//===- llvm/unittest/Bitcode/BitReaderTest.cpp - Tests for BitReader ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/ADT/SmallString.h" #include "llvm/ADT/STLExtras.h" #include "llvm/AsmParser/Parser.h" #include "llvm/Bitcode/BitstreamReader.h" #include "llvm/Bitcode/BitstreamWriter.h" #include "llvm/Bitcode/ReaderWriter.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/DataStream.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/StreamingMemoryObject.h" #include "gtest/gtest.h" using namespace llvm; namespace { std::unique_ptr<Module> parseAssembly(const char *Assembly) { SMDiagnostic Error; std::unique_ptr<Module> M = parseAssemblyString(Assembly, Error, getGlobalContext()); std::string ErrMsg; raw_string_ostream OS(ErrMsg); Error.print("", OS); // A failure here means that the test itself is buggy. if (!M) report_fatal_error(OS.str().c_str()); return M; } static void writeModuleToBuffer(std::unique_ptr<Module> Mod, SmallVectorImpl<char> &Buffer) { raw_svector_ostream OS(Buffer); WriteBitcodeToFile(Mod.get(), OS); } static std::unique_ptr<Module> getLazyModuleFromAssembly(LLVMContext &Context, SmallString<1024> &Mem, const char *Assembly) { writeModuleToBuffer(parseAssembly(Assembly), Mem); std::unique_ptr<MemoryBuffer> Buffer = MemoryBuffer::getMemBuffer(Mem.str(), "test", false); ErrorOr<std::unique_ptr<Module>> ModuleOrErr = getLazyBitcodeModule(std::move(Buffer), Context); return std::move(ModuleOrErr.get()); } class BufferDataStreamer : public DataStreamer { std::unique_ptr<MemoryBuffer> Buffer; unsigned Pos = 0; size_t GetBytes(unsigned char *Out, size_t Len) override { StringRef Buf = Buffer->getBuffer(); size_t Left = Buf.size() - Pos; Len = std::min(Left, Len); memcpy(Out, Buffer->getBuffer().substr(Pos).data(), Len); Pos += Len; return Len; } public: BufferDataStreamer(std::unique_ptr<MemoryBuffer> Buffer) : Buffer(std::move(Buffer)) {} }; static std::unique_ptr<Module> getStreamedModuleFromAssembly(LLVMContext &Context, SmallString<1024> &Mem, const char *Assembly) { writeModuleToBuffer(parseAssembly(Assembly), Mem); std::unique_ptr<MemoryBuffer> Buffer = MemoryBuffer::getMemBuffer(Mem.str(), "test", false); auto Streamer = llvm::make_unique<BufferDataStreamer>(std::move(Buffer)); ErrorOr<std::unique_ptr<Module>> ModuleOrErr = getStreamedBitcodeModule("test", std::move(Streamer), Context); return std::move(ModuleOrErr.get()); } // Checks if we correctly detect eof if we try to read N bits when there are not // enough bits left on the input stream to read N bits, and we are using a data // streamer. In particular, it checks if we properly set the object size when // the eof is reached under such conditions. TEST(BitReaderTest, TestForEofAfterReadFailureOnDataStreamer) { // Note: Because StreamingMemoryObject does a call to method GetBytes in it's // constructor, using internal constant kChunkSize, we must fill the input // with more characters than that amount. static size_t InputSize = StreamingMemoryObject::kChunkSize + 5; char *Text = new char[InputSize]; std::memset(Text, 'a', InputSize); Text[InputSize - 1] = '\0'; StringRef Input(Text); // Build bitsteam reader using data streamer. auto MemoryBuf = MemoryBuffer::getMemBuffer(Input); std::unique_ptr<DataStreamer> Streamer( new BufferDataStreamer(std::move(MemoryBuf))); auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); auto Reader = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); BitstreamCursor Cursor; Cursor.init(Reader.get()); // Jump to two bytes before end of stream. Cursor.JumpToBit((InputSize - 4) * CHAR_BIT); // Try to read 4 bytes when only 2 are present, resulting in error value 0. const size_t ReadErrorValue = 0; EXPECT_EQ(ReadErrorValue, Cursor.Read(32)); // Should be at eof