//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Most of the DAG lowering is handled in AMDGPUISelLowering.cpp. This file is // mostly EmitInstrWithCustomInserter(). // //===----------------------------------------------------------------------===// #include "SIISelLowering.h" #include "AMDIL.h" #include "AMDILIntrinsicInfo.h" #include "SIInstrInfo.h" #include "SIRegisterInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" using namespace llvm; SITargetLowering::SITargetLowering(TargetMachine &TM) : AMDGPUTargetLowering(TM), TII(static_cast<const SIInstrInfo*>(TM.getInstrInfo())) { addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass); addRegisterClass(MVT::f32, &AMDGPU::VReg_32RegClass); addRegisterClass(MVT::i32, &AMDGPU::VReg_32RegClass); addRegisterClass(MVT::i64, &AMDGPU::VReg_64RegClass); addRegisterClass(MVT::i1, &AMDGPU::SCCRegRegClass); addRegisterClass(MVT::i1, &AMDGPU::VCCRegRegClass); addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass); addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass); computeRegisterProperties(); setOperationAction(ISD::AND, MVT::i1, Custom); setOperationAction(ISD::ADD, MVT::i64, Legal); setOperationAction(ISD::ADD, MVT::i32, Legal); setOperationAction(ISD::BR_CC, MVT::i32, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); // We need to custom lower loads from the USER_SGPR address space, so we can // add the SGPRs as livein registers. setOperationAction(ISD::LOAD, MVT::i32, Custom); setOperationAction(ISD::LOAD, MVT::i64, Custom); setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); setOperationAction(ISD::SELECT_CC, MVT::Other, Expand); setTargetDAGCombine(ISD::SELECT_CC); setTargetDAGCombine(ISD::SETCC); } MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter( MachineInstr * MI, MachineBasicBlock * BB) const { const TargetInstrInfo * TII = getTargetMachine().getInstrInfo(); MachineRegisterInfo & MRI = BB->getParent()->getRegInfo(); MachineBasicBlock::iterator I = MI; if (TII->get(MI->getOpcode()).TSFlags & SIInstrFlags::NEED_WAIT) { AppendS_WAITCNT(MI, *BB, llvm::next(I)); return BB; } switch (MI->getOpcode()) { default: return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); case AMDGPU::CLAMP_SI: BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::V_MOV_B32_e64)) .addOperand(MI->getOperand(0)) .addOperand(MI->getOperand(1)) // VSRC1-2 are unused, but we still need to fill all the // operand slots, so we just reuse the VSRC0 operand .addOperand(MI->getOperand(1)) .addOperand(MI->getOperand(1)) .addImm(0) // ABS .addImm(1) // CLAMP .addImm(0) // OMOD .addImm(0); // NEG MI->eraseFromParent(); break; case AMDGPU::FABS_SI: BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::V_MOV_B32_e64)) .addOperand(MI->getOperand(0)) .addOperand(MI->getOperand(1)) // VSRC1-2 are unused, but we still need to fill all the // operand slots, so we just reuse the VSRC0 operand .addOperand(MI->getOperand(1)) .addOperand(MI->getOperand(1)) .addImm(1) // ABS .addImm(0) // CLAMP .addImm(0) // OMOD .addImm(0); // NEG MI->eraseFromParent(); break; case AMDGPU::FNEG_SI: BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::V_MOV_B32_e64)) .addOperand(MI->getOperand(0)) .addOperand(MI->getOperand(1)) // VSRC1-2 are unused, but we still need to fill all the // operand slots, so we just reuse the VSRC0 operand .addOperand(MI->getOperand(1)) .addOperand(MI->getOperand(1)) .addImm(0) // ABS .addImm(0) // CLAMP .addImm(0) // OMOD .addImm(1); // NEG MI->eraseFromParent(); break; case AMDGPU::SI_INTERP: LowerSI_INTERP(MI, *BB, I, MRI); break; case AMDGPU::SI_INTERP_CONST: LowerSI_INTERP_CONST(MI, *BB, I, MRI); break; case AMDGPU::SI_KIL: LowerSI_KIL(MI, *BB, I, MRI); break; case AMDGPU::SI_V_CNDLT: LowerSI_V_CNDLT(MI, *BB, I, MRI); break; } return BB; } void SITargetLowering::AppendS_WAITCNT(MachineInstr *MI, MachineBasicBlock &BB, MachineBasicBlock::iterator I) const { BuildMI(BB, I, BB.findDebugLoc(I), TII->get(AMDGPU::S_WAITCNT)) .addImm(0); } void SITargetLowering::LowerSI_INTERP(MachineInstr *MI, MachineBasicBlock &BB, MachineBasicBlock::iterator