/* * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com> * Copyright 2009 Marek Olšák <maraeo@gmail.com> * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "draw/draw_context.h" #include "util/u_math.h" #include "util/u_memory.h" #include "util/u_pack_color.h" #include "r300_context.h" #include "r300_fs.h" #include "r300_screen.h" #include "r300_shader_semantics.h" #include "r300_state_inlines.h" #include "r300_texture.h" #include "r300_vs.h" /* r300_state_derived: Various bits of state which are dependent upon * currently bound CSO data. */ enum r300_rs_swizzle { SWIZ_XYZW = 0, SWIZ_X001, SWIZ_XY01, SWIZ_0001, }; enum r300_rs_col_write_type { WRITE_COLOR = 0, WRITE_FACE }; static void r300_draw_emit_attrib(struct r300_context* r300, enum attrib_emit emit, enum interp_mode interp, int index) { struct r300_vertex_shader* vs = r300->vs_state.state; struct tgsi_shader_info* info = &vs->info; int output; output = draw_find_shader_output(r300->draw, info->output_semantic_name[index], info->output_semantic_index[index]); draw_emit_vertex_attr(&r300->vertex_info, emit, interp, output); } static void r300_draw_emit_all_attribs(struct r300_context* r300) { struct r300_vertex_shader* vs = r300->vs_state.state; struct r300_shader_semantics* vs_outputs = &vs->outputs; int i, gen_count; /* Position. */ if (vs_outputs->pos != ATTR_UNUSED) { r300_draw_emit_attrib(r300, EMIT_4F, INTERP_PERSPECTIVE, vs_outputs->pos); } else { assert(0); } /* Point size. */ if (vs_outputs->psize != ATTR_UNUSED) { r300_draw_emit_attrib(r300, EMIT_1F_PSIZE, INTERP_POS, vs_outputs->psize); } /* Colors. */ for (i = 0; i < ATTR_COLOR_COUNT; i++) { if (vs_outputs->color[i] != ATTR_UNUSED) { r300_draw_emit_attrib(r300, EMIT_4F, INTERP_LINEAR, vs_outputs->color[i]); } } /* Back-face colors. */ for (i = 0; i < ATTR_COLOR_COUNT; i++) { if (vs_outputs->bcolor[i] != ATTR_UNUSED) { r300_draw_emit_attrib(r300, EMIT_4F, INTERP_LINEAR, vs_outputs->bcolor[i]); } } /* Texture coordinates. */ /* Only 8 generic vertex attributes can be used. If there are more, * they won't be rasterized. */ gen_count = 0; for (i = 0; i < ATTR_GENERIC_COUNT && gen_count < 8; i++) { if (vs_outputs->generic[i] != ATTR_UNUSED && !(r300->sprite_coord_enable & (1 << i))) { r300_draw_emit_attrib(r300, EMIT_4F, INTERP_PERSPECTIVE, vs_outputs->generic[i]); gen_count++; } } /* Fog coordinates. */ if (gen_count < 8 && vs_outputs->fog != ATTR_UNUSED) { r300_draw_emit_attrib(r300, EMIT_4F, INTERP_PERSPECTIVE, vs_outputs->fog); gen_count++; } /* WPOS. */ if (r300_fs(r300)->shader->inputs.wpos != ATTR_UNUSED && gen_count < 8) { DBG(r300, DBG_SWTCL, "draw_emit_attrib: WPOS, index: %i\n", vs_outputs->wpos); r300_draw_emit_attrib(r300, EMIT_4F, INTERP_PERSPECTIVE, vs_outputs->wpos); } } /* Update the PSC tables for SW TCL, using Draw. */ static void r300_swtcl_vertex_psc(struct r300_context *r300) { struct r300_vertex_stream_state *vstream = r300->vertex_stream_state.state; struct vertex_info *vinfo = &r300->vertex_info; uint16_t type, swizzle; enum pipe_format format; unsigned i, attrib_count; int* vs_output_tab = r300->stream_loc_notcl; memset(vstream, 0, sizeof(struct r300_vertex_stream_state)); /* For each Draw attribute, route it to the fragment shader according * to the vs_output_tab. */ attrib_count = vinfo->num_attribs; DBG(r300, DBG_SWTCL, "r300: attrib count: %d\n", attrib_count); for (i = 0; i < attrib_count; i++) { if (vs_output_tab[i] == -1) { assert(0); abort(); } format = draw_translate_vinfo_format(vinfo->attrib[i].emit); DBG(r300, DBG_SWTCL, "r300: swtcl_vertex_psc [%i] <- %s\n", vs_output_tab[i], util_format_short_name(format)); /* Obtain the type of data in this attribute. */ type = r300_translate_vertex_data_type(format); if (type == R300_INVALID_FORMAT) { fprintf(stderr, "r300: Bad vertex format %s.