now. EXPECT_TRUE(Cursor.AtEndOfStream()); delete[] Text; } TEST(BitReaderTest, MateralizeForwardRefWithStream) { SmallString<1024> Mem; LLVMContext Context; std::unique_ptr<Module> M = getStreamedModuleFromAssembly( Context, Mem, "@table = constant i8* blockaddress(@func, %bb)\n" "define void @func() {\n" " unreachable\n" "bb:\n" " unreachable\n" "}\n"); EXPECT_FALSE(M->getFunction("func")->empty()); } // Tests that lazy evaluation can parse functions out of order. TEST(BitReaderTest, MaterializeFunctionsOutOfOrder) { SmallString<1024> Mem; LLVMContext Context; std::unique_ptr<Module> M = getLazyModuleFromAssembly( Context, Mem, "define void @f() {\n" " unreachable\n" "}\n" "define void @g() {\n" " unreachable\n" "}\n" "define void @h() {\n" " unreachable\n" "}\n" "define void @j() {\n" " unreachable\n" "}\n"); EXPECT_FALSE(verifyModule(*M, &dbgs())); Function *F = M->getFunction("f"); Function *G = M->getFunction("g"); Function *H = M->getFunction("h"); Function *J = M->getFunction("j"); // Initially all functions are not materialized (no basic blocks). EXPECT_TRUE(F->empty()); EXPECT_TRUE(G->empty()); EXPECT_TRUE(H->empty()); EXPECT_TRUE(J->empty()); EXPECT_FALSE(verifyModule(*M, &dbgs())); // Materialize h. H->materialize(); EXPECT_TRUE(F->empty()); EXPECT_TRUE(G->empty()); EXPECT_FALSE(H->empty()); EXPECT_TRUE(J->empty()); EXPECT_FALSE(verifyModule(*M, &dbgs())); // Materialize g. G->materialize(); EXPECT_TRUE(F->empty()); EXPECT_FALSE(G->empty()); EXPECT_FALSE(H->empty()); EXPECT_TRUE(J->empty()); EXPECT_FALSE(verifyModule(*M, &dbgs())); // Materialize j. J->materialize(); EXPECT_TRUE(F->empty()); EXPECT_FALSE(G->empty()); EXPECT_FALSE(H->empty()); EXPECT_FALSE(J->empty()); EXPECT_FALSE(verifyModule(*M, &dbgs())); // Materialize f. F->materialize(); EXPECT_FALSE(F->empty()); EXPECT_FALSE(G->empty()); EXPECT_FALSE(H->empty()); EXPECT_FALSE(J->empty()); EXPECT_FALSE(verifyModule(*M, &dbgs())); } TEST(BitReaderTest, MaterializeFunctionsForBlockAddr) { // PR11677 SmallString<1024> Mem; LLVMContext Context; std::unique_ptr<Module> M = getLazyModuleFromAssembly( Context, Mem, "@table = constant i8* blockaddress(@func, %bb)\n" "define void @func() {\n" " unreachable\n" "bb:\n" " unreachable\n" "}\n"); EXPECT_FALSE(verifyModule(*M, &dbgs())); } TEST(BitReaderTest, MaterializeFunctionsForBlockAddrInFunctionBefore) { SmallString<1024> Mem; LLVMContext Context; std::unique_ptr<Module> M = getLazyModuleFromAssembly( Context, Mem, "define i8* @before() {\n" " ret i8* blockaddress(@func, %bb)\n" "}\n" "define void @other() {\n" " unreachable\n" "}\n" "define void @func() {\n" " unreachable\n" "bb:\n" " unreachable\n" "}\n"); EXPECT_TRUE(M->getFunction("before")->empty()); EXPECT_TRUE(M->getFunction("func")->empty()); EXPECT_FALSE(verifyModule(*M, &dbgs())); // Materialize @before, pulling in @func. EXPECT_FALSE(M->getFunction("before")->materialize()); EXPECT_FALSE(M->getFunction("func")->empty()); EXPECT_TRUE(M->getFunction("other")->empty()); EXPECT_FALSE(verifyModule(*M, &dbgs())); } TEST(BitReaderTest, MaterializeFunctionsForBlockAddrInFunctionAfter) { SmallString<1024> Mem; LLVMContext Context; std::unique_ptr<Module> M = getLazyModuleFromAssembly( Context, Mem, "define void @func() {\n" " unreachable\n" "bb:\n" " unreachable\n" "}\n" "define void @other() {\n" " unreachable\n" "}\n" "define i8* @after() {\n" " ret i8* blockaddress(@func, %bb)\n" "}\n"); EXPECT_TRUE(M->getFunction("after")->empty()); EXPECT_TRUE(M->getFunction("func")->empty()); EXPECT_FALSE(verifyModule(*M, &dbgs())); // Materialize @after, pulling in @func. EXPECT_FALSE(M->getFunction("after")->materialize()); EXPECT_FALSE(M->getFunction("func")->empty()); EXPECT_TRUE(M->getFunction("other")->empty()); EXPECT_FALSE(verifyModule(*M, &dbgs())); } } // end namespace