I, MachineRegisterInfo & MRI) const { unsigned tmp = MRI.createVirtualRegister(&AMDGPU::VReg_32RegClass); unsigned M0 = MRI.createVirtualRegister(&AMDGPU::M0RegRegClass); MachineOperand dst = MI->getOperand(0); MachineOperand iReg = MI->getOperand(1); MachineOperand jReg = MI->getOperand(2); MachineOperand attr_chan = MI->getOperand(3); MachineOperand attr = MI->getOperand(4); MachineOperand params = MI->getOperand(5); BuildMI(BB, I, BB.findDebugLoc(I), TII->get(AMDGPU::S_MOV_B32), M0) .addOperand(params); BuildMI(BB, I, BB.findDebugLoc(I), TII->get(AMDGPU::V_INTERP_P1_F32), tmp) .addOperand(iReg) .addOperand(attr_chan) .addOperand(attr) .addReg(M0); BuildMI(BB, I, BB.findDebugLoc(I), TII->get(AMDGPU::V_INTERP_P2_F32)) .addOperand(dst) .addReg(tmp) .addOperand(jReg) .addOperand(attr_chan) .addOperand(attr) .addReg(M0); MI->eraseFromParent(); } void SITargetLowering::LowerSI_INTERP_CONST(MachineInstr *MI, MachineBasicBlock &BB, MachineBasicBlock::iterator I, MachineRegisterInfo &MRI) const { MachineOperand dst = MI->getOperand(0); MachineOperand attr_chan = MI->getOperand(1); MachineOperand attr = MI->getOperand(2); MachineOperand params = MI->getOperand(3); unsigned M0 = MRI.createVirtualRegister(&AMDGPU::M0RegRegClass); BuildMI(BB, I, BB.findDebugLoc(I), TII->get(AMDGPU::S_MOV_B32), M0) .addOperand(params); BuildMI(BB, I, BB.findDebugLoc(I), TII->get(AMDGPU::V_INTERP_MOV_F32)) .addOperand(dst) .addOperand(attr_chan) .addOperand(attr) .addReg(M0); MI->eraseFromParent(); } void SITargetLowering::LowerSI_KIL(MachineInstr *MI, MachineBasicBlock &BB, MachineBasicBlock::iterator I, MachineRegisterInfo & MRI) const { // Clear this pixel from the exec mask if the operand is negative BuildMI(BB, I, BB.findDebugLoc(I), TII->get(AMDGPU::V_CMPX_LE_F32_e32), AMDGPU::VCC) .addReg(AMDGPU::SREG_LIT_0) .addOperand(MI->getOperand(0)); // If the exec mask is non-zero, skip the next two instructions BuildMI(BB, I, BB.findDebugLoc(I), TII->get(AMDGPU::S_CBRANCH_EXECNZ)) .addImm(3) .addReg(AMDGPU::EXEC); // Exec mask is zero: Export to NULL target... BuildMI(BB, I, BB.findDebugLoc(I), TII->get(AMDGPU::EXP)) .addImm(0) .addImm(0x09) // V_008DFC_SQ_EXP_NULL .addImm(0) .addImm(1) .addImm(1) .addReg(AMDGPU::SREG_LIT_0) .addReg(AMDGPU::SREG_LIT_0) .addReg(AMDGPU::SREG_LIT_0) .addReg(AMDGPU::SREG_LIT_0); // ... and terminate wavefront BuildMI(BB, I, BB.findDebugLoc(I), TII->get(AMDGPU::S_ENDPGM)); MI->eraseFromParent(); } void SITargetLowering::LowerSI_V_CNDLT(MachineInstr *MI, MachineBasicBlock &BB, MachineBasicBlock::iterator I, MachineRegisterInfo & MRI) const { BuildMI(BB, I, BB.findDebugLoc(I), TII->get(AMDGPU::V_CMP_LT_F32_e32), AMDGPU::VCC) .addOperand(MI->getOperand(1)) .addReg(AMDGPU::SREG_LIT_0); BuildMI(BB, I, BB.findDebugLoc(I), TII->get(AMDGPU::V_CNDMASK_B32)) .addOperand(MI->getOperand(0)) .addReg(AMDGPU::VCC) .addOperand(MI->getOperand(2)) .addOperand(MI->getOperand(3)); MI->eraseFromParent(); } EVT SITargetLowering::getSetCCResultType(EVT VT) const { return MVT::i1; } //===----------------------------------------------------------------------===// // Custom DAG Lowering Operations //===----------------------------------------------------------------------===// SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); case ISD::BR_CC: return LowerBR_CC(Op, DAG); case ISD::LOAD: return LowerLOAD(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); case ISD::AND: return Loweri1ContextSwitch(Op, DAG, ISD::AND); case ISD::INTRINSIC_WO_CHAIN: { unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); EVT VT = Op.getValueType(); switch (IntrinsicID) { case AMDGPUIntrinsic::SI_vs_load_buffer_index: return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass, AMDGPU::VGPR0, VT); default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); } break; } } return SDValue(); } /// Loweri1ContextSwitch - The function is for lowering i1 operations on the /// VCC register. In the VALU context, VCC is a one bit register, but in the /// SALU context the VCC is a 64-bit register (1-bit per thread). Since only /// the SALU can perform operations