//===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements some loop unrolling utilities for loops with run-time // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time // trip counts. // // The functions in this file are used to generate extra code when the // run-time trip count modulo the unroll factor is not 0. When this is the // case, we need to generate code to execute these 'left over' iterations. // // The current strategy generates an if-then-else sequence prior to the // unrolled loop to execute the 'left over' iterations. Other strategies // include generate a loop before or after the unrolled loop. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/UnrollLoop.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/LoopIterator.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include <algorithm> using namespace llvm; #define DEBUG_TYPE "loop-unroll" STATISTIC(NumRuntimeUnrolled, "Number of loops unrolled with run-time trip counts"); /// Connect the unrolling prolog code to the original loop. /// The unrolling prolog code contains code to execute the /// 'extra' iterations if the run-time trip count modulo the /// unroll count is non-zero. /// /// This function performs the following: /// - Create PHI nodes at prolog end block to combine values /// that exit the prolog code and jump around the prolog. /// - Add a PHI operand to a PHI node at the loop exit block /// for values that exit the prolog and go around the loop. /// - Branch around the original loop if the trip count is less /// than the unroll factor. /// static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, BasicBlock *LastPrologBB, BasicBlock *PrologEnd, BasicBlock *OrigPH, BasicBlock *NewPH, ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI, bool PreserveLCSSA) { BasicBlock *Latch = L->getLoopLatch(); assert(Latch && "Loop must have a latch"); // Create a PHI node for each outgoing value from the original loop // (which means it is an outgoing value from the prolog code too). // The new PHI node is inserted in the prolog end basic block. // The new PHI name is added as an operand of a PHI node in either // the loop header or the loop exit block. for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch); SBI != SBE; ++SBI) { for (BasicBlock::iterator BBI = (*SBI)->begin(); PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) { // Add a new PHI node to the prolog end block and add the // appropriate incoming values. PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr", PrologEnd->getTerminator()); // Adding a value to the new PHI node from the original loop preheader. // This is the value that skips all the prolog code. if (L->contains(PN)) { NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH); } else { NewPN->addIncoming(UndefValue::get(PN->getType()), OrigPH); } Value *V = PN->getIncomingValueForBlock(Latch); if (Instruction *I = dyn_cast<Instruction>(V)) { if (L->contains(I)) { V = VMap[I]; } } // Adding a value to the new PHI node from the last prolog block // that was created. NewPN->addIncoming(V, LastPrologBB); // Update the existing PHI node operand with the value from the // new PHI node. How this is done depends on if the existing // PHI node is in the original loop block, or the exit block. if (L->contains(PN)) { PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN); } else { PN->addIncoming(NewPN, PrologEnd); } } } // Create a branch around the orignal loop, which is taken if there are no // iterations remaining to be executed after running the prologue. Instruction *InsertPt = PrologEnd->getTerminator(); IRBuilder<> B(InsertPt); assert(Count != 0 && "nonsensical Count!"); // If BECount <u (Count - 1) then (BECount + 1) & (Count - 1) == (BECount + 1) // (since Count is a power of 2). This means %xtraiter is (BECount + 1) and // and all of the iterations of this loop were executed by the prologue. Note // that if BECount <u (Count - 1) then (BECount + 1) cannot unsigned-overflow. Value *BrLoopExit = B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); BasicBlock *Exit = L->getUniqueExitBlock(); assert(Exit && "Loop must have a single exit block only"); // Split the exit to maintain loop canonicalization guarantees SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit)); SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", DT, LI, PreserveLCSSA); // Add the branch to the exit block (around the unrolled loop) B.CreateCondBr(BrLoopExit, Exit, NewPH); InsertPt->eraseFromParent(); } /// Create a clone of the blocks in a loop and connect them together. /// If UnrollProlog is true, loop structure will not be cloned, otherwise a new /// loop will be created including all cloned blocks, and the iterator of it /// switches to count