//===- llvm/unittest/Support/Path.cpp - Path tests ------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Support/Path.h" #include "llvm/Support/ConvertUTF.h" #include "llvm/Support/Errc.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/raw_ostream.h" #include "gtest/gtest.h" #ifdef LLVM_ON_WIN32 #include <windows.h> #include <winerror.h> #endif #ifdef LLVM_ON_UNIX #include <sys/stat.h> #endif using namespace llvm; using namespace llvm::sys; #define ASSERT_NO_ERROR(x) \ if (std::error_code ASSERT_NO_ERROR_ec = x) { \ SmallString<128> MessageStorage; \ raw_svector_ostream Message(MessageStorage); \ Message << #x ": did not return errc::success.\n" \ << "error number: " << ASSERT_NO_ERROR_ec.value() << "\n" \ << "error message: " << ASSERT_NO_ERROR_ec.message() << "\n"; \ GTEST_FATAL_FAILURE_(MessageStorage.c_str()); \ } else { \ } namespace { TEST(is_separator, Works) { EXPECT_TRUE(path::is_separator('/')); EXPECT_FALSE(path::is_separator('\0')); EXPECT_FALSE(path::is_separator('-')); EXPECT_FALSE(path::is_separator(' ')); #ifdef LLVM_ON_WIN32 EXPECT_TRUE(path::is_separator('\\')); #else EXPECT_FALSE(path::is_separator('\\')); #endif } TEST(Support, Path) { SmallVector<StringRef, 40> paths; paths.push_back(""); paths.push_back("."); paths.push_back(".."); paths.push_back("foo"); paths.push_back("/"); paths.push_back("/foo"); paths.push_back("foo/"); paths.push_back("/foo/"); paths.push_back("foo/bar"); paths.push_back("/foo/bar"); paths.push_back("//net"); paths.push_back("//net/foo"); paths.push_back("///foo///"); paths.push_back("///foo///bar"); paths.push_back("/."); paths.push_back("./"); paths.push_back("/.."); paths.push_back("../"); paths.push_back("foo/."); paths.push_back("foo/.."); paths.push_back("foo/./"); paths.push_back("foo/./bar"); paths.push_back("foo/.."); paths.push_back("foo/../"); paths.push_back("foo/../bar"); paths.push_back("c:"); paths.push_back("c:/"); paths.push_back("c:foo"); paths.push_back("c:/foo"); paths.push_back("c:foo/"); paths.push_back("c:/foo/"); paths.push_back("c:/foo/bar"); paths.push_back("prn:"); paths.push_back("c:\\"); paths.push_back("c:foo"); paths.push_back("c:\\foo"); paths.push_back("c:foo\\"); paths.push_back("c:\\foo\\"); paths.push_back("c:\\foo/"); paths.push_back("c:/foo\\bar"); SmallVector<StringRef, 5> ComponentStack; for (SmallVector<StringRef, 40>::const_iterator i = paths.begin(), e = paths.end(); i != e; ++i) { for (sys::path::const_iterator ci = sys::path::begin(*i), ce = sys::path::end(*i); ci != ce; ++ci) { ASSERT_FALSE(ci->empty()); ComponentStack.push_back(*ci); } for (sys::path::reverse_iterator ci = sys::path::rbegin(*i), ce = sys::path::rend(*i); ci != ce; ++ci) { ASSERT_TRUE(*ci == ComponentStack.back()); ComponentStack.pop_back(); } ASSERT_TRUE(ComponentStack.empty()); path::has_root_path(*i); path::root_path(*i); path::has_root_name(*i); path::root_name(*i); path::has_root_directory(*i); path::root_directory(*i); path::has_parent_path(*i); path::parent_path(*i); path::has_filename(*i); path::filename(*i); path::has_stem(*i); path::stem(*i); path::has_extension(*i); path::extension(*i); path::is_absolute(*i); path::is_relative(*i); SmallString<128> temp_store; temp_store = *i; ASSERT_NO_ERROR(fs::make_absolute(temp_store)); temp_store = *i; path::remove_filename(temp_store); temp_store = *i; path::replace_extension(temp_store, "ext"); StringRef filename(temp_store.begin(), temp_store.size()), stem, ext; stem = path::stem(filename); ext = path::extension(filename); EXPECT_EQ(*sys::path::rbegin(filename), (stem + ext).str()); path::native(*i, temp_store); } SmallString<32> Relative("foo.cpp"); ASSERT_NO_ERROR(sys::fs::make_absolute("/root", Relative)); Relative[5] = '/'; // Fix up windows paths. ASSERT_EQ("/root/foo.cpp", Relative); } TEST(Support, RelativePathIterator) { SmallString<64> Path(StringRef("c/d/e/foo.txt")); typedef SmallVector<StringRef, 4> PathComponents; PathComponents ExpectedPathComponents; PathComponents ActualPathComponents; StringRef(Path).split(ExpectedPathComponents, '/'); for (path::const_iterator I = path::begin(Path), E = path::end(Path); I != E; ++I) { ActualPathComponents.push_back(*I); } ASSERT_EQ(ExpectedPathComponents.size(), ActualPathComponents.size()); for (size_t i = 0; i <ExpectedPathComponents.size(); ++i) { EXPECT_EQ(ExpectedPathComponents[i].str(), ActualPathComponents[i].str()); } } TEST(Support, RelativePathDotIterator) { SmallString<64> Path(StringRef(".c/.d/../.")); typedef SmallVector<StringRef, 4> PathComponents; PathComponents ExpectedPathComponents; PathComponents ActualPathComponents; StringRef(Path).split(ExpectedPathComponents, '/'); for (path::const_iterator I = path::begin(Path), E = path::end(Path); I != E; ++I) { ActualPathComponents.push_back(*I); } ASSERT_EQ(ExpectedPathComponents.size(), ActualPathComponents.size()); for (size_t i = 0; i <ExpectedPathComponents.size(); ++i) { EXPECT_EQ(ExpectedPathComponents[i].str(), ActualPathComponents[i].str()); } } TEST(Support, AbsolutePathIterator) { SmallString<64> Path(StringRef("/c/d/e/foo.txt")); typedef SmallVector<StringRef, 4> PathComponents; PathComponents ExpectedPathComponents; PathComponents ActualPathComponents; StringRef(Path).split(ExpectedPathComponents, '/'); // The root path will also be a component when iterating ExpectedPathComponents[0] = "/"; for (path::const_iterator I = path::begin(Path), E = path::end(Path); I != E; ++I) { ActualPathComponents.push_back(*I); } ASSERT_EQ(ExpectedPathComponents.size(), ActualPathComponents.size()); for (size_t i = 0; i <ExpectedPathComponents.size(); ++i) { EXPECT_EQ(ExpectedPathComponents[i].str(), ActualPathComponents[i].str()); } } TEST(Support, AbsolutePathDotIterator) { SmallString<64> Path(StringRef("/.c/.d/../.")); typedef SmallVector<StringRef, 4> PathComponents; PathComponents ExpectedPathComponents; PathComponents ActualPathComponents; StringRef(Path).split(ExpectedPathComponents, '/'); // The root path will also be a component when iterating ExpectedPathComponents[0] = "/"; for (path::const_iterator I = path::begin(Path), E = path::end(Path); I != E; ++I) { ActualPathComponents.push_back(*I); } ASSERT_EQ(ExpectedPathComponents.size(), ActualPathComponents.size()); for (size_t i = 0; i <ExpectedPathComponents.size(); ++i) { EXPECT_EQ(ExpectedPathComponents[i].str(), ActualPathComponents[i].str()); } } #ifdef LLVM_ON_WIN32 TEST(Support, AbsolutePathIteratorWin32) { SmallString<64> Path(StringRef("c:\\c\\e\\foo.txt")); typedef SmallVector<StringRef, 4> PathComponents; PathComponents ExpectedPathComponents; PathComponents ActualPathComponents; StringRef(Path).split(ExpectedPathComponents, "\\"); // The root path (which comes after the drive name) will also be a component // when iterating. ExpectedPathComponents.insert(ExpectedPathComponents.begin()+1, "\\"); for (path::const_iterator I = path::begin(Path), E = path::end(Path); I != E; ++I) { ActualPathComponents.push_back(*I); } ASSERT_EQ(ExpectedPathComponents.size(), ActualPathComponents.size()); for (size_t i = 0; i <ExpectedPathComponents.size(); ++i) { EXPECT_EQ(ExpectedPathComponents[i].str(), ActualPathComponents[i].str()); } } #endif // LLVM_ON_WIN32 TEST(Support, AbsolutePathIteratorEnd) { // Trailing slashes are converted to '.' unless they are part of the root path. SmallVector<StringRef, 4> Paths; Paths.push_back("/foo/"); Paths.push_back("/foo//"); Paths.push_back("//net//"); #ifdef LLVM_ON_WIN32 Paths.push_back("c:\\\\"); #endif for (StringRef Path : Paths) { StringRef LastComponent = *path::rbegin(Path); EXPECT_EQ(".", LastComponent); } SmallVector<StringRef, 3> RootPaths; RootPaths.push_back("/"); RootPaths.push_back("//net/"); #ifdef LLVM_ON_WIN32 RootPaths.push_back("c:\\"); #endif for (StringRef Path : RootPaths) { StringRef LastComponent = *path::rbegin(Path); EXPECT_EQ(1u, LastComponent.size()); EXPECT_TRUE(path::is_separator(LastComponent[0])); } } TEST(Support, HomeDirectory) { std::string expected; #ifdef LLVM_ON_WIN32 if (wchar_t const *path = ::_wgetenv(L"USERPROFILE")) { auto pathLen = ::wcslen(path); ArrayRef<char> ref{reinterpret_cast<char const *>(path), pathLen * sizeof(wchar_t)}; convertUTF16ToUTF8String(ref, expected); } #else if (char const *path = ::getenv("HOME")) expected = path; #endif // Do not try to test it if we don't know what to expect. // On Windows we use something better than env vars. if (!expected.empty()) { SmallString<128> HomeDir; auto status = path::home_directory(HomeDir); EXPECT_TRUE(status); EXPECT_EQ(expected, HomeDir); } } TEST(Support, UserCacheDirectory) { SmallString<13> CacheDir; SmallString<20> CacheDir2; auto Status = path::user_cache_directory(CacheDir, ""); EXPECT_TRUE(Status ^ CacheDir.empty()); if (Status) { EXPECT_TRUE(path::user_cache_directory(CacheDir2, "")); // should succeed EXPECT_EQ(CacheDir, CacheDir2); // and return same paths EXPECT_TRUE(path::user_cache_directory(CacheDir, "A", "B", "file.c")); auto It = path::rbegin(CacheDir); EXPECT_EQ("file.c", *It); EXPECT_EQ("B", *++It); EXPECT_EQ("A", *++It); auto ParentDir = *++It; // Test Unicode: "<user_cache_dir>/(pi)r^2/aleth.0" EXPECT_TRUE(path::user_cache_directory(CacheDir2, "\xCF\x80r\xC2\xB2", "\xE2\x84\xB5.0")); auto It2 = path::rbegin(CacheDir2); EXPECT_EQ("\xE2\x84\xB5.0", *It2); EXPECT_EQ("\xCF\x80r\xC2\xB2", *++It2); auto ParentDir2 = *++It2; EXPECT_EQ(ParentDir, ParentDir2); } } TEST(Support, TempDirectory) { SmallString<32> TempDir; path::system_temp_directory(false, TempDir); EXPECT_TRUE(!TempDir.empty()); TempDir.clear(); path::system_temp_directory(true, TempDir); EXPECT_TRUE(!TempDir.empty()); } #ifdef LLVM_ON_WIN32 static std::string path2regex(std::string Path) { size_t Pos = 0; while ((Pos = Path.find('\\', Pos)) != std::string::npos) { Path.replace(Pos, 1, "\\\\"); Pos += 2; } return Path; } /// Helper for running temp dir test in separated process. See below. #define EXPECT_TEMP_DIR(prepare, expected) \ EXPECT_EXIT( \ { \ prepare; \ SmallString<300> TempDir; \ path::system_temp_directory(true, TempDir); \ raw_os_ostream(std::cerr) << TempDir; \ std::exit(0); \ }, \ ::testing::ExitedWithCode(0), path2regex(expected)) TEST(SupportDeathTest, TempDirectoryOnWindows) { // In this test we want to check how system_temp_directory responds to // different values of specific env vars. To prevent corrupting env vars of // the current process all checks are done in separated processes. EXPECT_TEMP_DIR(_wputenv_s(L"TMP", L"C:\\OtherFolder"), "C:\\OtherFolder"); EXPECT_TEMP_DIR(_wputenv_s(L"TMP", L"C:/Unix/Path/Seperators"), "C:\\Unix\\Path\\Seperators"); EXPECT_TEMP_DIR(_wputenv_s(L"TMP", L"Local Path"), ".