\n", util_format_short_name(format)); assert(0); abort(); } type |= vs_output_tab[i] << R300_DST_VEC_LOC_SHIFT; /* Obtain the swizzle for this attribute. Note that the default * swizzle in the hardware is not XYZW! */ swizzle = r300_translate_vertex_data_swizzle(format); /* Add the attribute to the PSC table. */ if (i & 1) { vstream->vap_prog_stream_cntl[i >> 1] |= type << 16; vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle << 16; } else { vstream->vap_prog_stream_cntl[i >> 1] |= type; vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle; } } /* Set the last vector in the PSC. */ if (i) { i -= 1; } vstream->vap_prog_stream_cntl[i >> 1] |= (R300_LAST_VEC << (i & 1 ? 16 : 0)); vstream->count = (i >> 1) + 1; r300_mark_atom_dirty(r300, &r300->vertex_stream_state); r300->vertex_stream_state.size = (1 + vstream->count) * 2; } static void r300_rs_col(struct r300_rs_block* rs, int id, int ptr, enum r300_rs_swizzle swiz) { rs->ip[id] |= R300_RS_COL_PTR(ptr); if (swiz == SWIZ_0001) { rs->ip[id] |= R300_RS_COL_FMT(R300_RS_COL_FMT_0001); } else { rs->ip[id] |= R300_RS_COL_FMT(R300_RS_COL_FMT_RGBA); } rs->inst[id] |= R300_RS_INST_COL_ID(id); } static void r300_rs_col_write(struct r300_rs_block* rs, int id, int fp_offset, enum r300_rs_col_write_type type) { assert(type == WRITE_COLOR); rs->inst[id] |= R300_RS_INST_COL_CN_WRITE | R300_RS_INST_COL_ADDR(fp_offset); } static void r300_rs_tex(struct r300_rs_block* rs, int id, int ptr, enum r300_rs_swizzle swiz) { if (swiz == SWIZ_X001) { rs->ip[id] |= R300_RS_TEX_PTR(ptr) | R300_RS_SEL_S(R300_RS_SEL_C0) | R300_RS_SEL_T(R300_RS_SEL_K0) | R300_RS_SEL_R(R300_RS_SEL_K0) | R300_RS_SEL_Q(R300_RS_SEL_K1); } else if (swiz == SWIZ_XY01) { rs->ip[id] |= R300_RS_TEX_PTR(ptr) | R300_RS_SEL_S(R300_RS_SEL_C0) | R300_RS_SEL_T(R300_RS_SEL_C1) | R300_RS_SEL_R(R300_RS_SEL_K0) | R300_RS_SEL_Q(R300_RS_SEL_K1); } else { rs->ip[id] |= R300_RS_TEX_PTR(ptr) | R300_RS_SEL_S(R300_RS_SEL_C0) | R300_RS_SEL_T(R300_RS_SEL_C1) | R300_RS_SEL_R(R300_RS_SEL_C2) | R300_RS_SEL_Q(R300_RS_SEL_C3); } rs->inst[id] |= R300_RS_INST_TEX_ID(id); } static void r300_rs_tex_write(struct r300_rs_block* rs, int id, int fp_offset) { rs->inst[id] |= R300_RS_INST_TEX_CN_WRITE | R300_RS_INST_TEX_ADDR(fp_offset); } static void r500_rs_col(struct r300_rs_block* rs, int id, int ptr, enum r300_rs_swizzle swiz) { rs->ip[id] |= R500_RS_COL_PTR(ptr); if (swiz == SWIZ_0001) { rs->ip[id] |= R500_RS_COL_FMT(R300_RS_COL_FMT_0001); } else { rs->ip[id] |= R500_RS_COL_FMT(R300_RS_COL_FMT_RGBA); } rs->inst[id] |= R500_RS_INST_COL_ID(id); } static void r500_rs_col_write(struct r300_rs_block* rs, int id, int fp_offset, enum r300_rs_col_write_type type) { if (type == WRITE_FACE) rs->inst[id] |= R500_RS_INST_COL_CN_WRITE_BACKFACE | R500_RS_INST_COL_ADDR(fp_offset); else rs->inst[id] |= R500_RS_INST_COL_CN_WRITE | R500_RS_INST_COL_ADDR(fp_offset); } static void r500_rs_tex(struct r300_rs_block* rs, int id, int ptr, enum r300_rs_swizzle swiz) { if (swiz == SWIZ_X001) { rs->ip[id] |= R500_RS_SEL_S(ptr) | R500_RS_SEL_T(R500_RS_IP_PTR_K0) | R500_RS_SEL_R(R500_RS_IP_PTR_K0) | R500_RS_SEL_Q(R500_RS_IP_PTR_K1); } else if (swiz == SWIZ_XY01) { rs->ip[id] |= R500_RS_SEL_S(ptr) | R500_RS_SEL_T(ptr + 1) | R500_RS_SEL_R(R500_RS_IP_PTR_K0) | R500_RS_SEL_Q(R500_RS_IP_PTR_K1); } else { rs->ip[id] |= R500_RS_SEL_S(ptr) | R500_RS_SEL_T(ptr + 1) | R500_RS_SEL_R(ptr + 2) | R500_RS_SEL_Q(ptr + 3); } rs->inst[id] |= R500_RS_INST_TEX_ID(id); } static void r500_rs_tex_write(struct r300_rs_block* rs, int