_t calculate_single_vertex_size_none(const struct array_state_vector *arrays) { size_t single_vertex_size = 0; unsigned i; for (i = 0; i < arrays->num_arrays; i++) { if (arrays->arrays[i].enabled) { single_vertex_size += ((uint16_t *) arrays->arrays[i].header)[0]; } } return single_vertex_size; } /** * Emit a single element using non-DrawArrays protocol. */ GLubyte * emit_element_none(GLubyte * dst, const struct array_state_vector * arrays, unsigned index) { unsigned i; for (i = 0; i < arrays->num_arrays; i++) { if (arrays->arrays[i].enabled) { const size_t offset = index * arrays->arrays[i].true_stride; /* The generic attributes can have more data than is in the * elements. This is because a vertex array can be a 2 element, * normalized, unsigned short, but the "closest" immediate mode * protocol is for a 4Nus. Since the sizes are small, the * performance impact on modern processors should be negligible. */ (void) memset(dst, 0, ((uint16_t *) arrays->arrays[i].header)[0]); (void) memcpy(dst, arrays->arrays[i].header, arrays->arrays[i].header_size); dst += arrays->arrays[i].header_size; (void) memcpy(dst, ((GLubyte *) arrays->arrays[i].data) + offset, arrays->arrays[i].element_size); dst += __GLX_PAD(arrays->arrays[i].element_size); } } return dst; } /** * Emit a single element using "old" DrawArrays protocol from * EXT_vertex_arrays / OpenGL 1.1. */ GLubyte * emit_element_old(GLubyte * dst, const struct array_state_vector * arrays, unsigned index) { unsigned i; for (i = 0; i < arrays->num_arrays; i++) { if (arrays->arrays[i].enabled) { const size_t offset = index * arrays->arrays[i].true_stride; (void) memcpy(dst, ((GLubyte *) arrays->arrays[i].data) + offset, arrays->arrays[i].element_size); dst += __GLX_PAD(arrays->arrays[i].element_size); } } return dst; } struct array_state * get_array_entry(const struct array_state_vector *arrays, GLenum key, unsigned index) { unsigned i; for (i = 0; i < arrays->num_arrays; i++) { if ((arrays->arrays[i].key == key) && (arrays->arrays[i].index == index)) { return &arrays->arrays[i]; } } return NULL; } static GLboolean allocate_array_info_cache(struct array_state_vector *arrays, size_t required_size) { #define MAX_HEADER_SIZE 20 if (arrays->array_info_cache_buffer_size < required_size) { GLubyte *temp = realloc(arrays->array_info_cache_base, required_size + MAX_HEADER_SIZE); if (temp == NULL) { return GL_FALSE; } arrays->array_info_cache_base = temp; arrays->array_info_cache = temp + MAX_HEADER_SIZE; arrays->array_info_cache_buffer_size = required_size; } arrays->array_info_cache_size = required_size; return GL_TRUE; } /** */ void fill_array_info_cache(struct array_state_vector *arrays) { GLboolean old_DrawArrays_possible; unsigned i; /* Determine how many arrays are enabled. */ arrays->enabled_client_array_count = 0; old_DrawArrays_possible = arrays->old_DrawArrays_possible; for (i = 0; i < arrays->num_arrays; i++) { if (arrays->arrays[i].enabled) { arrays->enabled_client_array_count++; old_DrawArrays_possible &= arrays->arrays[i].old_DrawArrays_possible; } } if (arrays->new_DrawArrays_possible) { assert(!arrays->new_DrawArrays_possible); } else if (old_DrawArrays_possible) { const size_t required_size = arrays->enabled_client_array_count * 12; uint32_t *info; if (!allocate_array_info_cache(arrays, required_size)) { return; } info = (uint32_t *) arrays->array_info_cache; for (i = 0; i < arrays->num_arrays; i++) { if (arrays->arrays[i].enabled) { *(info++) = arrays->arrays[i].data_type; *(info++) = arrays->arrays[i].count; *(info++) = arrays->arrays[i].key; } } arrays->DrawArrays = emit_DrawArrays_old; arrays->DrawElements = emit_DrawElements_old; } else { arrays->DrawArrays = emit_DrawArrays_none; arrays->DrawElements = emit_DrawElements_none; } arrays->array_info_cache_valid = GL_TRUE; } /** * Emit a \c glDrawArrays command using the "none" protocol. That is, * emit immediate-mode commands that are equivalent to the requiested * \c glDrawArrays command. This is used with servers that don't support * the OpenGL 1.1 / EXT_vertex_arrays DrawArrays protocol or in cases where * vertex state is enabled that is not compatible with that protocol. */ void emit_DrawArrays_none(GLenum mode, GLint first, GLsizei count) { struct glx_context *gc = __glXGetCurrentContext(); const __GLXattribute *state = (const __GLXattribute *) (gc->client_state_private); struct array_state_vector *arrays = state->array_state; size_t single_vertex_size; GLubyte *pc; unsigned i; static const uint16_t begin_cmd[2] = { 8, X_GLrop_Begin }; static const uint16_t end_cmd[2] = { 4, X_GLrop_End }; single_vertex_size = calculate_single_vertex_size_none(arrays); pc = gc->pc; (void) memcpy(pc, begin_cmd, 4); *(int *) (pc + 4) = mode; pc += 8; for (i = 0; i < count; i++) { if ((pc + single_vertex_size) >= gc->bufEnd) { pc = __glXFlushRenderBuffer(gc, pc); } pc = emit_element_none(pc, arrays, first + i); } if ((pc + 4) >= gc->bufEnd) { pc = __glXFlushRenderBuffer(gc, pc); } (void) memcpy(pc, end_cmd, 4); pc += 4; gc->pc = pc; if (gc->pc > gc->limit) { (void) __glXFlushRenderBuffer(gc, gc->pc); } } /** * Emit the header data for the GL 1.1 / EXT_vertex_arrays DrawArrays * protocol. * * \param gc GLX context. * \param arrays Array state. * \param elements_per_request Location to store the number of elements that * can fit in a single Render / RenderLarge * command. * \param total_request Total number of requests for a RenderLarge * command. If a Render command is used, this * will be zero. * \param mode Drawing mode. * \param count Number of vertices. * * \returns * A pointer to the buffer for array data. */ static GLubyte * emit_DrawArrays_header_old(struct glx_context * gc, struct array_state_vector *arrays, size_t * elements_per_request, unsigned int *total_requests, GLenum mode, GLsizei count) { size_t command_size; size_t single_vertex_size; const unsigned header_size = 16; unsigned i; GLubyte *pc; /* Determine the size of the whole command. This includes the header, * the ARRAY_INFO data and the array data. Once this size is calculated, * it will be known whether a Render or RenderLarge command is needed. */ single_vertex_size = 0; for (i = 0; i < arrays->num_arrays; i++) { if (arrays->arrays[i].enabled) { single_vertex_size += __GLX_PAD(arrays->arrays[i].element_size); } } command_size = arrays->array_info_cache_size + header_size + (single_vertex_size * count); /* Write the header for either a Render command or a RenderLarge * command. After the header is written, write the ARRAY_INFO data. */ if (command_size > gc->maxSmallRenderCommandSize) { /* maxSize is the maximum amount of data can be stuffed into a single * packet. sz_xGLXRenderReq is added because bufSize is the maximum * packet size minus sz_xGLXRenderReq. */ const size_t maxSize = (gc->bufSize + sz_xGLXRenderReq) - sz_xGLXRenderLargeReq; unsigned vertex_requests; /* Calculate the number of data packets that will be required to send * the whole command. To do this, the number of verticies that * will fit in a single buffer must be calculated. * * The important value here is elements_per_request. This is the * number of complete array elements that will fit in a single * buffer. There may be some wasted space at the end of the buffer, * but splitting elements across buffer boundries would be painful. */ elements_per_request[0] = maxSize / single_vertex_size; vertex_requests = (count + elements_per_request[0] - 1) / elements_per_request[0]; *total_requests = vertex_requests + 1; __glXFlushRenderBuffer(gc, gc->pc); command_size += 4; pc = ((GLubyte *) arrays->array_info_cache) - (header_size + 4); *(uint32_t *) (pc + 0) = command_size; *(uint32_t *) (pc + 4) = X_GLrop_DrawArrays; *(uint32_t *) (pc + 8) = count; *(uint32_t *) (pc + 12) = arrays->enabled_client_array_count; *(uint32_t *) (pc + 16) = mode; __glXSendLargeChunk(gc, 1, *total_requests, pc, header_size + 4 + arrays->array_info_cache_size); pc = gc->pc; } else { if ((gc->pc + command_size) >= gc->bufEnd) { (void) __glXFlushRenderBuffer(gc, gc->pc); } pc = gc->pc; *(uint16_t *) (pc + 0) = command_size; *(uint16_t *) (pc + 2) = X_GLrop_DrawArrays; *(uint32_t *) (pc + 4) = count; *(uint32_t *) (pc + 8) = arrays->enabled_client_array_count; *(uint32_t *) (pc + 12) = mode; pc += header_size; (void) memcpy(pc, arrays->array_info_cache, arrays->array_info_cache_size); pc += arrays->array_info_cache_size; *elements_per_request = count; *total_requests = 0; } return pc; } /** */ void emit_DrawArrays_old(GLenum mode, GLint first, GLsizei count) { struct glx_context *gc = __glXGetCurrentContext(); const __GLXattribute *state = (const __GLXattribute *) (gc->client_state_private); struct array_state_vector *arrays = state->array_state; GLubyte *pc; size_t elements_per_request; unsigned total_requests = 0; unsigned i; size_t total_sent = 0; pc = emit_DrawArrays_header_old(gc, arrays, &elements_per_request, &total_requests, mode, count); /* Write the arrays. */ if (total_requests == 0) { assert(elements_per_request >= count); for (i = 0; i < count; i++) { pc = emit_element_old(pc, arrays, i + first); } assert(pc <= gc->bufEnd); gc->pc = pc; if (gc->pc > gc->limit) { (void) __glXFlushRenderBuffer(gc, gc->pc); } } else { unsigned req; for (req = 2; req <= total_requests; req++) { if (count < elements_per_request) { elements_per_request = count; } pc = gc->pc; for (i = 0; i < elements_per_request; i++) { pc = emit_element_old(pc, arrays, i + first); } first += elements_per_request; total_sent += (size_t) (pc - gc->pc); __glXSendLargeChunk(gc, req, total_requests, gc->pc, pc - gc->pc); count -= elements_per_request; } } } void emit_DrawElements_none(GLenum mode, GLsizei count, GLenum type, const GLvoid * indices) { struct glx_context *gc = __glXGetCurrentContext(); const __GLXattribute *state = (const __GLXattribute *) (gc->client_state_private); struct array_state_vector *arrays = state->array_state; static const uint16_t begin_cmd[2] = { 8, X_GLrop_Begin }; static const uint16_t end_cmd[2] = { 4, X_GLrop_End }; GLubyte *pc; size_t single_vertex_size; unsigned i; single_vertex_size = calculate_single_vertex_size_none(arrays); if ((gc->pc + single_vertex_size) >= gc->bufEnd) { gc->pc = __glXFlushRenderBuffer(gc, gc->pc); } pc = gc->pc; (void) memcpy(pc, begin_cmd, 4); *(int *) (pc + 4) = mode; pc += 8; for (i = 0; i < count; i++) { unsigned index = 0; if ((pc + single_vertex_size) >= gc->bufEnd) { pc = __glXFlushRenderBuffer(gc, pc); } switch (type) { case GL_UNSIGNED_INT: index = (unsigned) (((GLuint *) indices)[i]); break; case GL_UNSIGNED_SHORT: index = (unsigned) (((GLushort *) indices)[i]); break; case GL_UNSIGNED_BYTE: index = (unsigned) (((GLubyte *) indices)[i]); break; } pc = emit_element_none(pc, arrays, index); } if ((pc + 4) >= gc->bufEnd) { pc = __glXFlushRenderBuffer(gc, pc); } (void) memcpy(pc, end_cmd, 4); pc += 4; gc->pc = pc; if (gc->pc > gc->limit) { (void) __glXFlushRenderBuffer(gc, gc->pc); } } /** */ void emit_DrawElements_old(GLenum mode, GLsizei count, GLenum type, const GLvoid * indices) { struct glx_context *gc = __glXGetCurrentContext(); const __GLXattribute *state = (const __GLXattribute *) (gc->client_state_private); struct array_state_vector *arrays = state->array_state; GLubyte *pc; size_t elements_per_request; unsigned total_requests = 0; unsigned i; unsigned req; unsigned req_element = 0; pc = emit_DrawArrays_header_old(gc, arrays, &elements_per_request, &total_requests, mode, count); /* Write the arrays. */ req = 2; while (count > 0) { if (count < elements_per_request) { elements_per_request = count; } switch (type) { case GL_UNSIGNED_INT:{ const GLuint *ui_ptr = (const GLuint *) indices + req_element; for (i = 0; i < elements_per_request; i++) { const GLint index = (GLint) * (ui_ptr++); pc = emit_element_old(pc, arrays, index); } break; } case GL_UNSIGNED_SHORT:{ const GLushort *us_ptr = (const GLushort *) indices + req_element; for (i = 0; i < elements_per_request; i++) { const GLint index = (GLint) * (us_ptr++); pc = emit_element_old(pc, arrays, index); } break; } case GL_UNSIGNED_BYTE:{ const GLubyte *ub_ptr = (const GLubyte *) indices + req_element; for (i = 0; i < elements_per_request; i++) { const GLint index = (GLint) * (ub_ptr++); pc = emit_element_old(pc, arrays, index); } break; } } if (total_requests != 0) { __glXSendLargeChunk(gc, req, total_requests, gc->pc, pc - gc->pc); pc = gc->pc; req++; } count -= elements_per_request; req_element += elements_per_request; } assert((total_requests == 0) || ((req - 1) == total_requests)); if (total_requests == 0) { assert(pc <= gc->bufEnd); gc->pc = pc; if (gc->pc > gc->limit) { (void) __glXFlushRenderBuffer(gc, gc->pc); } } } /** * Validate that the \c mode parameter to \c glDrawArrays, et. al. is valid. * If it is not valid, then an error code is set in the GLX context. * * \returns * \c GL_TRUE if the argument is valid, \c GL_FALSE if is not. */ static GLboolean validate_mode(struct glx_context * gc, GLenum mode) { switch (mode) { case GL_POINTS: case GL_LINE_STRIP: case GL_LINE_LOOP: case GL_LINES: case GL_TRIANGLE_STRIP: case GL_TRIANGLE_FAN: case GL_TRIANGLES: case GL_QUAD_STRIP: case GL_QUADS: case GL_POLYGON: break; default: __glXSetError(gc, GL_INVALID_ENUM); return GL_FALSE; } return GL_TRUE; } /** * Validate that the \c count parameter to \c glDrawArrays, et. al. is valid. * A value less than zero is invalid and will result in \c GL_INVALID_VALUE * being set. A value of zero will not result in an error being set, but * will result in \c GL_FALSE being returned. * * \returns * \c GL_TRUE if the argument is valid, \c GL_FALSE if it is not. */ static GLboolean validate_count(struct glx_context * gc, GLsizei count) { if (count < 0) { __glXSetError(gc, GL_INVALID_VALUE); } return (count > 0); } /** * Validate that the \c type parameter to \c glDrawElements, et. al. is * valid. Only \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT, and * \c GL_UNSIGNED_INT are valid. * * \returns * \c GL_TRUE if the argument is valid, \c GL_FALSE if it is not. */ static GLboolean validate_type(struct glx_context * gc, GLenum type) { switch (type) { case GL_UNSIGNED_INT: case GL_UNSIGNED_SHORT: case GL_UNSIGNED_BYTE: return GL_TRUE; default: __glXSetError(gc, GL_INVALID_ENUM); return GL_FALSE; } } void __indirect_glDrawArrays(GLenum mode, GLint first, GLsizei count) { struct glx_context *gc = __glXGetCurrentContext(); const __GLXattribute *state = (const __GLXattribute *) (gc->client_state_private); struct array_state_vector *arrays = state->array_state; if (validate_mode(gc, mode) && validate_count(gc, count)) { if (!arrays->array_info_cache_valid) { fill_array_info_cache(arrays); } arrays->DrawArrays(mode, first, count); } } void __indirect_glArrayElement(GLint index) { struct glx_context *gc = __glXGetCurrentContext(); const __GLXattribute *state = (const __GLXattribute *) (gc->client_state_private); struct array_state_vector *arrays = state->array_state; size_t single_vertex_size; single_vertex_size = calculate_single_vertex_size_none(arrays); if ((gc->pc + single_vertex_size) >= gc->bufEnd) { gc->pc = __glXFlushRenderBuffer(gc, gc->pc); } gc->pc = emit_element_none(gc->pc, arrays, index); if (gc->pc > gc->limit) { (void) __glXFlushRenderBuffer(gc, gc->pc); } } void __indirect_glDrawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid * indices) { struct glx_context *gc = __glXGetCurrentContext(); const __GLXattribute *state = (const __GLXattribute *) (gc->client_state_private); struct array_state_vector *arrays = state->array_state; if (validate_mode(gc, mode) && validate_count(gc, count) && validate_type(gc, type)) { if (!arrays->array_info_cache_valid) { fill_array_info_cache(arrays); } arrays->DrawElements(mode, count, type, indices); } } void __indirect_glDrawRangeElements(GLenum mode, GLuint start, GLuint end, GLsizei count, GLenum type, const GLvoid * indices) { struct glx_context *gc = __glXGetCurrentContext(); const __GLXattribute *state = (const __GLXattribute *) (gc->client_state_private); struct array_state_vector *arrays = state->array_state; if (validate_mode(gc, mode) && validate_count(gc, count) && validate_type(gc, type)) { if (end < start) { __glXSetError(gc, GL_INVALID_VALUE); return; } if (!arrays->array_info_cache_valid) { fill_array_info_cache(arrays); } arrays->DrawElements(mode, count, type, indices); } } void __indirect_glMultiDrawArraysEXT(GLenum mode, const GLint *first, const GLsizei *count, GLsizei primcount) { struct glx_context *gc = __glXGetCurrentContext(); const __GLXattribute *state = (const __GLXattribute *) (gc->client_state_private); struct array_state_vector *arrays = state->array_state; GLsizei i; if (validate_mode(gc, mode)) { if (!arrays->array_info_cache_valid) { fill_array_info_cache(arrays); } for (i = 0; i < primcount; i++) { if (validate_count(gc, count[i])) { arrays->DrawArrays(mode, first[i], count[i]); } } } } void __indirect_glMultiDrawElementsEXT(GLenum mode, const GLsizei * count, GLenum type, const GLvoid ** indices, GLsizei primcount) { struct glx_context *gc = __glXGetCurrentContext(); const __GLXattribute *state = (const __GLXattribute *) (gc->client_state_private); struct array_state_vector *arrays = state->array_state; GLsizei i; if (validate_mode(gc, mode) && validate_type(gc, type)) { if (!arrays->array_info_cache_valid) { fill_array_info_cache(arrays); } for (i = 0; i < primcount; i++) { if (validate_count(gc, count[i])) { arrays->DrawElements(mode, count[i], type, indices[i]); } } } } #define COMMON_ARRAY_DATA_INIT(a, PTR, TYPE, STRIDE, COUNT, NORMALIZED, HDR_SIZE, OPCODE) \ do { \ (a)->data = PTR; \ (a)->data_type = TYPE; \ (a)->user_stride = STRIDE; \ (a)->count = COUNT; \ (a)->normalized = NORMALIZED; \ \ (a)->element_size = __glXTypeSize( TYPE ) * COUNT; \ (a)->true_stride = (STRIDE == 0) \ ? (a)->element_size : STRIDE; \ \ (a)->header_size = HDR_SIZE; \ ((uint16_t *) (a)->header)[0] = __GLX_PAD((a)->header_size + (a)->element_size); \ ((uint16_t *) (a)->header)[1] = OPCODE; \ } while(0) void __indirect_glVertexPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) { static const uint16_t short_ops[5] = { 0, 0, X_GLrop_Vertex2sv, X_GLrop_Vertex3sv, X_GLrop_Vertex4sv }; static const uint16_t int_ops[5] = { 0, 0, X_GLrop_Vertex2iv, X_GLrop_Vertex3iv, X_GLrop_Vertex4iv }; static const uint16_t float_ops[5] = { 0, 0, X_GLrop_Vertex2fv, X_GLrop_Vertex3fv, X_GLrop_Vertex4fv }; static const uint16_t double_ops[5] = { 0, 0, X_GLrop_Vertex2dv, X_GLrop_Vertex3dv, X_GLrop_Vertex4dv }; uint16_t opcode; struct glx_context *gc = __glXGetCurrentContext(); __GLXattribute *state = (__GLXattribute *) (gc->client_state_private); struct array_state_vector *arrays = state->array_state; struct array_state *a; if (size < 2 || size > 4 || stride < 0) { __glXSetError(gc, GL_INVALID_VALUE); return; } switch (type) { case GL_SHORT: opcode = short_ops[size]; break; case GL_INT: opcode = int_ops[size]; break; case GL_FLOAT: opcode = float_ops[size]; break; case GL_DOUBLE: opcode = double_ops[size]; break; default: __glXSetError(gc, GL_INVALID_ENUM); return; } a = get_array_entry(arrays, GL_VERTEX_ARRAY, 0); assert(a != NULL); COMMON_ARRAY_DATA_INIT(a, pointer, type, stride, size, GL_FALSE, 4, opcode); if (a->enabled) { arrays->array_info_cache_valid = GL_FALSE; } } void __indirect_glNormalPointer(GLenum type, GLsizei stride, const GLvoid * pointer) { uint16_t opcode; struct glx_context *gc = __glXGetCurrentContext(); __GLXattribute *state = (__GLXattribute *) (gc->client_state_private); struct array_state_vector *arrays = state->array_state; struct array_state *a; if (stride < 0) { __glXSetError(gc, GL_INVALID_VALUE); return; } switch (type) { case GL_BYTE: opcode = X_GLrop_Normal3bv; break; case GL_SHORT: opcode = X_GLrop_Normal3sv; break; case GL_INT: opcode = X_GLrop_Normal3iv; break; case GL_FLOAT: opcode = X_GLrop_Normal3fv; break; case GL_DOUBLE: opcode = X_GLrop_Normal3dv; break; default: __glXSetError(gc, GL_INVALID_ENUM); return; } a = get_array_entry(arrays, GL_NORMAL_ARRAY, 0); assert(a != NULL); COMMON_ARRAY_DATA_INIT(a, pointer, type, stride, 3, GL_TRUE, 4, opcode); if (a->enabled) { arrays->array_info_cache_valid = GL_FALSE; } } void __indirect_glColorPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) { static const uint16_t byte_ops[5] = { 0, 0, 0, X_GLrop_Color3bv, X_GLrop_Color4bv }; static const uint16_t ubyte_ops[5] = { 0, 0, 0, X_GLrop_Color3ubv, X_GLrop_Color4ubv }; static const uint16_t short_ops[5] = { 0, 0, 0, X_GLrop_Color3sv, X_GLrop_Color4sv }; static const uint16_t ushort_ops[5] = { 0, 0, 0, X_GLrop_Color3usv, X_GLrop_Color4usv }; static const uint16_t int_ops[5] = { 0, 0, 0, X_GLrop_Color3iv, X_GLrop_Color4iv }; static const uint16_t uint_ops[5] = { 0, 0, 0, X_GLrop_Color3uiv, X_GLrop_Color4uiv }; static const uint16_t float_ops[5] = { 0, 0, 0, X_GLrop_Color3fv, X_GLrop_Color4fv }; static const uint16_t double_ops[5] = { 0, 0, 0, X_GLrop_Color3dv, X_GLrop_Color4dv }; uint16_t opcode; struct glx_context *gc = __glXGetCurrentContext(); __GLXattribute *state = (__GLXattribute *) (gc->client_state_private); struct array_state_vector *arrays = state->array_state; struct array_state *a; if (size < 3 || size > 4 || stride < 0) { __glXSetError(gc, GL_INVALID_VALUE); return; } switch (type) { case GL_BYTE: opcode = byte_ops[size]; break; case GL_UNSIGNED_BYTE: opcode = ubyte_ops[size]; break; case GL_SHORT: opcode = short_ops[size]; break; case GL_UNSIGNED_SHORT: opcode = ushort_ops[size]; break; case GL_INT: opcode = int_ops[size]; break; case GL_UNSIGNED_INT: opcode = uint_ops[size]; break; case GL_FLOAT: opcode = float_ops[size]; break; case GL_DOUBLE: opcode = double_ops[size]; break; default: __glXSetError(gc, GL_INVALID_ENUM); return; } a = get_array_entry(arrays, GL_COLOR_ARRAY, 0); assert(a != NULL); COMMON_ARRAY_DATA_INIT(a, pointer, type, stride, size, GL_TRUE, 4, opcode); if (a->enabled) { arrays->array_info_cache_valid = GL_FALSE; } } void __indirect_glIndexPointer(GLenum type, GLsizei stride, const GLvoid * pointer) { uint16_t opcode; struct glx_context *gc = __glXGetCurrentContext(); __GLXattribute *state = (__GLXattribute *) (gc->client_state_private); struct array_state_vector *arrays = state->array_state; struct array_state *a; if (stride < 0) { __glXSetError(gc, GL_INVALID_VALUE); return; } switch (type) { case GL_UNSIGNED_BYTE: opcode = X_GLrop_Indexubv; break; case GL_SHORT: opcode = X_GLrop_Indexsv; break; case GL_INT: opcode = X_GLrop_Indexiv; break; case GL_FLOAT: opcode = X_GLrop_Indexfv; break; case GL_DOUBLE: opcode = X_GLrop_Indexdv; break; default: __glXSetError(gc, GL_INVALID_ENUM); return; } a = get_array_entry(arrays, GL_INDEX_ARRAY, 0); assert(a != NULL); COMMON_ARRAY_DATA_INIT(a, pointer, type, stride, 1, GL_FALSE, 4, opcode); if (a->enabled) { arrays->array_info_cache_valid = GL_FALSE; } } void __indirect_glEdgeFlagPointer(GLsizei stride, const GLvoid * pointer) { struct glx_context *gc = __glXGetCurrentContext(); __GLXattribute *state = (__GLXattribute *) (gc->client_state_private); struct array_state_vector *arrays = state->array_state; struct array_state *a; if (stride < 0) { __glXSetError(gc, GL_INVALID_VALUE); return; } a = get_array_entry(arrays, GL_EDGE_FLAG_ARRAY, 0); assert(a != NULL); COMMON_ARRAY_DATA_INIT(a, pointer, GL_UNSIGNED_BYTE, stride, 1, GL_FALSE, 4, X_GLrop_EdgeFlagv); if (a->enabled) { arrays->array_info_cache_valid = GL_FALSE; } } void __indirect_glTexCoordPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) { static const uint16_t short_ops[5] = { 0, X_GLrop_TexCoord1sv, X_GLrop_TexCoord2sv, X_GLrop_TexCoord3sv, X_GLrop_TexCoord4sv }; static const uint16_t int_ops[5] = { 0, X_GLrop_TexCoord1iv, X_GLrop_TexCoord2iv, X_GLrop_TexCoord3iv, X_GLrop_TexCoord4iv }; static const uint16_t float_ops[5] = { 0, X_GLrop_TexCoord1dv, X_GLrop_TexCoord2fv, X_GLrop_TexCoord3fv, X_GLrop_TexCoord4fv }; static const uint16_t double_ops[5] = { 0, X_GLrop_TexCoord1dv, X_GLrop_TexCoord2dv, X_GLrop_TexCoord3dv, X_GLrop_TexCoord4dv }; static const uint16_t mshort_ops[5] = { 0, X_GLrop_MultiTexCoord1svARB, X_GLrop_MultiTexCoord2svARB, X_GLrop_MultiTexCoord3svARB, X_GLrop_MultiTexCoord4svARB }; static const uint16_t mint_ops[5] = { 0, X_GLrop_MultiTexCoord1ivARB, X_GLrop_MultiTexCoord2ivARB, X_GLrop_MultiTexCoord3ivARB, X_GLrop_MultiTexCoord4ivARB }; static const uint16_t mfloat_ops[5] = { 0, X_GLrop_MultiTexCoord1dvARB, X_GLrop_MultiTexCoord2fvARB, X_GLrop_MultiTexCoord3fvARB, X_GLrop_MultiTexCoord4fvARB }; static const uint16_t mdouble_ops[5] = { 0, X_GLrop_MultiTexCoord1dvARB, X_GLrop_MultiTexCoord2dvARB, X_GLrop_MultiTexCoord3dvARB, X_GLrop_MultiTexCoord4dvARB }; uint16_t opcode; struct glx_context *gc = __glXGetCurrentContext(); __GLXattribute *state = (__GLXattribute *) (gc->client_state_private); struct array_state_vector *arrays = state->array_state; struct array_state *a; unsigned header_size; unsigned index; if (size < 1 || size > 4 || stride < 0) { __glXSetError(gc, GL_INVALID_VALUE); return; } index = arrays->active_texture_unit; if (index == 0) { switch (type) { case GL_SHORT: opcode = short_ops[size]; break; case GL_INT: opcode = int_ops[size]; break; case GL_FLOAT: opcode = float_ops[size]; break; case GL_DOUBLE: opcode = double_ops[size]; break; default: __glXSetError(gc, GL_INVALID_ENUM); return; } header_size = 4; } else { switch (type) { case GL_SHORT: opcode = mshort_ops[size]; break; case GL_INT: opcode = mint_ops[size]; break; case GL_FLOAT: opcode = mfloat_ops[size]; break; case GL_DOUBLE: opcode = mdouble_ops[size]; break; default: __glXSetError(gc, GL_INVALID_ENUM); return; } header_size = 8; } a = get_array_entry(arrays, GL_TEXTURE_COORD_ARRAY, index); assert(a != NULL); COMMON_ARRAY_DATA_INIT(a, pointer, type, stride, size, GL_FALSE, header_size, opcode); if (a->enabled) { arrays->array_info_cache_valid = GL_FALSE; } } void __indirect_glSecondaryColorPointerEXT(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) { uint16_t opcode; struct glx_context *gc = __glXGetCurrentContext(); __GLXattribute *state = (__GLXattribute *) (gc->client_state_private); struct array_state_vector *arrays = state->array_state; struct array_state *a; if (size != 3 || stride < 0) { __glXSetError(gc, GL_INVALID_VALUE); return; } switch (type) { case GL_BYTE: opcode = 4126; break; case GL_UNSIGNED_BYTE: opcode = 4131; break; case GL_SHORT: opcode = 4127; break; case GL_UNSIGNED_SHORT: opcode = 4132; break; case GL_INT: opcode = 4128; break; case GL_UNSIGNED_INT: opcode = 4133; break; case GL_FLOAT: opcode = 4129; break; case GL_DOUBLE: opcode = 4130; break; default: __glXSetError(gc, GL_INVALID_ENUM); return; } a = get_array_entry(arrays, GL_SECONDARY_COLOR_ARRAY, 0); if (a == NULL) { __glXSetError(gc, GL_INVALID_OPERATION); return; } COMMON_ARRAY_DATA_INIT(a, pointer, type, stride, size, GL_TRUE, 4, opcode); if (a->enabled) { arrays->array_info_cache_valid = GL_FALSE; } } void __indirect_glFogCoordPointerEXT(GLenum type, GLsizei stride, const GLvoid * pointer) { uint16_t opcode; struct glx_context *gc = __glXGetCurrentContext(); __GLXattribute *state = (__GLXattribute *) (gc->client_state_private); struct array_state_vector *arrays = state->array_state; struct array_state *a; if (stride < 0) { __glXSetError(gc, GL_INVALID_VALUE); return; } switch (type) { case GL_FLOAT: opcode = 4124; break; case GL_DOUBLE: opcode = 4125; break; default: __glXSetError(gc, GL_INVALID_ENUM); return; } a = get_array_entry(arrays, GL_FOG_COORD_ARRAY, 0); if (a == NULL) { __glXSetError(gc, GL_INVALID_OPERATION); return; } COMMON_ARRAY_DATA_INIT(a, pointer, type, stride, 