+\\Local Path$"); EXPECT_TEMP_DIR(_wputenv_s(L"TMP", L"F:\\TrailingSep\\"), "F:\\TrailingSep"); EXPECT_TEMP_DIR( _wputenv_s(L"TMP", L"C:\\2\x03C0r-\x00B5\x00B3\\\x2135\x2080"), "C:\\2\xCF\x80r-\xC2\xB5\xC2\xB3\\\xE2\x84\xB5\xE2\x82\x80"); // Test $TMP empty, $TEMP set. EXPECT_TEMP_DIR( { _wputenv_s(L"TMP", L""); _wputenv_s(L"TEMP", L"C:\\Valid\\Path"); }, "C:\\Valid\\Path"); // All related env vars empty EXPECT_TEMP_DIR( { _wputenv_s(L"TMP", L""); _wputenv_s(L"TEMP", L""); _wputenv_s(L"USERPROFILE", L""); }, "C:\\Temp"); // Test evn var / path with 260 chars. SmallString<270> Expected{"C:\\Temp\\AB\\123456789"}; while (Expected.size() < 260) Expected.append("\\DirNameWith19Charss"); ASSERT_EQ(260, Expected.size()); EXPECT_TEMP_DIR(_putenv_s("TMP", Expected.c_str()), Expected.c_str()); } #endif class FileSystemTest : public testing::Test { protected: /// Unique temporary directory in which all created filesystem entities must /// be placed. It is removed at the end of each test (must be empty). SmallString<128> TestDirectory; void SetUp() override { ASSERT_NO_ERROR( fs::createUniqueDirectory("file-system-test", TestDirectory)); // We don't care about this specific file. errs() << "Test Directory: " << TestDirectory << '\n'; errs().flush(); } void TearDown() override { ASSERT_NO_ERROR(fs::remove(TestDirectory.str())); } }; TEST_F(FileSystemTest, Unique) { // Create a temp file. int FileDescriptor; SmallString<64> TempPath; ASSERT_NO_ERROR( fs::createTemporaryFile("prefix", "temp", FileDescriptor, TempPath)); // The same file should return an identical unique id. fs::UniqueID F1, F2; ASSERT_NO_ERROR(fs::getUniqueID(Twine(TempPath), F1)); ASSERT_NO_ERROR(fs::getUniqueID(Twine(TempPath), F2)); ASSERT_EQ(F1, F2); // Different files should return different unique ids. int FileDescriptor2; SmallString<64> TempPath2; ASSERT_NO_ERROR( fs::createTemporaryFile("prefix", "temp", FileDescriptor2, TempPath2)); fs::UniqueID D; ASSERT_NO_ERROR(fs::getUniqueID(Twine(TempPath2), D)); ASSERT_NE(D, F1); ::close(FileDescriptor2); ASSERT_NO_ERROR(fs::remove(Twine(TempPath2))); // Two paths representing the same file on disk should still provide the // same unique id. We can test this by making a hard link. ASSERT_NO_ERROR(fs::create_link(Twine(TempPath), Twine(TempPath2))); fs::UniqueID D2; ASSERT_NO_ERROR(fs::getUniqueID(Twine(TempPath2), D2)); ASSERT_EQ(D2, F1); ::close(FileDescriptor); SmallString<128> Dir1; ASSERT_NO_ERROR( fs::createUniqueDirectory("dir1", Dir1)); ASSERT_NO_ERROR(fs::getUniqueID(Dir1.c_str(), F1)); ASSERT_NO_ERROR(fs::getUniqueID(Dir1.c_str(), F2)); ASSERT_EQ(F1, F2); SmallString<128> Dir2; ASSERT_NO_ERROR( fs::createUniqueDirectory("dir2", Dir2)); ASSERT_NO_ERROR(fs::getUniqueID(Dir2.c_str(), F2)); ASSERT_NE(F1, F2); } TEST_F(FileSystemTest, TempFiles) { // Create a temp file. int FileDescriptor; SmallString<64> TempPath; ASSERT_NO_ERROR( fs::createTemporaryFile("prefix", "temp", FileDescriptor, TempPath)); // Make sure it exists. ASSERT_TRUE(sys::fs::exists(Twine(TempPath))); // Create another temp tile. int FD2; SmallString<64> TempPath2; ASSERT_NO_ERROR(fs::createTemporaryFile("prefix", "temp", FD2, TempPath2)); ASSERT_TRUE(TempPath2.endswith(".temp")); ASSERT_NE(TempPath.str(), TempPath2.str()); fs::file_status A, B; ASSERT_NO_ERROR(fs::status(Twine(TempPath), A)); ASSERT_NO_ERROR(fs::status(Twine(TempPath2), B)); EXPECT_FALSE(fs::equivalent(A, B)); ::close(FD2); // Remove Temp2. ASSERT_NO_ERROR(fs::remove(Twine(TempPath2))); ASSERT_NO_ERROR(fs::remove(Twine(TempPath2))); ASSERT_EQ(fs::remove(Twine(TempPath2), false), errc::no_such_file_or_directory); std::error_code EC = fs::status(TempPath2.c_str(), B); EXPECT_EQ(EC, errc::no_such_file_or_directory); EXPECT_EQ(B.type(), fs::file_type::file_not_found); // Make sure Temp2 doesn't