id, int fp_offset) { rs->inst[id] |= R500_RS_INST_TEX_CN_WRITE | R500_RS_INST_TEX_ADDR(fp_offset); } /* Set up the RS block. * * This is the part of the chipset that is responsible for linking vertex * and fragment shaders and stuffed texture coordinates. * * The rasterizer reads data from VAP, which produces vertex shader outputs, * and GA, which produces stuffed texture coordinates. VAP outputs have * precedence over GA. All outputs must be rasterized otherwise it locks up. * If there are more outputs rasterized than is set in VAP/GA, it locks up * too. The funky part is that this info has been pretty much obtained by trial * and error. */ static void r300_update_rs_block(struct r300_context *r300) { struct r300_vertex_shader *vs = r300->vs_state.state; struct r300_shader_semantics *vs_outputs = &vs->outputs; struct r300_shader_semantics *fs_inputs = &r300_fs(r300)->shader->inputs; struct r300_rs_block rs = {0}; int i, col_count = 0, tex_count = 0, fp_offset = 0, count, loc = 0, tex_ptr = 0; void (*rX00_rs_col)(struct r300_rs_block*, int, int, enum r300_rs_swizzle); void (*rX00_rs_col_write)(struct r300_rs_block*, int, int, enum r300_rs_col_write_type); void (*rX00_rs_tex)(struct r300_rs_block*, int, int, enum r300_rs_swizzle); void (*rX00_rs_tex_write)(struct r300_rs_block*, int, int); boolean any_bcolor_used = vs_outputs->bcolor[0] != ATTR_UNUSED || vs_outputs->bcolor[1] != ATTR_UNUSED; int *stream_loc_notcl = r300->stream_loc_notcl; uint32_t stuffing_enable = 0; if (r300->screen->caps.is_r500) { rX00_rs_col = r500_rs_col; rX00_rs_col_write = r500_rs_col_write; rX00_rs_tex = r500_rs_tex; rX00_rs_tex_write = r500_rs_tex_write; } else { rX00_rs_col = r300_rs_col; rX00_rs_col_write = r300_rs_col_write; rX00_rs_tex = r300_rs_tex; rX00_rs_tex_write = r300_rs_tex_write; } /* 0x5555 copied from classic, which means: * Select user color 0 for COLOR0 up to COLOR7. * What the hell does that mean? */ rs.vap_vtx_state_cntl = 0x5555; /* The position is always present in VAP. */ rs.vap_vsm_vtx_assm |= R300_INPUT_CNTL_POS; rs.vap_out_vtx_fmt[0] |= R300_VAP_OUTPUT_VTX_FMT_0__POS_PRESENT; stream_loc_notcl[loc++] = 0; /* Set up the point size in VAP. */ if (vs_outputs->psize != ATTR_UNUSED) { rs.vap_out_vtx_fmt[0] |= R300_VAP_OUTPUT_VTX_FMT_0__PT_SIZE_PRESENT; stream_loc_notcl[loc++] = 1; } /* Set up and rasterize colors. */ for (i = 0; i < ATTR_COLOR_COUNT; i++) { if (vs_outputs->color[i] != ATTR_UNUSED || any_bcolor_used || vs_outputs->color[1] != ATTR_UNUSED) { /* Set up the color in VAP. */ rs.vap_vsm_vtx_assm |= R300_INPUT_CNTL_COLOR; rs.vap_out_vtx_fmt[0] |= R300_VAP_OUTPUT_VTX_FMT_0__COLOR_0_PRESENT << i; stream_loc_notcl[loc++] = 2 + i; /* Rasterize it. */ rX00_rs_col(&rs, col_count, col_count, SWIZ_XYZW); /* Write it to the FS input register if it's needed by the FS. */ if (fs_inputs->color[i] != ATTR_UNUSED) { rX00_rs_col_write(&rs, col_count, fp_offset, WRITE_COLOR); fp_offset++; DBG(r300, DBG_RS, "r300: Rasterized color %i written to FS.\n", i); } else { DBG(r300, DBG_RS, "r300: Rasterized color %i unused.\n", i); } col_count++; } else { /* Skip the FS input register, leave it uninitialized. */ /* If we try to set it to (0,0,0,1), it will lock up. */ if (fs_inputs->color[i] != ATTR_UNUSED) { fp_offset++; DBG(r300, DBG_RS, "r300: FS input color %i unassigned%s.