//===- InlineFunction.cpp - Code to perform function inlining -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements inlining of a function into a call site, resolving // parameters and the return value as appropriate. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/Analysis/CaptureTracking.h" #include "llvm/Analysis/EHPersonalities.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Module.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Support/CommandLine.h" #include <algorithm> using namespace llvm; static cl::opt<bool> EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), cl::Hidden, cl::desc("Convert noalias attributes to metadata during inlining.")); static cl::opt<bool> PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", cl::init(true), cl::Hidden, cl::desc("Convert align attributes to assumptions during inlining.")); bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, AAResults *CalleeAAR, bool InsertLifetime) { return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime); } bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, AAResults *CalleeAAR, bool InsertLifetime) { return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime); } namespace { /// A class for recording information about inlining a landing pad. class LandingPadInliningInfo { BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. SmallVector<Value*, 8> UnwindDestPHIValues; public: LandingPadInliningInfo(InvokeInst *II) : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr), CallerLPad(nullptr), InnerEHValuesPHI(nullptr) { // If there are PHI nodes in the unwind destination block, we need to keep // track of which values came into them from the invoke before removing // the edge from this block. llvm::BasicBlock *InvokeBB = II->getParent(); BasicBlock::iterator I = OuterResumeDest->begin(); for (; isa<PHINode>(I); ++I) { // Save the value to use for this edge. PHINode *PHI = cast<PHINode>(I); UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); } CallerLPad = cast<LandingPadInst>(I); } /// The outer unwind destination is the target of /// unwind edges introduced for calls within the inlined function. BasicBlock *getOuterResumeDest() const { return OuterResumeDest; } BasicBlock *getInnerResumeDest(); LandingPadInst *getLandingPadInst() const { return CallerLPad; } /// Forward the 'resume' instruction to the caller's landing pad block. /// When the landing pad block has only one predecessor, this is /// a simple branch. When there is more than one predecessor, we need to /// split the landing pad block after the landingpad instruction and jump /// to there. void forwardResume(ResumeInst *RI, SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); /// Add incoming-PHI values to the unwind destination block for the given /// basic block, using the values for the original invoke's source block. void addIncomingPHIValuesFor(BasicBlock *BB) const { addIncomingPHIValuesForInto(BB, OuterResumeDest); } void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { BasicBlock::iterator I = dest->begin(); for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { PHINode *phi = cast<PHINode>(I); phi->addIncoming(UnwindDestPHIValues[i], src); } } }; } // anonymous namespace /// Get or create a target for the branch from ResumeInsts. BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { if (InnerResumeDest) return InnerResumeDest; // Split the landing pad. BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); InnerResumeDest = OuterResumeDest->splitBasicBlock(SplitPoint, OuterResumeDest->getName() + ".body"); // The number of incoming edges we expect to the inner landing pad. const unsigned PHICapacity = 2; // Create corresponding new PHIs for all the PHIs in the outer landing pad. Instruction *InsertPoint = &InnerResumeDest->front(); BasicBlock::iterator I = OuterResumeDest->begin(); for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { PHINode *OuterPHI = cast<PHINode>(I); PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, OuterPHI->getName() + ".lpad-body", InsertPoint); OuterPHI->replaceAllUsesWith(InnerPHI); InnerPHI->addIncoming(OuterPHI, OuterResumeDest); } // Create a PHI for the exception values. InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, "eh.lpad-body", InsertPoint); CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); // All done. return InnerResumeDest; } /// Forward the 'resume' instruction to the caller's landing pad block. /// When the landing pad block has only one predecessor, this is a simple /// branch. When there is more than one predecessor, we need to split the /// landing pad block after the landingpad instruction and jump to there. void LandingPadInliningInfo::forwardResume( ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { BasicBlock *Dest = getInnerResumeDest(); BasicBlock *Src = RI->getParent(); BranchInst::Create(Dest, Src); // Update the PHIs in the destination. They were inserted in an order which // makes this