exist. ASSERT_EQ(fs::access(Twine(TempPath2), sys::fs::AccessMode::Exist), errc::no_such_file_or_directory); SmallString<64> TempPath3; ASSERT_NO_ERROR(fs::createTemporaryFile("prefix", "", TempPath3)); ASSERT_FALSE(TempPath3.endswith(".")); // Create a hard link to Temp1. ASSERT_NO_ERROR(fs::create_link(Twine(TempPath), Twine(TempPath2))); bool equal; ASSERT_NO_ERROR(fs::equivalent(Twine(TempPath), Twine(TempPath2), equal)); EXPECT_TRUE(equal); ASSERT_NO_ERROR(fs::status(Twine(TempPath), A)); ASSERT_NO_ERROR(fs::status(Twine(TempPath2), B)); EXPECT_TRUE(fs::equivalent(A, B)); // Remove Temp1. ::close(FileDescriptor); ASSERT_NO_ERROR(fs::remove(Twine(TempPath))); // Remove the hard link. ASSERT_NO_ERROR(fs::remove(Twine(TempPath2))); // Make sure Temp1 doesn't exist. ASSERT_EQ(fs::access(Twine(TempPath), sys::fs::AccessMode::Exist), errc::no_such_file_or_directory); #ifdef LLVM_ON_WIN32 // Path name > 260 chars should get an error. const char *Path270 = "abcdefghijklmnopqrstuvwxyz9abcdefghijklmnopqrstuvwxyz8" "abcdefghijklmnopqrstuvwxyz7abcdefghijklmnopqrstuvwxyz6" "abcdefghijklmnopqrstuvwxyz5abcdefghijklmnopqrstuvwxyz4" "abcdefghijklmnopqrstuvwxyz3abcdefghijklmnopqrstuvwxyz2" "abcdefghijklmnopqrstuvwxyz1abcdefghijklmnopqrstuvwxyz0"; EXPECT_EQ(fs::createUniqueFile(Path270, FileDescriptor, TempPath), errc::invalid_argument); // Relative path < 247 chars, no problem. const char *Path216 = "abcdefghijklmnopqrstuvwxyz7abcdefghijklmnopqrstuvwxyz6" "abcdefghijklmnopqrstuvwxyz5abcdefghijklmnopqrstuvwxyz4" "abcdefghijklmnopqrstuvwxyz3abcdefghijklmnopqrstuvwxyz2" "abcdefghijklmnopqrstuvwxyz1abcdefghijklmnopqrstuvwxyz0"; ASSERT_NO_ERROR(fs::createTemporaryFile(Path216, "", TempPath)); ASSERT_NO_ERROR(fs::remove(Twine(TempPath))); #endif } TEST_F(FileSystemTest, CreateDir) { ASSERT_NO_ERROR(fs::create_directory(Twine(TestDirectory) + "foo")); ASSERT_NO_ERROR(fs::create_directory(Twine(TestDirectory) + "foo")); ASSERT_EQ(fs::create_directory(Twine(TestDirectory) + "foo", false), errc::file_exists); ASSERT_NO_ERROR(fs::remove(Twine(TestDirectory) + "foo")); #ifdef LLVM_ON_UNIX // Set a 0000 umask so that we can test our directory permissions. mode_t OldUmask = ::umask(0000); fs::file_status Status; ASSERT_NO_ERROR( fs::create_directory(Twine(TestDirectory) + "baz500", false, fs::perms::owner_read | fs::perms::owner_exe)); ASSERT_NO_ERROR(fs::status(Twine(TestDirectory) + "baz500", Status)); ASSERT_EQ(Status.permissions() & fs::perms::all_all, fs::perms::owner_read | fs::perms::owner_exe); ASSERT_NO_ERROR(fs::create_directory(Twine(TestDirectory) + "baz777", false, fs::perms::all_all)); ASSERT_NO_ERROR(fs::status(Twine(TestDirectory) + "baz777", Status)); ASSERT_EQ(Status.permissions() & fs::perms::all_all, fs::perms::all_all); // Restore umask to be safe. ::umask(OldUmask); #endif #ifdef LLVM_ON_WIN32 // Prove that create_directories() can handle a pathname > 248 characters, // which is the documented limit for CreateDirectory(). // (248 is MAX_PATH subtracting room for an 8.3 filename.) // Generate a directory path guaranteed to fall into that range. size_t TmpLen = TestDirectory.size(); const char *OneDir = "\\123456789"; size_t OneDirLen = strlen(OneDir); ASSERT_LT(OneDirLen, 12U); size_t NLevels = ((248 - TmpLen) / OneDirLen) + 1; SmallString<260> LongDir(TestDirectory); for (size_t I = 0; I < NLevels; ++I) LongDir.append(OneDir); ASSERT_NO_ERROR(fs::create_directories(Twine(LongDir))); ASSERT_NO_ERROR(fs::create_directories(Twine(LongDir))); ASSERT_EQ(fs::create_directories(Twine(LongDir), false), errc::file_exists); // Tidy up, "recursively" removing the directories. StringRef ThisDir(LongDir); for (size_t J = 0; J < NLevels; ++J) { ASSERT_NO_ERROR(fs::remove(ThisDir)); ThisDir = path::parent_path(ThisDir); } // Similarly for a relative pathname. Need to set the current directory to // TestDirectory so that the one we create ends up in the right place. char PreviousDir[260]; size_t PreviousDirLen = ::GetCurrentDirectoryA(260, PreviousDir); ASSERT_GT(PreviousDirLen, 0U); ASSERT_LT(PreviousDirLen, 260U); ASSERT_NE(::SetCurrentDirectoryA(TestDirectory.c_str()), 0); LongDir.clear(); // Generate a relative directory name with absolute length > 248. size_t LongDirLen = 249 - TestDirectory.size(); LongDir.assign(LongDirLen, 'a'); ASSERT_NO_ERROR(fs::create_directory(Twine(LongDir))); // While we're here, prove that .. and . handling works in these long paths. const char *DotDotDirs = "\\..\\.\\b"; LongDir.append(DotDotDirs); ASSERT_NO_ERROR(fs::create_directory("b")); ASSERT_EQ(fs::create_directory(Twine(LongDir), false), errc::file_exists); // And clean up. ASSERT_NO_ERROR(fs::remove("b")); ASSERT_NO_ERROR(fs::remove( Twine(LongDir.substr(0, LongDir.size() - strlen(DotDotDirs))))); ASSERT_NE(::SetCurrentDirectoryA(PreviousDir), 0); #endif } TEST_F(FileSystemTest, DirectoryIteration) { std::error_code ec; for (fs::directory_iterator i(".", ec), e; i != e; i.increment(ec)) ASSERT_NO_ERROR(ec); // Create a known hierarchy to recurse over. ASSERT_NO_ERROR( fs::create_directories(Twine(TestDirectory) + "/recursive/a0/aa1")); ASSERT_NO_ERROR( fs::create_directories(Twine(TestDirectory) + "/recursive/a0/ab1")); ASSERT_NO_ERROR(fs::create_directories(Twine(TestDirectory) + "/recursive/dontlookhere/da1")); ASSERT_NO_ERROR( fs::create_directories(Twine(TestDirectory) + "/recursive/z0/za1")); ASSERT_NO_ERROR( fs::create_directories(Twine(TestDirectory) + "/recursive/pop/p1")); typedef std::vector<std::string> v_t; v_t visited; for (fs::recursive_directory_iterator i(Twine(TestDirectory) + "/recursive", ec), e; i != e; i.increment(ec)){ ASSERT_NO_ERROR(ec); if (path::filename(i->path()) == "p1") { i.pop(); // FIXME: recursive_directory_iterator should be more robust. if (i == e) break; } if (path::filename(i->path()) == "dontlookhere") i.no_push(); visited.push_back(path::filename(i->path())); } v_t::const_iterator a0 = std::find(visited.begin(), visited.end(), "a0"); v_t::const_iterator aa1 = std::find(visited.begin(), visited.end(), "aa1"); v_t::const_iterator ab1 = std::find(visited.begin(), visited.end(), "ab1"); v_t::const_iterator dontlookhere = std::find(visited.begin(), visited.end(), "dontlookhere"); v_t::const_iterator da1 = std::find(visited.begin(), visited.end(), "da1"); v_t::const_iterator z0 = std::find(visited.begin(), visited.end(), "z0"); v_t::const_iterator za1 = std::find(visited.begin(), visited.end(), "za1"); v_t::const_iterator pop = std::find(visited.begin(), visited.end(), "pop"); v_t::const_iterator p1 = std::find(visited.begin(), visited.end(), "p1"); // Make sure that each path was visited correctly. ASSERT_NE(a0, visited.end()); ASSERT_NE(aa1, visited.end()); ASSERT_NE(ab1, visited.end()); ASSERT_NE(dontlookhere, visited.end()); ASSERT_EQ(da1, visited.end()); // Not visited. ASSERT_NE(z0, visited.end()); ASSERT_NE(za1, visited.end()); ASSERT_NE(pop, visited.end()); ASSERT_EQ(p1, visited.end()); // Not visited. // Make sure that parents were visited before children. No other ordering // guarantees can be made across siblings. ASSERT_LT(a0, aa1); ASSERT_LT(a0, ab1); ASSERT_LT(z0, za1); ASSERT_NO_ERROR(fs::remove(Twine(TestDirectory) + "/recursive/a0/aa1")); ASSERT_NO_ERROR(fs::remove(Twine(TestDirectory) + "/recursive/a0/ab1")); ASSERT_NO_ERROR(fs::remove(Twine(TestDirectory) + "/recursive/a0")); ASSERT_NO_ERROR( fs::remove(Twine(TestDirectory) + "/recursive/dontlookhere/da1")); ASSERT_NO_ERROR(fs::remove(Twine(TestDirectory) + "/recursive/dontlookhere")); ASSERT_NO_ERROR(fs::remove(Twine(TestDirectory) + "/recursive/pop/p1")); ASSERT_NO_ERROR(fs::remove(Twine(TestDirectory) + "/recursive/pop")); ASSERT_NO_ERROR(fs::remove(Twine(TestDirectory) + "/recursive/z0/za1")); ASSERT_NO_ERROR(fs::remove(Twine(TestDirectory) + "/recursive/z0")); ASSERT_NO_ERROR(fs::remove(Twine(TestDirectory) + "/recursive")); } const char archive[] = "!