\n", i); } } } /* Set up back-face colors. The rasterizer will do the color selection * automatically. */ if (any_bcolor_used) { if (r300->two_sided_color) { /* Rasterize as back-face colors. */ for (i = 0; i < ATTR_COLOR_COUNT; i++) { rs.vap_vsm_vtx_assm |= R300_INPUT_CNTL_COLOR; rs.vap_out_vtx_fmt[0] |= R300_VAP_OUTPUT_VTX_FMT_0__COLOR_0_PRESENT << (2+i); stream_loc_notcl[loc++] = 4 + i; } } else { /* Rasterize two fake texcoords to prevent from the two-sided color * selection. */ /* XXX Consider recompiling the vertex shader to save 2 RS units. */ for (i = 0; i < 2; i++) { rs.vap_vsm_vtx_assm |= (R300_INPUT_CNTL_TC0 << tex_count); rs.vap_out_vtx_fmt[1] |= (4 << (3 * tex_count)); stream_loc_notcl[loc++] = 6 + tex_count; /* Rasterize it. */ rX00_rs_tex(&rs, tex_count, tex_ptr, SWIZ_XYZW); tex_count++; tex_ptr += 4; } } } /* gl_FrontFacing. * Note that we can use either the two-sided color selection based on * the front and back vertex shader colors, or gl_FrontFacing, * but not both! It locks up otherwise. * * In Direct3D 9, the two-sided color selection can be used * with shaders 2.0 only, while gl_FrontFacing can be used * with shaders 3.0 only. The hardware apparently hasn't been designed * to support both at the same time. */ if (r300->screen->caps.is_r500 && fs_inputs->face != ATTR_UNUSED && !(any_bcolor_used && r300->two_sided_color)) { rX00_rs_col(&rs, col_count, col_count, SWIZ_XYZW); rX00_rs_col_write(&rs, col_count, fp_offset, WRITE_FACE); fp_offset++; col_count++; DBG(r300, DBG_RS, "r300: Rasterized FACE written to FS.\n"); } else if (fs_inputs->face != ATTR_UNUSED) { fprintf(stderr, "r300: ERROR: FS input FACE unassigned.\n"); } /* Rasterize texture coordinates. */ for (i = 0; i < ATTR_GENERIC_COUNT && tex_count < 8; i++) { boolean sprite_coord = false; if (fs_inputs->generic[i] != ATTR_UNUSED) { sprite_coord = !!(r300->sprite_coord_enable & (1 << i)); } if (vs_outputs->generic[i] != ATTR_UNUSED || sprite_coord) { if (!sprite_coord) { /* Set up the texture coordinates in VAP. */ rs.vap_vsm_vtx_assm |= (R300_INPUT_CNTL_TC0 << tex_count); rs.vap_out_vtx_fmt[1] |= (4 << (3 * tex_count)); stream_loc_notcl[loc++] = 6 + tex_count; } else stuffing_enable |= R300_GB_TEX_ST << (R300_GB_TEX0_SOURCE_SHIFT + (tex_count*2)); /* Rasterize it. */ rX00_rs_tex(&rs, tex_count, tex_ptr, sprite_coord ? SWIZ_XY01 : SWIZ_XYZW); /* Write it to the FS input register if it's needed by the FS. */ if (fs_inputs->generic[i] != ATTR_UNUSED) { rX00_rs_tex_write(&rs, tex_count, fp_offset); fp_offset++; DBG(r300, DBG_RS, "r300: Rasterized generic %i written to FS%s in texcoord %d.\n", i, sprite_coord ? " (sprite coord)" : "", tex_count); } else { DBG(r300, DBG_RS, "r300: Rasterized generic %i unused%s.\n", i, sprite_coord ? " (sprite coord)" : ""); } tex_count++; tex_ptr += sprite_coord ? 2 : 4; } else { /* Skip the FS input register, leave it uninitialized. */ /* If we try to set it to (0,0,0,1), it will lock up. */ if (fs_inputs->generic[i] != ATTR_UNUSED) { fp_offset++; DBG(r300, DBG_RS, "r300: FS input generic %i unassigned%s.\n", i, sprite_coord ? " (sprite coord)" : ""); } } } for (; i < ATTR_GENERIC_COUNT; i++) { if (fs_inputs->generic[i] != ATTR_UNUSED) { fprintf(stderr, "r300: ERROR: FS input generic %i unassigned, " "not enough hardware slots (it's not a bug, do not " "report it).\n", i); } } /* Rasterize fog coordinates. */ if (vs_outputs->fog != ATTR_UNUSED && tex_count < 8) { /* Set up the fog coordinates in VAP. */ rs.vap_vsm_vtx_assm |= (R300_INPUT_CNTL_TC0 << tex_count); rs.vap_out_vtx_fmt[1] |= (4 << (3 * tex_count)); stream_loc_notcl[loc++] = 6 + tex_count; /* Rasterize it. */ rX00_rs_tex(&rs, tex_count, tex_ptr, SWIZ_X001); /* Write it to the FS input register if it's needed by the FS. */ if (fs_inputs->fog != ATTR_UNUSED) { rX00_rs_tex_write(&rs, tex_count, fp_offset); fp_offset++; DBG(r300, DBG_RS, "r300: Rasterized fog written to FS.\n"); } else { DBG(r300, DBG_RS, "r300: Rasterized fog unused.