//===-- StreamWriter.h ----------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_TOOLS_LLVM_READOBJ_STREAMWRITER_H #define LLVM_TOOLS_LLVM_READOBJ_STREAMWRITER_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/Endian.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> using namespace llvm; using namespace llvm::support; namespace llvm { template<typename T> struct EnumEntry { StringRef Name; T Value; }; struct HexNumber { // To avoid sign-extension we have to explicitly cast to the appropriate // unsigned type. The overloads are here so that every type that is implicitly // convertible to an integer (including enums and endian helpers) can be used // without requiring type traits or call-site changes. HexNumber(char Value) : Value(static_cast<unsigned char>(Value)) { } HexNumber(signed char Value) : Value(static_cast<unsigned char>(Value)) { } HexNumber(signed short Value) : Value(static_cast<unsigned short>(Value)) { } HexNumber(signed int Value) : Value(static_cast<unsigned int>(Value)) { } HexNumber(signed long Value) : Value(static_cast<unsigned long>(Value)) { } HexNumber(signed long long Value) : Value(static_cast<unsigned long long>(Value)) { } HexNumber(unsigned char Value) : Value(Value) { } HexNumber(unsigned short Value) : Value(Value) { } HexNumber(unsigned int Value) : Value(Value) { } HexNumber(unsigned long Value) : Value(Value) { } HexNumber(unsigned long long Value) : Value(Value) { } uint64_t Value; }; raw_ostream &operator<<(raw_ostream &OS, const HexNumber& Value); class StreamWriter { public: StreamWriter(raw_ostream &OS) : OS(OS) , IndentLevel(0) { } void flush() { OS.flush(); } void indent(int Levels = 1) { IndentLevel += Levels; } void unindent(int Levels = 1) { IndentLevel = std::max(0, IndentLevel - Levels); } void printIndent() { for (int i = 0; i < IndentLevel; ++i) OS << " "; } template<typename T> HexNumber hex(T Value) { return HexNumber(Value); } template<typename T, typename TEnum> void printEnum(StringRef Label, T Value, ArrayRef<EnumEntry<TEnum> > EnumValues) { StringRef Name; bool Found = false; for (const auto &EnumItem : EnumValues) { if (EnumItem.Value == Value) { Name = EnumItem.Name; Found = true; break; } } if (Found) { startLine() << Label << ": " << Name << " (" << hex(Value) << ")\n"; } else { startLine() << Label << ": " << hex(Value) << "\n"; } } template <typename T, typename TFlag> void printFlags(StringRef Label, T Value, ArrayRef<EnumEntry<TFlag>> Flags, TFlag EnumMask1 = {}, TFlag EnumMask2 = {}, TFlag EnumMask3 = {}) { typedef EnumEntry<TFlag> FlagEntry; typedef SmallVector<FlagEntry, 10> FlagVector; FlagVector SetFlags; for (const auto &Flag : Flags) { if (Flag.Value == 0) continue; TFlag EnumMask{}; if (Flag.Value & EnumMask1) EnumMask = EnumMask1; else if (Flag.Value & EnumMask2) EnumMask = EnumMask2; else if (Flag.Value & EnumMask3) EnumMask = EnumMask3; bool IsEnum = (Flag.Value & EnumMask) != 0; if ((!IsEnum && (Value & Flag.Value) == Flag.Value) || (IsEnum && (Value & EnumMask) == Flag.Value)) { SetFlags.push_back(Flag); } } std::sort(SetFlags.begin(), SetFlags.end(), &flagName<TFlag>); startLine() << Label << " [ (" << hex(Value) << ")\n"; for (const auto &Flag : SetFlags) { startLine() << " " << Flag.Name << " (" << hex(Flag.Value) << ")\n"; } startLine() << "]\n"; } template<typename T> void printFlags(StringRef Label, T Value) { startLine() << Label << " [ (" << hex(Value) << ")\n"; uint64_t Flag = 1; uint64_t Curr = Value; while (Curr > 0) { if (Curr & 1) startLine() << " " << hex(Flag) << "\n"; Curr >>= 1; Flag <<= 1; } startLine() << "]\n"; } void printNumber(StringRef Label, uint64_t Value) { startLine() << Label << ": " << Value << "\n"; } void printNumber(StringRef Label, uint32_t Value) { startLine() << Label << ": " << Value << "\n"; } void printNumber(StringRef Label, uint16_t Value) { startLine() << Label << ": " << Value << "\n"; } void printNumber(StringRef Label, uint8_t Value) { startLine() << Label << ": " << unsigned(Value) << "\n"; } void printNumber(StringRef Label, int64_t Value) { startLine() << Label << ": " << Value << "\n"; } void printNumber(StringRef Label, int32_t Value) { startLine() << Label << ": " << Value << "\n"; } void printNumber(StringRef Label, int16_t Value) { startLine() << Label << ": " << Value << "\n"; } void printNumber(StringRef Label, int8_t Value) { startLine() << Label << ": " << int(Value) << "\n"; } void printBoolean(StringRef Label, bool Value) { startLine() << Label << ": " << (Value ? "Yes" : "No") << '\n'; } template <typename T> void printList(StringRef Label, const T &List) { startLine() << Label << ": ["; bool Comma = false; for (const auto &Item : List) { if (Comma) OS << ", "; OS << Item; Comma = true; } OS << "]\n"; } template <typename T> void printHexList(StringRef Label, const T &List) { startLine() << Label << ": ["; bool Comma = false; for (const auto &Item : List) { if (Comma) OS << ", "; OS << hex(Item); Comma = true; } OS << "]\n"; } template<typename T> void printHex(StringRef Label, T Value) { startLine() << Label << ": " << hex(Value) << "\n"; } template<typename T> void printHex(StringRef Label, StringRef Str, T Value) { startLine() << Label << ": " << Str << " (" << hex(Value) << ")\n"; } void printString(StringRef Label, StringRef Value) { startLine() << Label << ": " << Value << "\n"; } void printString(StringRef Label, const std::string &Value) { startLine() << Label << ": " << Value << "\n"; } template<typename T> void printNumber(StringRef Label, StringRef Str, T Value) { startLine() << Label << ": " << Str << " (" << Value << ")\n"; } void printBinary(StringRef Label, StringRef Str, ArrayRef<uint8_t> Value) { printBinaryImpl(Label, Str, Value, false); } void printBinary(StringRef Label, StringRef Str, ArrayRef<char> Value) { auto V = makeArrayRef(reinterpret_cast<const uint8_t*>(Value.data()), Value.size()); printBinaryImpl(Label, Str, V, false); } void printBinary(StringRef Label, ArrayRef<uint8_t> Value) { printBinaryImpl(Label, StringRef(), Value, false); } void printBinary(StringRef Label, ArrayRef<char> Value) { auto V = makeArrayRef(reinterpret_cast<const uint8_t*>(Value.data()), Value.size()); printBinaryImpl(Label, StringRef(), V, false); } void printBinary(StringRef Label, StringRef Value) { auto V = makeArrayRef(reinterpret_cast<const uint8_t*>(Value.data()), Value.size()); printBinaryImpl(Label, StringRef(), V, false); } void printBinaryBlock(StringRef Label, StringRef Value) { auto V = makeArrayRef(reinterpret_cast<const uint8_t*>(Value.data()), Value.size()); printBinaryImpl(Label, StringRef(), V, true); } raw_ostream& startLine() { printIndent(); return OS; } raw_ostream& getOStream() { return OS; } private: template<typename T> static bool flagName(const EnumEntry<T>& lhs, const EnumEntry<T>& rhs) { return lhs.Name < rhs.Name; } void printBinaryImpl(StringRef Label, StringRef Str, ArrayRef<uint8_t> Value, bool Block); raw_ostream &OS; int IndentLevel; }; struct DictScope { DictScope(StreamWriter& W, StringRef N) : W(W) { W.startLine() << N << " {\n"; W.indent(); } ~DictScope() { W.unindent(); W.startLine() << "}\n"; } StreamWriter& W; }; struct ListScope { ListScope(StreamWriter& W, StringRef N) : W(W) { W.startLine() << N << " [\n"; W.indent(); } ~ListScope() { W.unindent(); W.startLine() << "]\n"; } StreamWriter& W; }; } // namespace llvm #endif