<arch>\x0A"; const char bitcode[] = "\xde\xc0\x17\x0b"; const char coff_object[] = "\x00\x00......"; const char coff_bigobj[] = "\x00\x00\xff\xff\x00\x02......" "\xc7\xa1\xba\xd1\xee\xba\xa9\x4b\xaf\x20\xfa\xf6\x6a\xa4\xdc\xb8"; const char coff_import_library[] = "\x00\x00\xff\xff...."; const char elf_relocatable[] = { 0x7f, 'E', 'L', 'F', 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }; const char macho_universal_binary[] = "\xca\xfe\xba\xbe...\0x00"; const char macho_object[] = "\xfe\xed\xfa\xce..........\x00\x01"; const char macho_executable[] = "\xfe\xed\xfa\xce..........\x00\x02"; const char macho_fixed_virtual_memory_shared_lib[] = "\xfe\xed\xfa\xce..........\x00\x03"; const char macho_core[] = "\xfe\xed\xfa\xce..........\x00\x04"; const char macho_preload_executable[] = "\xfe\xed\xfa\xce..........\x00\x05"; const char macho_dynamically_linked_shared_lib[] = "\xfe\xed\xfa\xce..........\x00\x06"; const char macho_dynamic_linker[] = "\xfe\xed\xfa\xce..........\x00\x07"; const char macho_bundle[] = "\xfe\xed\xfa\xce..........\x00\x08"; const char macho_dsym_companion[] = "\xfe\xed\xfa\xce..........\x00\x0a"; const char macho_kext_bundle[] = "\xfe\xed\xfa\xce..........\x00\x0b"; const char windows_resource[] = "\x00\x00\x00\x00\x020\x00\x00\x00\xff"; const char macho_dynamically_linked_shared_lib_stub[] = "\xfe\xed\xfa\xce..........\x00\x09"; TEST_F(FileSystemTest, Magic) { struct type { const char *filename; const char *magic_str; size_t magic_str_len; fs::file_magic magic; } types[] = { #define DEFINE(magic) \ { #magic, magic, sizeof(magic), fs::file_magic::magic } DEFINE(archive), DEFINE(bitcode), DEFINE(coff_object), { "coff_bigobj", coff_bigobj, sizeof(coff_bigobj), fs::file_magic::coff_object }, DEFINE(coff_import_library), DEFINE(elf_relocatable), DEFINE(macho_universal_binary), DEFINE(macho_object), DEFINE(macho_executable), DEFINE(macho_fixed_virtual_memory_shared_lib), DEFINE(macho_core), DEFINE(macho_preload_executable), DEFINE(macho_dynamically_linked_shared_lib), DEFINE(macho_dynamic_linker), DEFINE(macho_bundle), DEFINE(macho_dynamically_linked_shared_lib_stub), DEFINE(macho_dsym_companion), DEFINE(macho_kext_bundle), DEFINE(windows_resource) #undef DEFINE }; // Create some files filled with magic. for (type *i = types, *e = types + (sizeof(types) / sizeof(type)); i != e; ++i) { SmallString<128> file_pathname(TestDirectory); path::append(file_pathname, i->filename); std::error_code EC; raw_fd_ostream file(file_pathname, EC, sys::fs::F_None); ASSERT_FALSE(file.has_error()); StringRef magic(i->magic_str, i->magic_str_len); file << magic; file.close(); EXPECT_EQ(i->magic, fs::identify_magic(magic)); ASSERT_NO_ERROR(fs::remove(Twine(file_pathname))); } } #ifdef LLVM_ON_WIN32 TEST_F(FileSystemTest, CarriageReturn) { SmallString<128> FilePathname(TestDirectory); std::error_code EC; path::append(FilePathname, "test"); { raw_fd_ostream File(FilePathname, EC, sys::fs::F_Text); ASSERT_NO_ERROR(EC); File << '\n'; } { auto Buf = MemoryBuffer::getFile(FilePathname.str()); EXPECT_TRUE((bool)Buf); EXPECT_EQ(Buf.get()->getBuffer(), "\r\n"); } { raw_fd_ostream