1, GL_FALSE, 4, opcode); if (a->enabled) { arrays->array_info_cache_valid = GL_FALSE; } } void __indirect_glVertexAttribPointerARB(GLuint index, GLint size, GLenum type, GLboolean normalized, GLsizei stride, const GLvoid * pointer) { static const uint16_t short_ops[5] = { 0, 4189, 4190, 4191, 4192 }; static const uint16_t float_ops[5] = { 0, 4193, 4194, 4195, 4196 }; static const uint16_t double_ops[5] = { 0, 4197, 4198, 4199, 4200 }; uint16_t opcode; struct glx_context *gc = __glXGetCurrentContext(); __GLXattribute *state = (__GLXattribute *) (gc->client_state_private); struct array_state_vector *arrays = state->array_state; struct array_state *a; unsigned true_immediate_count; unsigned true_immediate_size; if ((size < 1) || (size > 4) || (stride < 0) || (index > arrays->num_vertex_program_attribs)) { __glXSetError(gc, GL_INVALID_VALUE); return; } if (normalized && (type != GL_FLOAT) && (type != GL_DOUBLE)) { switch (type) { case GL_BYTE: opcode = X_GLrop_VertexAttrib4NbvARB; break; case GL_UNSIGNED_BYTE: opcode = X_GLrop_VertexAttrib4NubvARB; break; case GL_SHORT: opcode = X_GLrop_VertexAttrib4NsvARB; break; case GL_UNSIGNED_SHORT: opcode = X_GLrop_VertexAttrib4NusvARB; break; case GL_INT: opcode = X_GLrop_VertexAttrib4NivARB; break; case GL_UNSIGNED_INT: opcode = X_GLrop_VertexAttrib4NuivARB; break; default: __glXSetError(gc, GL_INVALID_ENUM); return; } true_immediate_count = 4; } else { true_immediate_count = size; switch (type) { case GL_BYTE: opcode = X_GLrop_VertexAttrib4bvARB; true_immediate_count = 4; break; case GL_UNSIGNED_BYTE: opcode = X_GLrop_VertexAttrib4ubvARB; true_immediate_count = 4; break; case GL_SHORT: opcode = short_ops[size]; break; case GL_UNSIGNED_SHORT: opcode = X_GLrop_VertexAttrib4usvARB; true_immediate_count = 4; break; case GL_INT: opcode = X_GLrop_VertexAttrib4ivARB; true_immediate_count = 4; break; case GL_UNSIGNED_INT: opcode = X_GLrop_VertexAttrib4uivARB; true_immediate_count = 4; break; case GL_FLOAT: opcode = float_ops[size]; break; case GL_DOUBLE: opcode = double_ops[size]; break; default: __glXSetError(gc, GL_INVALID_ENUM); return; } } a = get_array_entry(arrays, GL_VERTEX_ATTRIB_ARRAY_POINTER, index); if (a == NULL) { __glXSetError(gc, GL_INVALID_OPERATION); return; } COMMON_ARRAY_DATA_INIT(a, pointer, type, stride, size, normalized, 8, opcode); true_immediate_size = __glXTypeSize(type) * true_immediate_count; ((uint16_t *) (a)->header)[0] = __GLX_PAD(a->header_size + true_immediate_size); if (a->enabled) { arrays->array_info_cache_valid = GL_FALSE; } } /** * I don't have 100% confidence that this is correct. The different rules * about whether or not generic vertex attributes alias "classic" vertex * attributes (i.e., attrib1 ?= primary color) between ARB_vertex_program, * ARB_vertex_shader, and NV_vertex_program are a bit confusing. My * feeling is that the client-side doesn't have to worry about it. The * client just sends all the data to the server and lets the server deal * with it. */ void __indirect_glVertexAttribPointerNV(GLuint index, GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) { struct glx_context *gc = __glXGetCurrentContext(); GLboolean normalized = GL_FALSE; switch (type) { case GL_UNSIGNED_BYTE: if (size != 4) { __glXSetError(gc, GL_INVALID_VALUE); return; } normalized = GL_TRUE; case GL_SHORT: case GL_FLOAT: case GL_DOUBLE: __indirect_glVertexAttribPointerARB(index, size, type, normalized, stride, pointer); return; default: __glXSetError(gc, GL_INVALID_ENUM); return; } } void __indirect_glClientActiveTextureARB(GLenum texture) { struct glx_context *const gc = __glXGetCurrentContext(); __GLXattribute *const state = (__GLXattribute *) (gc->client_state_private); struct array_state_vector *const arrays = state->array_state; const GLint unit = (GLint) texture - GL_TEXTURE0; if ((unit < 0) || (unit >= arrays->num_texture_units)) { __glXSetError(gc, GL_INVALID_ENUM); return; } arrays->active_texture_unit = unit; } /** * Modify the enable state for the selected array */ GLboolean __glXSetArrayEnable(__GLXattribute * state, GLenum key, unsigned index, GLboolean enable) { struct array_state_vector *arrays = state->array_state; struct array_state *a; /* Texture coordinate arrays have an implict index set when the * application calls glClientActiveTexture. */ if (key == GL_TEXTURE_COORD_ARRAY) { index = arrays->active_texture_unit; } a = get_array_entry(arrays, key, index); if ((a != NULL) && (a->enabled != enable)) { a->enabled = enable; arrays->array_info_cache_valid = GL_FALSE; } return (a != NULL); } void __glXArrayDisableAll(__GLXattribute * state) { struct array_state_vector *arrays = state->array_state; unsigned i; for (i = 0; i < arrays->num_arrays; i++) { arrays->arrays[i].enabled = GL_FALSE; } arrays->array_info_cache_valid = GL_FALSE; } /** */ GLboolean __glXGetArrayEnable(const __GLXattribute * const state, GLenum key, unsigned index, GLintptr * dest) { const struct array_state_vector *arrays = state->array_state; const struct array_state *a = get_array_entry((struct array_state_vector *) arrays, key, index); if (a != NULL) { *dest = (GLintptr) a->enabled; } return (a != NULL); } /** */ GLboolean __glXGetArrayType(const __GLXattribute * const state, GLenum key, unsigned index, GLintptr * dest) { const struct array_state_vector *arrays = state->array_state; const struct array_state *a = get_array_entry((struct array_state_vector *) arrays, key, index); if (a != NULL) { *dest = (GLintptr) a->data_type; } return (a != NULL); } /** */ GLboolean __glXGetArraySize(const __GLXattribute * const state, GLenum key, unsigned index, GLintptr * dest) { const struct array_state_vector *arrays = state->array_state; const struct array_state *a = get_array_entry((struct array_state_vector *) arrays, key, index); if (a != NULL) { *dest = (GLintptr) a->count; } return (a != NULL); } /** */ GLboolean __glXGetArrayStride(const __GLXattribute * const state, GLenum key, unsigned index, GLintptr * dest) { const struct array_state_vector *arrays = state->array_state; const struct array_state *a = get_array_entry((struct array_state_vector *) arrays, key, index); if (a != NULL) { *dest = (GLintptr) a->user_stride; } return (a != NULL); } /** */ GLboolean __glXGetArrayPointer(const __GLXattribute * const state, GLenum key, unsigned index, void **dest) { const struct array_state_vector *arrays = state->array_state; const struct array_state *a = get_array_entry((struct array_state_vector *) arrays, key, index); if (a != NULL) { *dest = (void *) (a->data); } return (a != NULL); } /** */ GLboolean __glXGetArrayNormalized(const __GLXattribute * const state, GLenum key, unsigned index, GLintptr * dest) { const struct array_state_vector *arrays = state->array_state; const struct array_state *a = get_array_entry((struct array_state_vector *) arrays, key, index); if (a != NULL) { *dest = (GLintptr) a->normalized; } return (a != NULL); } /** */ GLuint __glXGetActiveTextureUnit(const __GLXattribute * const state) { return state->array_state->active_texture_unit; } void __glXPushArrayState(__GLXattribute * state) { struct array_state_vector *arrays = state->array_state; struct array_stack_state *stack = &arrays->stack[(arrays->stack_index * arrays->num_arrays)]; unsigned i; /* XXX are we pushing _all_ the necessary fields? */ for (i = 0; i < arrays->num_arrays; i++) { stack[i].data = arrays->arrays[i].data; stack[i].data_type = arrays->arrays[i].data_type; stack[i].user_stride = arrays->arrays[i].user_stride; stack[i].count = arrays->arrays[i].count; stack[i].key = arrays->arrays[i].key; stack[i].index = arrays->arrays[i].index; stack[i].enabled = arrays->arrays[i].enabled; } arrays->active_texture_unit_stack[arrays->stack_index] = arrays->active_texture_unit; arrays->stack_index++; } void __glXPopArrayState(__GLXattribute * state) { struct array_state_vector *arrays = state->array_state; struct array_stack_state *stack; unsigned i; arrays->stack_index--; stack = &arrays->stack[(arrays->stack_index * arrays->num_arrays)]; for (i = 0; i < arrays->num_arrays; i++) { switch (stack[i].key) { case GL_NORMAL_ARRAY: __indirect_glNormalPointer(stack[i].data_type, stack[i].user_stride, stack[i].data); break; case GL_COLOR_ARRAY: __indirect_glColorPointer(stack[i].count, stack[i].data_type, stack[i].user_stride, stack[i].data); break; case GL_INDEX_ARRAY: __indirect_glIndexPointer(stack[i].data_type, stack[i].user_stride, stack[i].data); break; case GL_EDGE_FLAG_ARRAY: __indirect_glEdgeFlagPointer(stack[i].user_stride, stack[i].data); break; case GL_TEXTURE_COORD_ARRAY: arrays->active_texture_unit = stack[i].index; __indirect_glTexCoordPointer(stack[i].count, stack[i].data_type, stack[i].user_stride, stack[i].data); break; case GL_SECONDARY_COLOR_ARRAY: __indirect_glSecondaryColorPointerEXT(stack[i].count, stack[i].data_type, stack[i].user_stride, stack[i].data); break; case GL_FOG_COORDINATE_ARRAY: __indirect_glFogCoordPointerEXT(stack[i].data_type, stack[i].user_stride, stack[i].data); break; } __glXSetArrayEnable(state, stack[i].key, stack[i].index, stack[i].enabled); } arrays->active_texture_unit = arrays->active_texture_unit_stack[arrays->stack_index]; }