\n"); } tex_count++; tex_ptr += 4; } else { /* Skip the FS input register, leave it uninitialized. */ /* If we try to set it to (0,0,0,1), it will lock up. */ if (fs_inputs->fog != ATTR_UNUSED) { fp_offset++; if (tex_count < 8) { DBG(r300, DBG_RS, "r300: FS input fog unassigned.\n"); } else { fprintf(stderr, "r300: ERROR: FS input fog unassigned, " "not enough hardware slots. (it's not a bug, " "do not report it)\n"); } } } /* Rasterize WPOS. */ /* Don't set it in VAP if the FS doesn't need it. */ if (fs_inputs->wpos != ATTR_UNUSED && tex_count < 8) { /* Set up the WPOS coordinates in VAP. */ rs.vap_vsm_vtx_assm |= (R300_INPUT_CNTL_TC0 << tex_count); rs.vap_out_vtx_fmt[1] |= (4 << (3 * tex_count)); stream_loc_notcl[loc++] = 6 + tex_count; /* Rasterize it. */ rX00_rs_tex(&rs, tex_count, tex_ptr, SWIZ_XYZW); /* Write it to the FS input register. */ rX00_rs_tex_write(&rs, tex_count, fp_offset); DBG(r300, DBG_RS, "r300: Rasterized WPOS written to FS.\n"); fp_offset++; tex_count++; tex_ptr += 4; } else { if (fs_inputs->wpos != ATTR_UNUSED && tex_count >= 8) { fprintf(stderr, "r300: ERROR: FS input WPOS unassigned, " "not enough hardware slots. (it's not a bug, do not " "report it)\n"); } } /* Invalidate the rest of the no-TCL (GA) stream locations. */ for (; loc < 16;) { stream_loc_notcl[loc++] = -1; } /* Rasterize at least one color, or bad things happen. */ if (col_count == 0 && tex_count == 0) { rX00_rs_col(&rs, 0, 0, SWIZ_0001); col_count++; DBG(r300, DBG_RS, "r300: Rasterized color 0 to prevent lockups.\n"); } DBG(r300, DBG_RS, "r300: --- Rasterizer status ---: colors: %i, " "generics: %i.\n", col_count, tex_count); rs.count = MIN2(tex_ptr, 32) | (col_count << R300_IC_COUNT_SHIFT) | R300_HIRES_EN; count = MAX3(col_count, tex_count, 1); rs.inst_count = count - 1; /* set the GB enable flags */ if (r300->sprite_coord_enable) stuffing_enable |= R300_GB_POINT_STUFF_ENABLE; rs.gb_enable = stuffing_enable; /* Now, after all that, see if we actually need to update the state. */ if (memcmp(r300->rs_block_state.state, &rs, sizeof(struct r300_rs_block))) { memcpy(r300->rs_block_state.state, &rs, sizeof(struct r300_rs_block)); r300->rs_block_state.size = 13 + count*2; } } static void rgba_to_bgra(float color[4]) { float x = color[0]; color[0] = color[2]; color[2] = x; } static uint32_t r300_get_border_color(enum pipe_format format, const float border[4], boolean is_r500) { const struct util_format_description *desc; float border_swizzled[4] = {0}; union util_color uc = {0}; desc = util_format_description(format); /* Do depth formats first. */ if (util_format_is_depth_or_stencil(format)) { switch (format) { case PIPE_FORMAT_Z16_UNORM: return util_pack_z(PIPE_FORMAT_Z16_UNORM, border[0]); case PIPE_FORMAT_X8Z24_UNORM: case PIPE_FORMAT_S8_UINT_Z24_UNORM: if (is_r500) { return util_pack_z(PIPE_FORMAT_X8Z24_UNORM, border[0]); } else { return util_pack_z(PIPE_FORMAT_Z16_UNORM, border[0]) << 16; } default: assert(0); return 0; } } /* Apply inverse swizzle of the format. */ util_format_unswizzle_4f(border_swizzled, border, desc->swizzle); /* Compressed formats. */ if (util_format_is_compressed(format)) { switch (format) { case PIPE_FORMAT_RGTC1_SNORM: case PIPE_FORMAT_LATC1_SNORM: border_swizzled[0] = border_swizzled[0] < 0 ? border_swizzled[0]*0.5+1 : border_swizzled[0]*0.5; /* Pass through. */ case PIPE_FORMAT_RGTC1_UNORM: case PIPE_FORMAT_LATC1_UNORM: /* Add 1/32 to round the border color instead of truncating. */ /* The Y component is used for the border color. */ border_swizzled[1] = border_swizzled[0] + 1.0f/32; util_pack_color(border_swizzled, PIPE_FORMAT_B4G4R4A4_UNORM, &uc); return uc.ui; case PIPE_FORMAT_RGTC2_SNORM: case