work. addIncomingPHIValuesForInto(Src, Dest); InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); RI->eraseFromParent(); } /// When we inline a basic block into an invoke, /// we have to turn all of the calls that can throw into invokes. /// This function analyze BB to see if there are any calls, and if so, /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI /// nodes in that block with the values specified in InvokeDestPHIValues. static BasicBlock * HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, BasicBlock *UnwindEdge) { for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { Instruction *I = &*BBI++; // We only need to check for function calls: inlined invoke // instructions require no special handling. CallInst *CI = dyn_cast<CallInst>(I); if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) continue; // Convert this function call into an invoke instruction. First, split the // basic block. BasicBlock *Split = BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); // Delete the unconditional branch inserted by splitBasicBlock BB->getInstList().pop_back(); // Create the new invoke instruction. SmallVector<Value*, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); SmallVector<OperandBundleDef, 1> OpBundles; CI->getOperandBundlesAsDefs(OpBundles); // Note: we're round tripping operand bundles through memory here, and that // can potentially be avoided with a cleverer API design that we do not have // as of this time. InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); II->setDebugLoc(CI->getDebugLoc()); II->setCallingConv(CI->getCallingConv()); II->setAttributes(CI->getAttributes()); // Make sure that anything using the call now uses the invoke! This also // updates the CallGraph if present, because it uses a WeakVH. CI->replaceAllUsesWith(II); // Delete the original call Split->getInstList().pop_front(); return BB; } return nullptr; } /// If we inlined an invoke site, we need to convert calls /// in the body of the inlined function into invokes. /// /// II is the invoke instruction being inlined. FirstNewBlock is the first /// block of the inlined code (the last block is the end of the function), /// and InlineCodeInfo is information about the code that got inlined. static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, ClonedCodeInfo &InlinedCodeInfo) { BasicBlock *InvokeDest = II->getUnwindDest(); Function *Caller = FirstNewBlock->getParent(); // The inlined code is currently at the end of the function, scan from the // start of the inlined code to its end, checking for stuff we need to // rewrite. LandingPadInliningInfo Invoke(II); // Get all of the inlined landing pad instructions. SmallPtrSet<LandingPadInst*, 16> InlinedLPads; for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); I != E; ++I) if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) InlinedLPads.insert(II->getLandingPadInst()); // Append the clauses from the outer landing pad instruction into the inlined // landing pad instructions. LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); for (LandingPadInst *InlinedLPad : InlinedLPads) { unsigned OuterNum = OuterLPad->getNumClauses(); InlinedLPad->reserveClauses(OuterNum); for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); if (OuterLPad->isCleanup()) InlinedLPad->setCleanup(true); } for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); BB != E; ++BB) { if (InlinedCodeInfo.ContainsCalls) if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( &*BB, Invoke.getOuterResumeDest())) // Update any PHI nodes in the exceptional block to indicate that there // is now a new entry in them. Invoke.addIncomingPHIValuesFor(NewBB); // Forward any resumes that are remaining here. if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) Invoke.forwardResume(RI, InlinedLPads); } // Now that everything is happy, we have one final detail. The PHI nodes in // the exception destination block still have entries due to the original // invoke instruction. Eliminate these entries (which might even delete the // PHI node) now. InvokeDest->removePredecessor(II->getParent()); } /// If we inlined an invoke site, we need to convert calls /// in the body of the inlined function into invokes. /// /// II is the invoke instruction being inlined. FirstNewBlock is the first /// block of the inlined code (the last block is the end of the function), /// and InlineCodeInfo is information about the code that got inlined. static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, ClonedCodeInfo &InlinedCodeInfo) { BasicBlock *UnwindDest = II->getUnwindDest(); Function *Caller = FirstNewBlock->getParent(); assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); // If there are PHI nodes in the unwind destination block, we need to keep // track of which values came into them from the invoke before removing the // edge from this block. SmallVector<Value *, 8> UnwindDestPHIValues; llvm::BasicBlock *InvokeBB = II->getParent(); for (Instruction &I : *UnwindDest) { // Save