NewIter down to 0. /// static void CloneLoopBlocks(Loop *L, Value *NewIter, const bool UnrollProlog, BasicBlock *InsertTop, BasicBlock *InsertBot, std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap, LoopInfo *LI) { BasicBlock *Preheader = L->getLoopPreheader(); BasicBlock *Header = L->getHeader(); BasicBlock *Latch = L->getLoopLatch(); Function *F = Header->getParent(); LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); Loop *NewLoop = nullptr; Loop *ParentLoop = L->getParentLoop(); if (!UnrollProlog) { NewLoop = new Loop(); if (ParentLoop) ParentLoop->addChildLoop(NewLoop); else LI->addTopLevelLoop(NewLoop); } // For each block in the original loop, create a new copy, // and update the value map with the newly created values. for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".prol", F); NewBlocks.push_back(NewBB); if (NewLoop) NewLoop->addBasicBlockToLoop(NewBB, *LI); else if (ParentLoop) ParentLoop->addBasicBlockToLoop(NewBB, *LI); VMap[*BB] = NewBB; if (Header == *BB) { // For the first block, add a CFG connection to this newly // created block. InsertTop->getTerminator()->setSuccessor(0, NewBB); } if (Latch == *BB) { // For the last block, if UnrollProlog is true, create a direct jump to // InsertBot. If not, create a loop back to cloned head. VMap.erase((*BB)->getTerminator()); BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); IRBuilder<> Builder(LatchBR); if (UnrollProlog) { Builder.CreateBr(InsertBot); } else { PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, "prol.iter", FirstLoopBB->getFirstNonPHI()); Value *IdxSub = Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), NewIdx->getName() + ".sub"); Value *IdxCmp = Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp"); Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); NewIdx->addIncoming(NewIter, InsertTop); NewIdx->addIncoming(IdxSub, NewBB); } LatchBR->eraseFromParent(); } } // Change the incoming values to the ones defined in the preheader or // cloned loop. for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { PHINode *NewPHI = cast<PHINode>(VMap[&*I]); if (UnrollProlog) { VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader); cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); } else { unsigned idx = NewPHI->getBasicBlockIndex(Preheader); NewPHI->setIncomingBlock(idx, InsertTop); BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); idx = NewPHI->getBasicBlockIndex(Latch); Value *InVal = NewPHI->getIncomingValue(idx); NewPHI->setIncomingBlock(idx, NewLatch); if (VMap[InVal]) NewPHI->setIncomingValue(idx, VMap[InVal]); } } if (NewLoop) { // Add unroll disable metadata to disable future unrolling for this loop. SmallVector<Metadata *, 4> MDs; // Reserve first location for self reference to the LoopID metadata node. MDs.push_back(nullptr); MDNode *LoopID = NewLoop->getLoopID(); if (LoopID) { // First remove any existing loop unrolling metadata. for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { bool IsUnrollMetadata = false; MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); if (MD) { const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); } if (!IsUnrollMetadata) MDs.push_back(LoopID->getOperand(i)); } } LLVMContext &Context = NewLoop->getHeader()->getContext(); SmallVector<Metadata *, 1> DisableOperands; DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); MDNode *DisableNode = MDNode::get(Context, DisableOperands); MDs.push_back(DisableNode); MDNode *NewLoopID = MDNode::get(Context, MDs); // Set operand 0 to refer to the loop id itself. NewLoopID->replaceOperandWith(0, NewLoopID); NewLoop->setLoopID(NewLoopID); } } /// Insert code in the prolog code when unrolling a loop with a /// run-time trip-count. /// /// This method assumes that the loop unroll factor is total number /// of loop bodes in the loop after unrolling. (Some folks refer /// to the unroll factor as the number of *extra* copies added). /// We assume also that the loop unroll factor is a power-of-two. So, after /// unrolling the loop, the number of loop bodies executed is 2, /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for /// the switch instruction is generated. /// /// extraiters = tripcount % loopfactor /// if (extraiters == 0) jump Loop: /// else jump Prol /// Prol: LoopBody; /// extraiters -= 1 // Omitted if unroll factor is 2. /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. /// if (tripcount < loopfactor) jump End /// Loop: /// ... /// End: /// bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, bool AllowExpensiveTripCount, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, bool PreserveLCSSA) { // for now, only unroll loops that contain a single exit if (!L->getExitingBlock()) return false; // Make sure the loop