File(FilePathname, EC, sys::fs::F_None); ASSERT_NO_ERROR(EC); File << '\n'; } { auto Buf = MemoryBuffer::getFile(FilePathname.str()); EXPECT_TRUE((bool)Buf); EXPECT_EQ(Buf.get()->getBuffer(), "\n"); } ASSERT_NO_ERROR(fs::remove(Twine(FilePathname))); } #endif TEST_F(FileSystemTest, Resize) { int FD; SmallString<64> TempPath; ASSERT_NO_ERROR(fs::createTemporaryFile("prefix", "temp", FD, TempPath)); ASSERT_NO_ERROR(fs::resize_file(FD, 123)); fs::file_status Status; ASSERT_NO_ERROR(fs::status(FD, Status)); ASSERT_EQ(Status.getSize(), 123U); } TEST_F(FileSystemTest, FileMapping) { // Create a temp file. int FileDescriptor; SmallString<64> TempPath; ASSERT_NO_ERROR( fs::createTemporaryFile("prefix", "temp", FileDescriptor, TempPath)); unsigned Size = 4096; ASSERT_NO_ERROR(fs::resize_file(FileDescriptor, Size)); // Map in temp file and add some content std::error_code EC; StringRef Val("hello there"); { fs::mapped_file_region mfr(FileDescriptor, fs::mapped_file_region::readwrite, Size, 0, EC); ASSERT_NO_ERROR(EC); std::copy(Val.begin(), Val.end(), mfr.data()); // Explicitly add a 0. mfr.data()[Val.size()] = 0; // Unmap temp file } // Map it back in read-only int FD; EC = fs::openFileForRead(Twine(TempPath), FD); ASSERT_NO_ERROR(EC); fs::mapped_file_region mfr(FD, fs::mapped_file_region::readonly, Size, 0, EC); ASSERT_NO_ERROR(EC); // Verify content EXPECT_EQ(StringRef(mfr.const_data()), Val); // Unmap temp file fs::mapped_file_region m(FD, fs::mapped_file_region::readonly, Size, 0, EC); ASSERT_NO_ERROR(EC); ASSERT_EQ(close(FD), 0); } TEST(Support, NormalizePath) { #if defined(LLVM_ON_WIN32) #define EXPECT_PATH_IS(path__, windows__, not_windows__) \ EXPECT_EQ(path__, windows__); #else #define EXPECT_PATH_IS(path__, windows__, not_windows__) \ EXPECT_EQ(path__, not_windows__); #endif SmallString<64> Path1("a"); SmallString<64> Path2("a/b"); SmallString<64> Path3("a\\b"); SmallString<64> Path4("a\\\\b"); SmallString<64> Path5("\\a"); SmallString<64> Path6("a\\"); path::native(Path1); EXPECT_PATH_IS(Path1, "a", "a"); path::native(Path2); EXPECT_PATH_IS(Path2, "a\\b", "a/b"); path::native(Path3); EXPECT_PATH_IS(Path3, "a\\b", "a/b"); path::native(Path4); EXPECT_PATH_IS(Path4, "a\\\\b", "a\\\\b"); path::native(Path5); EXPECT_PATH_IS(Path5, "\\a", "/a"); path::native(Path6); EXPECT_PATH_IS(Path6, "a\\", "a/"); #undef EXPECT_PATH_IS } TEST(Support, RemoveLeadingDotSlash) { StringRef Path1("././/foolz/wat"); StringRef Path2("./////"); Path1 = path::remove_leading_dotslash(Path1); EXPECT_EQ(Path1, "foolz/wat"); Path2 = path::remove_leading_dotslash(Path2); EXPECT_EQ(Path2, ""); } static std::string remove_dots(StringRef path, bool remove_dot_dot) { SmallString<256> buffer(path); path::remove_dots(buffer, remove_dot_dot); return buffer.str(); } TEST(Support, RemoveDots) { #if defined(LLVM_ON_WIN32) EXPECT_EQ("foolz\\wat", remove_dots(".\\.\\\\foolz\\wat", false)); EXPECT_EQ("", remove_dots(".\\\\\\\\\\", false)); EXPECT_EQ("a\\..\\b\\c", remove_dots(".\\a\\..\\b\\c", false)); EXPECT_EQ("b\\c", remove_dots(".\\a\\..\\b\\c", true)); EXPECT_EQ("c", remove_dots(".\\.\\c", true)); SmallString<64> Path1(".\\.\\c"); EXPECT_TRUE(path::remove_dots(Path1, true)); EXPECT_EQ("c", Path1); #else EXPECT_EQ("foolz/wat", remove_dots("././/foolz/wat", false)); EXPECT_EQ("", remove_dots("./////", false)); EXPECT_EQ("a/../b/c", remove_dots("./a/../b/c", false)); EXPECT_EQ("b/c", remove_dots("./a/../b/c", true)); EXPECT_EQ("c", remove_dots("././c", true)); SmallString<64> Path1("././c"); EXPECT_TRUE(path::remove_dots(Path1, true)); EXPECT_EQ("c", Path1); #endif } } // anonymous namespace