the value to use for this edge. PHINode *PHI = dyn_cast<PHINode>(&I); if (!PHI) break; UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); } // Add incoming-PHI values to the unwind destination block for the given basic // block, using the values for the original invoke's source block. auto UpdatePHINodes = [&](BasicBlock *Src) { BasicBlock::iterator I = UnwindDest->begin(); for (Value *V : UnwindDestPHIValues) { PHINode *PHI = cast<PHINode>(I); PHI->addIncoming(V, Src); ++I; } }; // This connects all the instructions which 'unwind to caller' to the invoke // destination. for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); BB != E; ++BB) { if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { if (CRI->unwindsToCaller()) { CleanupReturnInst::Create(CRI->getCleanupPad(), UnwindDest, CRI); CRI->eraseFromParent(); UpdatePHINodes(&*BB); } } Instruction *I = BB->getFirstNonPHI(); if (!I->isEHPad()) continue; Instruction *Replacement = nullptr; if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { if (CatchSwitch->unwindsToCaller()) { auto *NewCatchSwitch = CatchSwitchInst::Create( CatchSwitch->getParentPad(), UnwindDest, CatchSwitch->getNumHandlers(), CatchSwitch->getName(), CatchSwitch); for (BasicBlock *PadBB : CatchSwitch->handlers()) NewCatchSwitch->addHandler(PadBB); Replacement = NewCatchSwitch; } } else if (!isa<FuncletPadInst>(I)) { llvm_unreachable("unexpected EHPad!"); } if (Replacement) { Replacement->takeName(I); I->replaceAllUsesWith(Replacement); I->eraseFromParent(); UpdatePHINodes(&*BB); } } if (InlinedCodeInfo.ContainsCalls) for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); BB != E; ++BB) if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(&*BB, UnwindDest)) // Update any PHI nodes in the exceptional block to indicate that there // is now a new entry in them. UpdatePHINodes(NewBB); // Now that everything is happy, we have one final detail. The PHI nodes in // the exception destination block still have entries due to the original // invoke instruction. Eliminate these entries (which might even delete the // PHI node) now. UnwindDest->removePredecessor(InvokeBB); } /// When inlining a function that contains noalias scope metadata, /// this metadata needs to be cloned so that the inlined blocks /// have different "unqiue scopes" at every call site. Were this not done, then /// aliasing scopes from a function inlined into a caller multiple times could /// not be differentiated (and this would lead to miscompiles because the /// non-aliasing property communicated by the metadata could have /// call-site-specific control dependencies). static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { const Function *CalledFunc = CS.getCalledFunction(); SetVector<const MDNode *> MD; // Note: We could only clone the metadata if it is already used in the // caller. I'm omitting that check here because it might confuse // inter-procedural alias analysis passes. We can revisit this if it becomes // an efficiency or overhead problem. for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end(); I != IE; ++I) for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) { if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope)) MD.insert(M); if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias)) MD.insert(M); } if (MD.empty()) return; // Walk the existing metadata, adding the complete (perhaps cyclic) chain to // the set. SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); while (!Queue.empty()) { const MDNode *M = cast<MDNode>(Queue.pop_back_val()); for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) if (MD.insert(M1)) Queue.push_back(M1); } // Now we have a complete set of all metadata in the chains used to specify // the noalias scopes and the lists of those scopes. SmallVector<TempMDTuple, 16> DummyNodes; DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); I != IE; ++I) { DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); MDMap[*I].reset(DummyNodes.back().get()); } // Create new metadata nodes to replace the dummy nodes, replacing old // metadata references with either a dummy node or an already-created new // node. for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); I != IE; ++I) { SmallVector<Metadata *, 4> NewOps; for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) { const Metadata *V = (*I)->getOperand(i); if (const MDNode *M = dyn_cast<MDNode>(V)) NewOps.push_back(MDMap[M]); else NewOps.push_back(const_cast<Metadata *>(V)); } MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); MDTuple *TempM = cast<MDTuple>(MDMap[*I]); assert(TempM->isTemporary() && "Expected temporary node"); TempM->replaceAllUsesWith(NewM); } // Now replace the metadata in the new inlined instructions with the // repacements from the map. for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); VMI != VMIE; ++VMI) { if (!VMI->second) continue; Instruction *NI = dyn_cast<Instruction>(VMI->second); if (!NI) continue; if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { MDNode *NewMD = MDMap[M]; // If the call site also had alias scope metadata (a list of scopes to // which instructions inside it might belong), propagate those scopes to // the inlined instructions. if (MDNode *CSM = CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) NewMD = MDNode::concatenate(NewMD, CSM); NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); } else if (NI->mayReadOrWriteMemory()) { if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) NI->setMetadata(LLVMContext::MD_alias_scope, M); } if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { MDNode *NewMD = MDMap[M]; // If the call site also had noalias metadata (a list of scopes with // which instructions inside it don't alias), propagate those scopes to // the inlined instructions. if (MDNode *CSM = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) NewMD = MDNode::concatenate(NewMD, CSM); NI->setMetadata(LLVMContext::MD_noalias, NewMD); } else if (NI->mayReadOrWriteMemory()) { if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) NI->setMetadata(LLVMContext::MD_noalias, M); } } } /// If the inlined function has noalias arguments, /// then add new alias scopes for each noalias argument, tag the mapped noalias /// parameters with noalias metadata specifying the new scope, and tag all /// non-derived loads, stores and memory intrinsics with the new alias scopes. static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, const DataLayout &DL, AAResults *CalleeAAR) { if (!EnableNoAliasConversion) return; const Function *CalledFunc = CS.getCalledFunction(); SmallVector<const Argument *, 4> NoAliasArgs; for (const Argument &I : CalledFunc->args()) { if (I.hasNoAliasAttr() && !I.hasNUses(0)) NoAliasArgs.push_back(&I); } if (NoAliasArgs.empty()) return; // To do a good job, if a noalias variable is captured, we need to know if // the capture point dominates the particular use we're considering. DominatorTree DT; DT.recalculate(const_cast<Function&>(*CalledFunc)); // noalias indicates that pointer values based on the argument do not alias // pointer values which are not based on it. So we add a new "scope" for each // noalias function argument. Accesses using pointers based on that argument // become part of that alias scope, accesses using pointers not based on that // argument are tagged as noalias with that scope. DenseMap<const Argument *, MDNode *> NewScopes; MDBuilder MDB(CalledFunc->getContext()); // Create a new scope domain for this function. MDNode *NewDomain = MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { const Argument *A = NoAliasArgs[i]; std::string Name = CalledFunc->getName(); if (A->hasName()) { Name += ": %"; Name += A->getName(); } else { Name += ": argument "; Name += utostr(i); } // Note: We always create a new anonymous root here. This is true regardless // of the linkage of the callee because the aliasing "scope" is not just a // property of the callee, but also all control dependencies in the caller. MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); NewScopes.insert(std::make_pair(A, NewScope)); } // Iterate over all new instructions in the map; for all memory-access // instructions, add the alias scope metadata. for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); VMI != VMIE; ++VMI) { if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { if (!VMI->second) continue; Instruction *NI = dyn_cast<Instruction>(VMI->second); if (!NI) continue; bool IsArgMemOnlyCall = false, IsFuncCall = false; SmallVector<const Value *, 2> PtrArgs; if (const LoadInst *LI = dyn_cast<LoadInst>(I)) PtrArgs.push_back(LI->getPointerOperand()); else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) PtrArgs.push_back(SI->getPointerOperand()); else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) PtrArgs.push_back(VAAI->getPointerOperand()); else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) PtrArgs.push_back(CXI->getPointerOperand()); else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) PtrArgs.push_back(RMWI->getPointerOperand()); else if (ImmutableCallSite ICS = ImmutableCallSite(I)) { // If we know that the call does not access memory, then we'll still // know that about the inlined clone of this call site, and we don't // need to add metadata. if (ICS.doesNotAccessMemory()) continue; IsFuncCall = true; if (CalleeAAR) { FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(ICS); if (MRB == FMRB_OnlyAccessesArgumentPointees || MRB == FMRB_OnlyReadsArgumentPointees) IsArgMemOnlyCall = true; } for (ImmutableCallSite::arg_iterator AI = ICS.arg_begin(), AE = ICS.arg_end(); AI != AE; ++AI) { // We need to check the underlying objects of all arguments, not just // the pointer arguments, because we might be passing pointers as // integers, etc. // However, if we know that the call only accesses pointer arguments, // then we only need to check the pointer arguments. if (IsArgMemOnlyCall && !