is in canonical form, and there is a single // exit block only. if (!L->isLoopSimplifyForm() || !L->getUniqueExitBlock()) return false; // Use Scalar Evolution to compute the trip count. This allows more // loops to be unrolled than relying on induction var simplification if (!SE) return false; // Only unroll loops with a computable trip count and the trip count needs // to be an int value (allowing a pointer type is a TODO item) const SCEV *BECountSC = SE->getBackedgeTakenCount(L); if (isa<SCEVCouldNotCompute>(BECountSC) || !BECountSC->getType()->isIntegerTy()) return false; unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); // Add 1 since the backedge count doesn't include the first loop iteration const SCEV *TripCountSC = SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); if (isa<SCEVCouldNotCompute>(TripCountSC)) return false; BasicBlock *Header = L->getHeader(); const DataLayout &DL = Header->getModule()->getDataLayout(); SCEVExpander Expander(*SE, DL, "loop-unroll"); if (!AllowExpensiveTripCount && Expander.isHighCostExpansion(TripCountSC, L)) return false; // We only handle cases when the unroll factor is a power of 2. // Count is the loop unroll factor, the number of extra copies added + 1. if (!isPowerOf2_32(Count)) return false; // This constraint lets us deal with an overflowing trip count easily; see the // comment on ModVal below. if (Log2_32(Count) > BEWidth) return false; // If this loop is nested, then the loop unroller changes the code in // parent loop, so the Scalar Evolution pass needs to be run again if (Loop *ParentLoop = L->getParentLoop()) SE->forgetLoop(ParentLoop); BasicBlock *PH = L->getLoopPreheader(); BasicBlock *Latch = L->getLoopLatch(); // It helps to splits the original preheader twice, one for the end of the // prolog code and one for a new loop preheader BasicBlock *PEnd = SplitEdge(PH, Header, DT, LI); BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), DT, LI); BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator()); // Compute the number of extra iterations required, which is: // extra iterations = run-time trip count % (loop unroll factor + 1) Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), PreHeaderBR); Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), PreHeaderBR); IRBuilder<> B(PreHeaderBR); Value *ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter"); // If ModVal is zero, we know that either // 1. there are no iteration to be run in the prologue loop // OR // 2. the addition computing TripCount overflowed // // If (2) is true, we know that TripCount really is (1 << BEWidth) and so the // number of iterations that remain to be run in the original loop is a // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we // explicitly check this above). Value *BranchVal = B.CreateIsNotNull(ModVal, "lcmp.mod"); // Branch to either the extra iterations or the cloned/unrolled loop // We will fix up the true branch label when adding loop body copies B.CreateCondBr(BranchVal, PEnd, PEnd); assert(PreHeaderBR->isUnconditional() && PreHeaderBR->getSuccessor(0) == PEnd && "CFG edges in Preheader are not correct"); PreHeaderBR->eraseFromParent(); Function *F = Header->getParent(); // Get an ordered list of blocks in the loop to help with the ordering of the // cloned blocks in the prolog code LoopBlocksDFS LoopBlocks(L); LoopBlocks.perform(LI); // // For each extra loop iteration, create a copy of the loop's basic blocks // and generate a condition that branches to the copy depending on the // number of 'left over' iterations. // std::vector<BasicBlock *> NewBlocks; ValueToValueMapTy VMap; bool UnrollPrologue = Count == 2; // Clone all the basic blocks in the loop. If Count is 2, we don't clone // the loop, otherwise we create a cloned loop to execute the extra // iterations. This function adds the appropriate CFG connections. CloneLoopBlocks(L, ModVal, UnrollPrologue, PH, PEnd, NewBlocks, LoopBlocks, VMap, LI); // Insert the cloned blocks into function just before the original loop F->getBasicBlockList().splice(PEnd->getIterator(), F->getBasicBlockList(), NewBlocks[0]->getIterator(), F->end()); // Rewrite the cloned instruction operands to use the values // created when the clone is created. for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) { for (BasicBlock::iterator I = NewBlocks[i]->begin(), E = NewBlocks[i]->end(); I != E; ++I) { RemapInstruction(&*I, VMap, RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); } } // Connect the prolog code to the original loop and update the // PHI functions. BasicBlock *LastLoopBB = cast<BasicBlock>(VMap[Latch]); ConnectProlog(L, BECount, Count, LastLoopBB, PEnd, PH, NewPH, VMap, DT, LI, PreserveLCSSA); NumRuntimeUnrolled++; return true; }