//===- LazyCallGraphTest.cpp - Unit tests for the lazy CG analysis --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/LazyCallGraph.h" #include "llvm/AsmParser/Parser.h" #include "llvm/IR/Function.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/SourceMgr.h" #include "gtest/gtest.h" #include <memory> using namespace llvm; namespace { std::unique_ptr<Module> parseAssembly(const char *Assembly) { SMDiagnostic Error; std::unique_ptr<Module> M = parseAssemblyString(Assembly, Error, getGlobalContext()); std::string ErrMsg; raw_string_ostream OS(ErrMsg); Error.print("", OS); // A failure here means that the test itself is buggy. if (!M) report_fatal_error(OS.str().c_str()); return M; } /* IR forming a call graph with a diamond of triangle-shaped SCCs: d1 / \ d3--d2 / \ b1 c1 / \ / \ b3--b2 c3--c2 \ / a1 / \ a3--a2 All call edges go up between SCCs, and clockwise around the SCC. */ static const char DiamondOfTriangles[] = "define void @a1() {\n" "entry:\n" " call void @a2()\n" " call void @b2()\n" " call void @c3()\n" " ret void\n" "}\n" "define void @a2() {\n" "entry:\n" " call void @a3()\n" " ret void\n" "}\n" "define void @a3() {\n" "entry:\n" " call void @a1()\n" " ret void\n" "}\n" "define void @b1() {\n" "entry:\n" " call void @b2()\n" " call void @d3()\n" " ret void\n" "}\n" "define void @b2() {\n" "entry:\n" " call void @b3()\n" " ret void\n" "}\n" "define void @b3() {\n" "entry:\n" " call void @b1()\n" " ret void\n" "}\n" "define void @c1() {\n" "entry:\n" " call void @c2()\n" " call void @d2()\n" " ret void\n" "}\n" "define void @c2() {\n" "entry:\n" " call void @c3()\n" " ret void\n" "}\n" "define void @c3() {\n" "entry:\n" " call void @c1()\n" " ret void\n" "}\n" "define void @d1() {\n" "entry:\n" " call void @d2()\n" " ret void\n" "}\n" "define void @d2() {\n" "entry:\n" " call void @d3()\n" " ret void\n" "}\n" "define void @d3() {\n" "entry:\n" " call void @d1()\n" " ret void\n" "}\n"; TEST(LazyCallGraphTest, BasicGraphFormation) { std::unique_ptr<Module> M = parseAssembly(DiamondOfTriangles); LazyCallGraph CG(*M); // The order of the entry nodes should be stable w.r.t. the source order of // the IR, and everything in our module is an entry node, so just directly // build variables for each node. auto I = CG.begin(); LazyCallGraph::Node &A1 = *I++; EXPECT_EQ("a1", A1.getFunction().getName()); LazyCallGraph::Node &A2 = *I++; EXPECT_EQ("a2", A2.getFunction().getName()); LazyCallGraph::Node &A3 = *I++; EXPECT_EQ("a3", A3.getFunction().getName()); LazyCallGraph::Node &B1 = *I++; EXPECT_EQ("b1", B1.getFunction().getName()); LazyCallGraph::Node &B2 = *I++; EXPECT_EQ("b2", B2.getFunction().getName()); LazyCallGraph::Node &B3 = *I++; EXPECT_EQ("b3", B3.getFunction().getName()); LazyCallGraph::Node &C1 = *I++; EXPECT_EQ("c1", C1.getFunction().getName()); LazyCallGraph::Node &C2 = *I++; EXPECT_EQ("c2", C2.getFunction().getName()); LazyCallGraph::Node &C3 = *I++; EXPECT_EQ("c3", C3.getFunction().getName()); LazyCallGraph::Node &D1 = *I++; EXPECT_EQ("d1", D1.getFunction().getName()); LazyCallGraph::Node &D2 = *I++; EXPECT_EQ("d2", D2.getFunction().getName()); LazyCallGraph::Node &D3 = *I++; EXPECT_EQ("d3", D3.getFunction().getName()); EXPECT_EQ(CG.end(), I); // Build vectors and sort them for the rest of the assertions to make them // independent of order. std::vector<std::string> Nodes; for (LazyCallGraph::Node &N : A1) Nodes.push_back(N.getFunction().getName()); std::sort(Nodes.begin(), Nodes.end()); EXPECT_EQ("a2", Nodes[0]); EXPECT_EQ("b2", Nodes[1]); EXPECT_EQ("c3", Nodes[2]); Nodes.clear(); EXPECT_EQ(A2.end(), std::next(A2.begin())); EXPECT_EQ("a3", A2.begin()->getFunction().getName()); EXPECT_EQ(A3.end(), std::next(A3.begin())); EXPECT_EQ("a1", A3.begin()->getFunction().getName()); for (LazyCallGraph::Node &N : B1) Nodes.push_back(N.getFunction().getName()); std::sort(Nodes.begin(), Nodes.end()); EXPECT_EQ("b2", Nodes[0]); EXPECT_EQ("d3", Nodes[1]); Nodes.clear(); EXPECT_EQ(B2.end(), std::next(B2.begin())); EXPECT_EQ("b3", B2.begin()->getFunction().getName()); EXPECT_EQ(B3.end(), std::next(B3.begin())); EXPECT_EQ("b1", B3.begin()->getFunction().getName()); for (LazyCallGraph::Node &N : C1) Nodes.push_back(N.getFunction().getName()); std::sort(Nodes.begin(), Nodes.end()); EXPECT_EQ("c2", Nodes[0]); EXPECT_EQ("d2", Nodes[1]); Nodes.clear(); EXPECT_EQ(C2.end(), std::next(C2.begin())); EXPECT_EQ("c3", C2.begin()->getFunction().getName()); EXPECT_EQ(C3.end(), std::next(C3.begin())); EXPECT_EQ("c1", C3.begin()->getFunction().getName()); EXPECT_EQ(D1.end(), std::next(D1.begin())); EXPECT_EQ("d2", D1.begin()->getFunction().getName()); EXPECT_EQ(D2.end(), std::next(D2.begin())); EXPECT_EQ("d3", D2.begin()->getFunction().getName()); EXPECT_EQ(D3.end(), std::next(D3.begin())); EXPECT_EQ("d1", D3.begin()->getFunction().getName()); // Now lets look at the SCCs. auto SCCI = CG.postorder_scc_begin(); LazyCallGraph::SCC &D = *SCCI++; for (LazyCallGraph::Node *N : D) Nodes.push_back(N->getFunction().getName()); std::sort(Nodes.begin(), Nodes.end()); EXPECT_EQ(3u, Nodes.size()); EXPECT_EQ("d1", Nodes[0]); EXPECT_EQ("d2", Nodes[1]); EXPECT_EQ("d3", Nodes[2]); Nodes.clear(); EXPECT_FALSE(D.isParentOf(D)); EXPECT_FALSE(D.isChildOf(D)); EXPECT_FALSE(D.isAncestorOf(D)); EXPECT_FALSE(D.isDescendantOf(D)); LazyCallGraph::SCC &C = *SCCI++; for (LazyCallGraph::Node *N : C) Nodes.push_back(N->getFunction().getName()); std::sort(Nodes.begin(), Nodes.end()); EXPECT_EQ(3u, Nodes.size()); EXPECT_EQ("c1", Nodes[0]); EXPECT_EQ("c2", Nodes[1]); EXPECT_EQ("c3", Nodes[2]); Nodes.clear(); EXPECT_TRUE(C.isParentOf(D)); EXPECT_FALSE(C.isChildOf(D)); EXPECT_TRUE(C.isAncestorOf(D)); EXPECT_FALSE(C.isDescendantOf(D)); LazyCallGraph::SCC &B = *SCCI++; for (LazyCallGraph::Node *N : B) Nodes.push_back(N->getFunction().getName()); std::sort(Nodes.begin(), Nodes.end()); EXPECT_EQ(3u, Nodes.size()); EXPECT_EQ("b1", Nodes[0]); EXPECT_EQ("b2", Nodes[1]); EXPECT_EQ("b3", Nodes[2]); Nodes.clear(); EXPECT_TRUE(B.isParentOf(D)); EXPECT_FALSE(B.isChildOf(D)); EXPECT_TRUE(B.isAncestorOf(D)); EXPECT_FALSE(B.isDescendantOf(D)); EXPECT_FALSE(B.isAncestorOf(C)); EXPECT_FALSE(C.isAncestorOf(B)); LazyCallGraph::SCC &A = *SCCI++; for (LazyCallGraph::Node *N : A) Nodes.push_back(N->getFunction().getName()); std::sort(Nodes.begin(), Nodes.end()); EXPECT_EQ(3u, Nodes.size()); EXPECT_EQ("a1", Nodes[0]); EXPECT_EQ("a2", Nodes[1]); EXPECT_EQ("a3", Nodes[2]); Nodes.clear(); EXPECT_TRUE(A.isParentOf(B)); EXPECT_TRUE(A.isParentOf(C)); EXPECT_FALSE(A.isParentOf(D)); EXPECT_TRUE(A.isAncestorOf(B)); EXPECT_TRUE(A.isAncestorOf(C)); EXPECT_TRUE(A.isAncestorOf(D)); EXPECT_EQ(CG.postorder_scc_end(), SCCI); } static Function &lookupFunction(Module &M, StringRef Name) { for (Function &F : M) if (F.getName() == Name) return F; report_fatal_error("Couldn't find function!"); } TEST(LazyCallGraphTest, BasicGraphMutation) { std::unique_ptr<Module> M = parseAssembly( "define void @a() {\n" "entry:\n" " call void @b()\n" " call void @c()\n" " ret void\n" "}\n" "define void @b() {\n" "entry:\n" " ret void\n" "}\n" "define void @c() {\n" "entry:\n" " ret void\n" "}\n"); LazyCallGraph CG(*M); LazyCallGraph::Node &A = CG.get(lookupFunction(*M, "a")); LazyCallGraph::Node &B = CG.get(lookupFunction(*M, "b")); EXPECT_EQ(2, std::distance(A.begin(), A.end())); EXPECT_EQ(0, std::distance(B.begin(), B.end())); CG.insertEdge(B, lookupFunction(*M, "c")); EXPECT_EQ(1, std::distance(B.begin(), B.end())); LazyCallGraph::Node &C = *B.begin(); EXPECT_EQ(0, std::distance(C.begin(), C.end())); CG.insertEdge(C, B.getFunction()); EXPECT_EQ(1, std::distance(C.begin(), C.end())); EXPECT_EQ(&B, &*C.begin()); CG.insertEdge(C, C.getFunction()); EXPECT_EQ(2, std::distance(C.begin(), C.end())); EXPECT_EQ(&B, &*C.begin()); EXPECT_EQ(&C, &*std::next(C.begin())); CG.removeEdge(C, B.getFunction()); EXPECT_EQ(1, std::distance(C.begin(), C.end())); EXPECT_EQ(&C, &*C.begin()); CG.removeEdge(C, C.getFunction()); EXPECT_EQ(0, std::distance(C.begin(), C.end())); CG.removeEdge(B, C.getFunction()); EXPECT_EQ(0, std::distance(B.begin(), B.end())); } TEST(LazyCallGraphTest, MultiArmSCC) { // Two interlocking cycles. The really useful thing about this SCC is that it // will require Tarjan's DFS to backtrack and finish processing all of the // children of each node in the SCC. std::unique_ptr<Module> M = parseAssembly( "define