PIPE_FORMAT_LATC2_SNORM: util_pack_color(border_swizzled, PIPE_FORMAT_R8G8B8A8_SNORM, &uc); return uc.ui; case PIPE_FORMAT_RGTC2_UNORM: case PIPE_FORMAT_LATC2_UNORM: util_pack_color(border_swizzled, PIPE_FORMAT_R8G8B8A8_UNORM, &uc); return uc.ui; case PIPE_FORMAT_DXT1_SRGB: case PIPE_FORMAT_DXT1_SRGBA: case PIPE_FORMAT_DXT3_SRGBA: case PIPE_FORMAT_DXT5_SRGBA: util_pack_color(border_swizzled, PIPE_FORMAT_B8G8R8A8_SRGB, &uc); return uc.ui; default: util_pack_color(border_swizzled, PIPE_FORMAT_B8G8R8A8_UNORM, &uc); return uc.ui; } } switch (desc->channel[0].size) { case 2: rgba_to_bgra(border_swizzled); util_pack_color(border_swizzled, PIPE_FORMAT_B2G3R3_UNORM, &uc); break; case 4: rgba_to_bgra(border_swizzled); util_pack_color(border_swizzled, PIPE_FORMAT_B4G4R4A4_UNORM, &uc); break; case 5: rgba_to_bgra(border_swizzled); if (desc->channel[1].size == 5) { util_pack_color(border_swizzled, PIPE_FORMAT_B5G5R5A1_UNORM, &uc); } else if (desc->channel[1].size == 6) { util_pack_color(border_swizzled, PIPE_FORMAT_B5G6R5_UNORM, &uc); } else { assert(0); } break; default: case 8: if (desc->channel[0].type == UTIL_FORMAT_TYPE_SIGNED) { util_pack_color(border_swizzled, PIPE_FORMAT_R8G8B8A8_SNORM, &uc); } else if (desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) { if (desc->nr_channels == 2) { border_swizzled[3] = border_swizzled[1]; util_pack_color(border_swizzled, PIPE_FORMAT_L8A8_SRGB, &uc); } else { util_pack_color(border_swizzled, PIPE_FORMAT_R8G8B8A8_SRGB, &uc); } } else { util_pack_color(border_swizzled, PIPE_FORMAT_R8G8B8A8_UNORM, &uc); } break; case 10: util_pack_color(border_swizzled, PIPE_FORMAT_R10G10B10A2_UNORM, &uc); break; case 16: if (desc->nr_channels <= 2) { if (desc->channel[0].type == UTIL_FORMAT_TYPE_FLOAT) { util_pack_color(border_swizzled, PIPE_FORMAT_R16G16_FLOAT, &uc); } else if (desc->channel[0].type == UTIL_FORMAT_TYPE_SIGNED) { util_pack_color(border_swizzled, PIPE_FORMAT_R16G16_SNORM, &uc); } else { util_pack_color(border_swizzled, PIPE_FORMAT_R16G16_UNORM, &uc); } } else { if (desc->channel[0].type == UTIL_FORMAT_TYPE_SIGNED) { util_pack_color(border_swizzled, PIPE_FORMAT_R8G8B8A8_SNORM, &uc); } else { util_pack_color(border_swizzled, PIPE_FORMAT_R8G8B8A8_UNORM, &uc); } } break; case 32: if (desc->nr_channels == 1) { util_pack_color(border_swizzled, PIPE_FORMAT_R32_FLOAT, &uc); } else { util_pack_color(border_swizzled, PIPE_FORMAT_R8G8B8A8_UNORM, &uc); } break; } return uc.ui; } static void r300_merge_textures_and_samplers(struct r300_context* r300) { struct r300_textures_state *state = (struct r300_textures_state*)r300->textures_state.state; struct r300_texture_sampler_state *texstate; struct r300_sampler_state *sampler; struct r300_sampler_view *view; struct r300_resource *tex; unsigned base_level, min_level, level_count, i, j, size; unsigned count = MIN2(state->sampler_view_count, state->sampler_state_count); boolean has_us_format = r300->screen->caps.has_us_format; /* The KIL opcode fix, see below. */ if (!count && !r300->screen->caps.is_r500) count = 1; state->tx_enable = 0; state->count = 0; size = 2; for (i = 0; i < count; i++) { if (state->sampler_views[i] && state->sampler_states[i]) { state->tx_enable |= 1 << i; view = state->sampler_views[i]; tex = r300_resource(view->base.texture); sampler = state->sampler_states[i]; texstate = &state->regs[i]; texstate->format = view->format; texstate->filter0 = sampler->filter0; texstate->filter1 = sampler->filter1; /* Set the border color. */ texstate->border_color = r300_get_border_color(view->base.format, sampler->state.border_color.f, r300->screen->caps.is_r500); /* determine min/max levels */ base_level = view->base.u.tex.first_level; min_level = sampler->min_lod; level_count = MIN3(sampler->max_lod, tex->b.b.last_level - base_level, view->base.u.tex.last_level - base_level); if (base_level + min_level) { unsigned offset; if (tex->tex.is_npot) { /* Even though we do not implement mipmapping for NPOT * textures, we should at least honor the minimum level * which is allowed to be displayed. We do this by setting up * an i-th mipmap level as the zero level. */ base_level += min_level; } offset = tex->tex.offset_in_bytes[base_level]; r300_texture_setup_format_state(r300->screen, tex, view->base.format, base_level, view->width0_override, view->height0_override, &texstate->format); texstate->format.tile_config |= offset & 0xffffffe0; assert((offset & 0x1f) == 0); } /* Assign a texture cache region. */ texstate->format.format1 |= view->texcache_region; /* Depth textures are kinda special. */ if (util_format_is_depth_or_stencil(view->base.format)) { unsigned char depth_swizzle[4]; if (!r300->screen->caps.is_r500 && util_format_get_blocksizebits(view->base.format) == 32) { /* X24x8 is sampled as Y16X16 on r3xx-r4xx. * The depth here is at the Y component. */ for (j = 0; j < 4; j++) depth_swizzle[j] = UTIL_FORMAT_SWIZZLE_Y; } else { for (j = 0; j < 4; j++) depth_swizzle[j] = UTIL_FORMAT_SWIZZLE_X; } /* If compare mode is disabled, sampler view swizzles * are stored in the format. * Otherwise, the swizzles must be applied after the compare * mode in the fragment shader. */ if (sampler->state.compare_mode == PIPE_TEX_COMPARE_NONE) { texstate->format.format1 |= r300_get_swizzle_combined(depth_swizzle, view->swizzle, FALSE); } else { texstate->format.format1 |= r300_get_swizzle_combined(depth_swizzle, 0, FALSE); } } if (r300->screen->caps.dxtc_swizzle && util_format_is_compressed(view->base.format)) { texstate->filter1 |= R400_DXTC_SWIZZLE_ENABLE; } /* to emulate 1D textures through 2D ones correctly */ if (tex->b.b.target == PIPE_TEXTURE_1D) { texstate->filter0 &= ~R300_TX_WRAP_T_MASK; texstate->filter0 |= R300_TX_WRAP_T(R300_TX_CLAMP_TO_EDGE); } /* The hardware doesn't like CLAMP and CLAMP_TO_BORDER * for the 3rd coordinate if the texture isn't 3D. */ if (tex->b.b.target != PIPE_TEXTURE_3D) { texstate->filter0 &= ~R300_TX_WRAP_R_MASK; } if (tex->tex.is_npot) { /* NPOT textures don't support mip filter, unfortunately. * This prevents incorrect rendering. */ texstate->filter0 &= ~R300_TX_MIN_FILTER_MIP_MASK; /* Mask out the mirrored flag. */ if (texstate->filter0 & R300_TX_WRAP_S(R300_TX_MIRRORED)) { texstate->filter0 &= ~R300_TX_WRAP_S(R300_TX_MIRRORED); } if (texstate->filter0 & R300_TX_WRAP_T(R300_TX_MIRRORED)) { texstate->filter0 &= ~R300_TX_WRAP_T(R300_TX_MIRRORED); } /* Change repeat to clamp-to-edge. * (the repeat bit has a value of 0, no masking needed). */ if ((texstate->filter0 & R300_TX_WRAP_S_MASK) == R300_TX_WRAP_S(R300_TX_REPEAT)) { texstate->filter0 |= R300_TX_WRAP_S(R300_TX_CLAMP_TO_EDGE); } if ((texstate->filter0 & R300_TX_WRAP_T_MASK) == R300_TX_WRAP_T(R300_TX_REPEAT)) { texstate->filter0 |= R300_TX_WRAP_T(R300_TX_CLAMP_TO_EDGE); } } else { /* the MAX_MIP level is the largest (finest) one */ texstate->format.format0 |= R300_TX_NUM_LEVELS(level_count); texstate->filter0 |= R300_TX_MAX_MIP_LEVEL(min_level); } /* Float textures only support nearest and mip-nearest filtering. */ if (util_format_is_float(view->base.format)) { /* No MAG linear filtering. */ if ((texstate->filter0 & R300_TX_MAG_FILTER_MASK) == R300_TX_MAG_FILTER_LINEAR) { texstate->filter0 &= ~R300_TX_MAG_FILTER_MASK; texstate->filter0 |= R300_TX_MAG_FILTER_NEAREST; } /* No MIN linear filtering. */ if ((texstate->filter0 & R300_TX_MIN_FILTER_MASK) == R300_TX_MIN_FILTER_LINEAR) { texstate->filter0 &= ~R300_TX_MIN_FILTER_MASK; texstate->filter0 |= R300_TX_MIN_FILTER_NEAREST; } /* No mipmap linear filtering. */ if ((texstate->filter0 & R300_TX_MIN_FILTER_MIP_MASK) == R300_TX_MIN_FILTER_MIP_LINEAR) { texstate->filter0 &= ~R300_TX_MIN_FILTER_MIP_MASK; texstate->filter0 |= R300_TX_MIN_FILTER_MIP_NEAREST; } /* No anisotropic filtering. */ texstate->filter0 &= ~R300_TX_MAX_ANISO_MASK; texstate->filter1 &= ~R500_TX_MAX_ANISO_MASK; texstate->filter1 &= ~R500_TX_ANISO_HIGH_QUALITY; } texstate->filter0 |= i << 28; size += 16 + (has_us_format ? 2 : 0); state->count = i+1; } else { /* For the KIL opcode to work on r3xx-r4xx, the texture unit * assigned to this opcode (it's always the first one) must be * enabled. Otherwise the opcode doesn't work. * * In order to not depend on the fragment shader, we just make * the first unit enabled all the time. */ if (i == 0 && !r300->screen->caps.is_r500) { pipe_sampler_view_reference( (struct pipe_sampler_view**)&state->sampler_views[i], &r300->texkill_sampler->base); state->tx_enable |= 1 << i; texstate = &state->regs[i]; /* Just set some valid state. */ texstate->format = r300->texkill_sampler->format; texstate->filter0 = r300_translate_tex_filters(PIPE_TEX_FILTER_NEAREST, PIPE_TEX_FILTER_NEAREST, PIPE_TEX_FILTER_NEAREST, FALSE); texstate->filter1 = 0; texstate->border_color = 0; texstate->filter0 |= i << 28; size += 16 + (has_us_format ? 2 : 0); state->count = i+1; } } } r300->textures_state.size = size; /* Pick a fragment shader based on either the texture compare state * or the uses_pitch flag or some other external state. */ if (count && r300->fs_status == FRAGMENT_SHADER_VALID) { r300->fs_status = FRAGMENT_SHADER_MAYBE_DIRTY; } } static void r300_decompress_depth_textures(struct r300_context *r300) { struct r300_textures_state *state = (struct r300_textures_state*)r300->textures_state.state; struct pipe_resource *tex; unsigned count = MIN2(state->sampler_view_count, state->sampler_state_count); unsigned i; if (!r300->locked_zbuffer) { return; } for (i = 0; i < count; i++) { if (state->sampler_views[i] && state->sampler_states[i]) { tex = state->sampler_views[i]->base.texture; if (tex == r300->locked_zbuffer->texture) { r300_decompress_zmask_locked(r300); return; } } } } static void r300_validate_fragment_shader(struct r300_context *r300) { struct pipe_framebuffer_state *fb = r300->fb_state.state; if (r300->fs.state && r300->fs_status != FRAGMENT_SHADER_VALID) { /* Pick the fragment shader based on external states. * Then mark the state dirty if the fragment shader is either dirty * or the function r300_pick_fragment_shader changed the shader. */ if (r300_pick_fragment_shader(r300) || r300->fs_status == FRAGMENT_SHADER_DIRTY) { /* Mark the state atom as dirty. */ r300_mark_fs_code_dirty(r300); /* Does Multiwrite need to be changed? */ if (fb->nr_cbufs > 1) { boolean new_multiwrite = r300_fragment_shader_writes_all(r300_fs(r300)); if (r300->fb_multiwrite != new_multiwrite) { r300->fb_multiwrite = new_multiwrite; r300_mark_fb_state_dirty(r300, R300_CHANGED_MULTIWRITE); } } } r300->fs_status = FRAGMENT_SHADER_VALID; } } void r300_update_derived_state(struct r300_context* r300) { if (r300->textures_state.dirty) { r300_decompress_depth_textures(r300); r300_merge_textures_and_samplers(r300); } r300_validate_fragment_shader(r300); if (r300->rs_block_state.dirty) { r300_update_rs_block(r300); if (r300->draw) { memset(&r300->vertex_info, 0, sizeof(struct vertex_info)); r300_draw_emit_all_attribs(r300); draw_compute_vertex_size(&r300->vertex_info); r300_swtcl_vertex_psc(r300); } } r300_update_hyperz_state(r300); }