on the VCC register, we need to promote /// the operand types from i1 to i64 in order for tablegen to be able to match /// this operation to the correct SALU instruction. We do this promotion by /// wrapping the operands in a CopyToReg node. /// SDValue SITargetLowering::Loweri1ContextSwitch(SDValue Op, SelectionDAG &DAG, unsigned VCCNode) const { DebugLoc DL = Op.getDebugLoc(); SDValue OpNode = DAG.getNode(VCCNode, DL, MVT::i64, DAG.getNode(SIISD::VCC_BITCAST, DL, MVT::i64, Op.getOperand(0)), DAG.getNode(SIISD::VCC_BITCAST, DL, MVT::i64, Op.getOperand(1))); return DAG.getNode(SIISD::VCC_BITCAST, DL, MVT::i1, OpNode); } SDValue SITargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue CC = Op.getOperand(1); SDValue LHS = Op.getOperand(2); SDValue RHS = Op.getOperand(3); SDValue JumpT = Op.getOperand(4); SDValue CmpValue; SDValue Result; CmpValue = DAG.getNode( ISD::SETCC, Op.getDebugLoc(), MVT::i1, LHS, RHS, CC); Result = DAG.getNode( AMDGPUISD::BRANCH_COND, CmpValue.getDebugLoc(), MVT::Other, Chain, JumpT, CmpValue); return Result; } SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); LoadSDNode *Ptr = dyn_cast<LoadSDNode>(Op); assert(Ptr); unsigned AddrSpace = Ptr->getPointerInfo().getAddrSpace(); // We only need to lower USER_SGPR address space loads if (AddrSpace != AMDGPUAS::USER_SGPR_ADDRESS) { return SDValue(); } // Loads from the USER_SGPR address space can only have constant value // pointers. ConstantSDNode *BasePtr = dyn_cast<ConstantSDNode>(Ptr->getBasePtr()); assert(BasePtr); unsigned TypeDwordWidth = VT.getSizeInBits() / 32; const TargetRegisterClass * dstClass; switch (TypeDwordWidth) { default: assert(!"USER_SGPR value size not implemented"); return SDValue(); case 1: dstClass = &AMDGPU::SReg_32RegClass; break; case 2: dstClass = &AMDGPU::SReg_64RegClass; break; } uint64_t Index = BasePtr->getZExtValue(); assert(Index % TypeDwordWidth == 0 && "USER_SGPR not properly aligned"); unsigned SGPRIndex = Index / TypeDwordWidth; unsigned Reg = dstClass->getRegister(SGPRIndex); DAG.ReplaceAllUsesOfValueWith(Op, CreateLiveInRegister(DAG, dstClass, Reg, VT)); return SDValue(); } SDValue SITargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDValue True = Op.getOperand(2); SDValue False = Op.getOperand(3); SDValue CC = Op.getOperand(4); EVT VT = Op.getValueType(); DebugLoc DL = Op.getDebugLoc(); SDValue Cond = DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS, CC); return DAG.getNode(ISD::SELECT, DL, VT, Cond, True, False); } //===----------------------------------------------------------------------===// // Custom DAG optimizations //===----------------------------------------------------------------------===// SDValue SITargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; DebugLoc DL = N->getDebugLoc(); EVT VT = N->getValueType(0); switch (N->getOpcode()) { default: break; case ISD::SELECT_CC: { N->dump(); ConstantSDNode *True, *False; // i1 selectcc(l, r, -1, 0, cc) -> i1 setcc(l, r, cc) if ((True = dyn_cast<ConstantSDNode>(N->getOperand(2))) && (False = dyn_cast<ConstantSDNode>(N->getOperand(3))) && True->isAllOnesValue() && False->isNullValue() && VT == MVT::i1) { return DAG.getNode(ISD::SETCC, DL, VT, N->getOperand(0), N->getOperand(1), N->getOperand(4)); } break; } case ISD::SETCC: { SDValue Arg0 = N->getOperand(0); SDValue Arg1 = N->getOperand(1); SDValue CC = N->getOperand(2); ConstantSDNode * C = NULL; ISD::CondCode CCOp = dyn_cast<CondCodeSDNode>(CC)->get(); // i1 setcc (sext(i1), 0, setne) -> i1 setcc(i1, 0, setne) if (VT == MVT::i1 && Arg0.getOpcode() == ISD::SIGN_EXTEND && Arg0.getOperand(0).getValueType() == MVT::i1 && (C = dyn_cast<ConstantSDNode>(Arg1)) && C->isNullValue() && CCOp == ISD::SETNE) { return SimplifySetCC(VT, Arg0.getOperand(0), DAG.getConstant(0, MVT::i1), CCOp, true, DCI, DL); } break; } } return SDValue(); } #define NODE_NAME_CASE(node) case SIISD::node: return #node; const char* SITargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { default: return AMDGPUTargetLowering::getTargetNodeName(Opcode); NODE_NAME_CASE(VCC_AND) NODE_NAME_CASE(VCC_BITCAST) } }