void @a() {\n" "entry:\n" " call void @b()\n" " call void @d()\n" " ret void\n" "}\n" "define void @b() {\n" "entry:\n" " call void @c()\n" " ret void\n" "}\n" "define void @c() {\n" "entry:\n" " call void @a()\n" " ret void\n" "}\n" "define void @d() {\n" "entry:\n" " call void @e()\n" " ret void\n" "}\n" "define void @e() {\n" "entry:\n" " call void @a()\n" " ret void\n" "}\n"); LazyCallGraph CG(*M); // Force the graph to be fully expanded. auto SCCI = CG.postorder_scc_begin(); LazyCallGraph::SCC &SCC = *SCCI++; EXPECT_EQ(CG.postorder_scc_end(), SCCI); LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d")); LazyCallGraph::Node &E = *CG.lookup(lookupFunction(*M, "e")); EXPECT_EQ(&SCC, CG.lookupSCC(A)); EXPECT_EQ(&SCC, CG.lookupSCC(B)); EXPECT_EQ(&SCC, CG.lookupSCC(C)); EXPECT_EQ(&SCC, CG.lookupSCC(D)); EXPECT_EQ(&SCC, CG.lookupSCC(E)); } TEST(LazyCallGraphTest, OutgoingSCCEdgeInsertion) { std::unique_ptr<Module> M = parseAssembly( "define void @a() {\n" "entry:\n" " call void @b()\n" " call void @c()\n" " ret void\n" "}\n" "define void @b() {\n" "entry:\n" " call void @d()\n" " ret void\n" "}\n" "define void @c() {\n" "entry:\n" " call void @d()\n" " ret void\n" "}\n" "define void @d() {\n" "entry:\n" " ret void\n" "}\n"); LazyCallGraph CG(*M); // Force the graph to be fully expanded. for (LazyCallGraph::SCC &C : CG.postorder_sccs()) (void)C; LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d")); LazyCallGraph::SCC &AC = *CG.lookupSCC(A); LazyCallGraph::SCC &BC = *CG.lookupSCC(B); LazyCallGraph::SCC &CC = *CG.lookupSCC(C); LazyCallGraph::SCC &DC = *CG.lookupSCC(D); EXPECT_TRUE(AC.isAncestorOf(BC)); EXPECT_TRUE(AC.isAncestorOf(CC)); EXPECT_TRUE(AC.isAncestorOf(DC)); EXPECT_TRUE(DC.isDescendantOf(AC)); EXPECT_TRUE(DC.isDescendantOf(BC)); EXPECT_TRUE(DC.isDescendantOf(CC)); EXPECT_EQ(2, std::distance(A.begin(), A.end())); AC.insertOutgoingEdge(A, D); EXPECT_EQ(3, std::distance(A.begin(), A.end())); EXPECT_TRUE(AC.isParentOf(DC)); EXPECT_EQ(&AC, CG.lookupSCC(A)); EXPECT_EQ(&BC, CG.lookupSCC(B)); EXPECT_EQ(&CC, CG.lookupSCC(C)); EXPECT_EQ(&DC, CG.lookupSCC(D)); } TEST(LazyCallGraphTest, IncomingSCCEdgeInsertion) { // We want to ensure we can add edges even across complex diamond graphs, so // we use the diamond of triangles graph defined above. The ascii diagram is // repeated here for easy reference. // // d1 | // / \ | // d3--d2 | // / \ | // b1 c1 | // / \ / \ | // b3--b2 c3--c2 | // \ / | // a1 | // / \ | // a3--a2 | // std::unique_ptr<Module> M = parseAssembly(DiamondOfTriangles); LazyCallGraph CG(*M); // Force the graph to be fully expanded. for (LazyCallGraph::SCC &C : CG.postorder_sccs()) (void)C; LazyCallGraph::Node &A1 = *CG.lookup(lookupFunction(*M, "a1")); LazyCallGraph::Node &A2 = *CG.lookup(lookupFunction(*M, "a2")); LazyCallGraph::Node &A3 = *CG.lookup(lookupFunction(*M, "a3")); LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1")); LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2")); LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3")); LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1")); LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2")); LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3")); LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1")); LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2")); LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3")); LazyCallGraph::SCC &AC = *CG.lookupSCC(A1); LazyCallGraph::SCC &BC = *CG.lookupSCC(B1); LazyCallGraph::SCC &CC = *CG.lookupSCC(C1); LazyCallGraph::SCC &DC = *CG.lookupSCC(D1); ASSERT_EQ(&AC, CG.lookupSCC(A2)); ASSERT_EQ(&AC, CG.lookupSCC(A3)); ASSERT_EQ(&BC, CG.lookupSCC(B2)); ASSERT_EQ(&BC, CG.lookupSCC(B3)); ASSERT_EQ(&CC, CG.lookupSCC(C2)); ASSERT_EQ(&CC, CG.lookupSCC(C3)); ASSERT_EQ(&DC, CG.lookupSCC(D2)); ASSERT_EQ(&DC, CG.lookupSCC(D3)); ASSERT_EQ(1, std::distance(D2.begin(), D2.end())); // Add an edge to make the graph: // // d1 | // / \ | // d3--d2---. | // / \ | | // b1 c1 | | // / \ / \ / | // b3--b2 c3--c2 | // \ / | // a1 | // / \ | // a3--a2 | CC.insertIncomingEdge(D2, C2); // Make sure we connected the nodes. EXPECT_EQ(2, std::distance(D2.begin(), D2.end())); // Make sure we have the correct nodes in the SCC sets. EXPECT_EQ(&AC, CG.lookupSCC(A1)); EXPECT_EQ(&AC, CG.lookupSCC(A2)); EXPECT_EQ(&AC, CG.lookupSCC(A3)); EXPECT_EQ(&BC, CG.lookupSCC(B1)); EXPECT_EQ(&BC, CG.lookupSCC(B2)); EXPECT_EQ(&BC, CG.lookupSCC(B3)); EXPECT_EQ(&CC, CG.lookupSCC(C1)); EXPECT_EQ(&CC, CG.lookupSCC(C2)); EXPECT_EQ(&CC, CG.lookupSCC(C3)); EXPECT_EQ(&CC, CG.lookupSCC(D1)); EXPECT_EQ(&CC, CG.lookupSCC(D2)); EXPECT_EQ(&CC, CG.lookupSCC(D3)); // And that ancestry tests have been updated. EXPECT_TRUE(AC.isParentOf(BC)); EXPECT_TRUE(AC.isParentOf(CC)); EXPECT_FALSE(AC.isAncestorOf(DC)); EXPECT_FALSE(BC.isAncestorOf(DC)); EXPECT_FALSE(CC.isAncestorOf(DC)); } TEST(LazyCallGraphTest, IncomingSCCEdgeInsertionMidTraversal) { // This is the same fundamental test as the previous, but we perform it // having only partially walked the SCCs of the graph. std::unique_ptr<Module> M = parseAssembly(DiamondOfTriangles); LazyCallGraph CG(*M); // Walk the SCCs until we find the one containing 'c1'. auto SCCI = CG.postorder_scc_begin(), SCCE = CG.postorder_scc_end(); ASSERT_NE(SCCI, SCCE); LazyCallGraph::SCC &DC = *SCCI; ASSERT_NE(&DC, nullptr); ++SCCI; ASSERT_NE(SCCI, SCCE); LazyCallGraph::SCC &CC = *SCCI; ASSERT_NE(&CC, nullptr); ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "a1"))); ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "a2"))); ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "a3"))); ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "b1"))); ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "b2"))); ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "b3"))); LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1")); LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2")); LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3")); LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1")); LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2")); LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3")); ASSERT_EQ(&CC, CG.lookupSCC(C1)); ASSERT_EQ(&CC, CG.lookupSCC(C2)); ASSERT_EQ(&CC, CG.lookupSCC(C3)); ASSERT_EQ(&DC, CG.lookupSCC(D1)); ASSERT_EQ(&DC, CG.lookupSCC(D2)); ASSERT_EQ(&DC, CG.lookupSCC(D3)); ASSERT_EQ(1, std::distance(D2.begin(), D2.end())); CC.insertIncomingEdge(D2, C2); EXPECT_EQ(2, std::distance(D2.begin(), D2.end())); // Make sure we have the correct nodes in the SCC sets. EXPECT_EQ(&CC, CG.lookupSCC(C1)); EXPECT_EQ(&CC, CG.lookupSCC(C2)); EXPECT_EQ(&CC, CG.lookupSCC(C3)); EXPECT_EQ(&CC, CG.lookupSCC(D1)); EXPECT_EQ(&CC, CG.lookupSCC(D2)); EXPECT_EQ(&CC, CG.lookupSCC(D3)); // Check that we can form the last two SCCs now in a coherent way. ++SCCI; EXPECT_NE(SCCI, SCCE); LazyCallGraph::SCC &BC = *SCCI; EXPECT_NE(&BC, nullptr); EXPECT_EQ(&BC, CG.lookupSCC(*CG.lookup(lookupFunction(*M, "b1")))); EXPECT_EQ(&BC, CG.lookupSCC(*CG.lookup(lookupFunction(*M, "b2")))); EXPECT_EQ(&BC, CG.lookupSCC(*CG.lookup(lookupFunction(*M, "b3")))); ++SCCI; EXPECT_NE(SCCI, SCCE); LazyCallGraph::SCC &AC = *SCCI; EXPECT_NE(&AC, nullptr); EXPECT_EQ(&AC, CG.lookupSCC(*CG.lookup(lookupFunction(*M, "a1")))); EXPECT_EQ(&AC, CG.lookupSCC(*CG.lookup(lookupFunction(*M, "a2")))); EXPECT_EQ(&AC, CG.lookupSCC(*CG.lookup(lookupFunction(*M, "a3")))); ++SCCI; EXPECT_EQ(SCCI, SCCE); } TEST(LazyCallGraphTest, InterSCCEdgeRemoval) { std::unique_ptr<Module> M = parseAssembly( "define void @a() {\n" "entry:\n" " call void @b()\n" " ret void\n" "}\n" "define void @b() {\n" "entry:\n" " ret void\n" "}\n"); LazyCallGraph CG(*M); // Force the graph to be fully expanded. for (LazyCallGraph::SCC &C : CG.postorder_sccs()) (void)C; LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); LazyCallGraph::SCC &AC = *CG.lookupSCC(A); LazyCallGraph::SCC &BC = *CG.lookupSCC(B); EXPECT_EQ("b", A.begin()->getFunction().getName()); EXPECT_EQ(B.end(), B.begin()); EXPECT_EQ(&AC, &*BC.parent_begin()); AC.removeInterSCCEdge(A, B); EXPECT_EQ(A.end(), A.begin()); EXPECT_EQ(B.end(), B.begin()); EXPECT_EQ(BC.parent_end(), BC.parent_begin()); } TEST(LazyCallGraphTest, IntraSCCEdgeInsertion) { std::unique_ptr<Module> M1 = parseAssembly( "define void @a() {\n" "entry:\n" " call void @b()\n" " ret void\n" "}\n" "define void @b() {\n" "entry:\n" " call void @c()\n" " ret void\n" "}\n" "define void @c() {\n" "entry:\n" " call void @a()\n" " ret void\n" "}\n"); LazyCallGraph CG1(*M1); // Force the graph to be fully expanded. auto SCCI = CG1.postorder_scc_begin(); LazyCallGraph::SCC &SCC = *SCCI++; EXPECT_EQ(CG1.postorder_scc_end(), SCCI); LazyCallGraph::Node &A = *CG1.lookup(lookupFunction(*M1, "a")); LazyCallGraph::Node &B = *CG1.lookup(lookupFunction(*M1, "b")); LazyCallGraph::Node &C = *CG1.lookup(lookupFunction(*M1, "c")); EXPECT_EQ(&SCC, CG1.lookupSCC(A)); EXPECT_EQ(&SCC, CG1.lookupSCC(B)); EXPECT_EQ(&SCC, CG1.lookupSCC(C)); // Insert an edge from 'a' to 'c'. Nothing changes about the SCCs. SCC.insertIntraSCCEdge(A, C); EXPECT_EQ(2, std::distance(A.begin(), A.end())); EXPECT_EQ(&SCC, CG1.lookupSCC(A)); EXPECT_EQ(&SCC, CG1.lookupSCC(B)); EXPECT_EQ(&SCC, CG1.lookupSCC(C)); // Insert a self edge from 'a' back to 'a'. SCC.insertIntraSCCEdge(A, A); EXPECT_EQ(3, std::distance(A.begin(), A.end())); EXPECT_EQ(&SCC, CG1.lookupSCC(A)); EXPECT_EQ(&SCC, CG1.lookupSCC(B)); EXPECT_EQ(&SCC, CG1.lookupSCC(C)); } TEST(LazyCallGraphTest, IntraSCCEdgeRemoval) { // A nice fully connected (including self-edges) SCC. std::unique_ptr<Module> M1 = parseAssembly( "define void @a() {\n" "entry:\n" " call void @a()\n" " call void @b()\n" " call void @c()\n" " ret void\n" "}\n" "define void @b() {\n" "entry:\n" " call void @a()\n" " call void @b()\n" " call void @c()\n" " ret void\n" "}\n" "define void @c() {\n" "entry:\n" " call void @a()\n" " call void @b()\n" " call void @c()\n" " ret void\n" "}\n"); LazyCallGraph CG1(*M1); // Force the graph to be fully expanded. auto SCCI = CG1.postorder_scc_begin(); LazyCallGraph::SCC &SCC = *SCCI++; EXPECT_EQ(CG1.postorder_scc_end(), SCCI); LazyCallGraph::Node &A = *CG1.lookup(lookupFunction(*M1, "a")); LazyCallGraph::Node &B = *CG1.lookup(lookupFunction(*M1, "b")); LazyCallGraph::Node &C = *CG1.lookup(lookupFunction(*M1, "c")); EXPECT_EQ(&SCC, CG1.lookupSCC(A)); EXPECT_EQ(&SCC, CG1.lookupSCC(B)); EXPECT_EQ(&SCC, CG1.lookupSCC(C)); // Remove the edge from b -> a, which should leave the 3 functions still in // a single connected component because of a -> b -> c -> a. SmallVector<LazyCallGraph::SCC *, 1> NewSCCs = SCC.removeIntraSCCEdge(B, A); EXPECT_EQ(0u, NewSCCs.size()); EXPECT_EQ(&SCC, CG1.lookupSCC(A)); EXPECT_EQ(&SCC, CG1.lookupSCC(B)); EXPECT_EQ(&SCC, CG1.lookupSCC(C)); // Remove the edge from c -> a, which should leave 'a' in the original SCC // and form a new SCC for 'b' and 'c'. NewSCCs = SCC.removeIntraSCCEdge(C, A); EXPECT_EQ(1u, NewSCCs.size()); EXPECT_EQ(&SCC, CG1.lookupSCC(A)); EXPECT_EQ(1, std::distance(SCC.begin(), SCC.end())); LazyCallGraph::SCC *SCC2 = CG1.lookupSCC(B); EXPECT_EQ(SCC2, CG1.lookupSCC(C)); EXPECT_EQ(SCC2, NewSCCs[0]); } }