(*AI)->getType()->isPointerTy()) continue; PtrArgs.push_back(*AI); } } // If we found no pointers, then this instruction is not suitable for // pairing with an instruction to receive aliasing metadata. // However, if this is a call, this we might just alias with none of the // noalias arguments. if (PtrArgs.empty() && !IsFuncCall) continue; // It is possible that there is only one underlying object, but you // need to go through several PHIs to see it, and thus could be // repeated in the Objects list. SmallPtrSet<const Value *, 4> ObjSet; SmallVector<Metadata *, 4> Scopes, NoAliases; SmallSetVector<const Argument *, 4> NAPtrArgs; for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) { SmallVector<Value *, 4> Objects; GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]), Objects, DL, /* LI = */ nullptr); for (Value *O : Objects) ObjSet.insert(O); } // Figure out if we're derived from anything that is not a noalias // argument. bool CanDeriveViaCapture = false, UsesAliasingPtr = false; for (const Value *V : ObjSet) { // Is this value a constant that cannot be derived from any pointer // value (we need to exclude constant expressions, for example, that // are formed from arithmetic on global symbols). bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<ConstantPointerNull>(V) || isa<ConstantDataVector>(V) || isa<UndefValue>(V); if (IsNonPtrConst) continue; // If this is anything other than a noalias argument, then we cannot // completely describe the aliasing properties using alias.scope // metadata (and, thus, won't add any). if (const Argument *A = dyn_cast<Argument>(V)) { if (!A->hasNoAliasAttr()) UsesAliasingPtr = true; } else { UsesAliasingPtr = true; } // If this is not some identified function-local object (which cannot // directly alias a noalias argument), or some other argument (which, // by definition, also cannot alias a noalias argument), then we could // alias a noalias argument that has been captured). if (!isa<Argument>(V) && !isIdentifiedFunctionLocal(const_cast<Value*>(V))) CanDeriveViaCapture = true; } // A function call can always get captured noalias pointers (via other // parameters, globals, etc.). if (IsFuncCall && !IsArgMemOnlyCall) CanDeriveViaCapture = true; // First, we want to figure out all of the sets with which we definitely // don't alias. Iterate over all noalias set, and add those for which: // 1. The noalias argument is not in the set of objects from which we // definitely derive. // 2. The noalias argument has not yet been captured. // An arbitrary function that might load pointers could see captured // noalias arguments via other noalias arguments or globals, and so we // must always check for prior capture. for (const Argument *A : NoAliasArgs) { if (!ObjSet.count(A) && (!CanDeriveViaCapture || // It might be tempting to skip the // PointerMayBeCapturedBefore check if // A->hasNoCaptureAttr() is true, but this is // incorrect because nocapture only guarantees // that no copies outlive the function, not // that the value cannot be locally captured. !PointerMayBeCapturedBefore(A, /* ReturnCaptures */ false, /* StoreCaptures */ false, I, &DT))) NoAliases.push_back(NewScopes[A]); } if (!NoAliases.empty()) NI->setMetadata(LLVMContext::MD_noalias, MDNode::concatenate( NI->getMetadata(LLVMContext::MD_noalias), MDNode::get(CalledFunc->getContext(), NoAliases))); // Next, we want to figure out all of the sets to which we might belong. // We might belong to a set if the noalias argument is in the set of // underlying objects. If there is some non-noalias argument in our list // of underlying objects, then we cannot add a scope because the fact // that some access does not alias with any set of our noalias arguments // cannot itself guarantee that it does not alias with this access // (because there is some pointer of unknown origin involved and the // other access might also depend on this pointer). We also cannot add // scopes to arbitrary functions unless we know they don't access any // non-parameter pointer-values. bool CanAddScopes = !UsesAliasingPtr; if (CanAddScopes && IsFuncCall) CanAddScopes = IsArgMemOnlyCall; if (CanAddScopes) for (const Argument *A : NoAliasArgs) { if (ObjSet.count(A)) Scopes.push_back(NewScopes[A]); } if (!Scopes.empty()) NI->setMetadata( LLVMContext::MD_alias_scope, MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), MDNode::get(CalledFunc->getContext(), Scopes))); } } } /// If the inlined function has non-byval align arguments, then /// add @llvm.assume-based alignment assumptions to preserve this information. static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { if (!PreserveAlignmentAssumptions) return; auto &DL = CS.getCaller()->getParent()->getDataLayout(); // To avoid inserting redundant assumptions, we should check for assumptions // already in the caller. To do this, we might need a DT of the caller. DominatorTree DT; bool DTCalculated = false; Function *CalledFunc = CS.getCalledFunction(); for (Function::arg_iterator I = CalledFunc->arg_begin(), E = CalledFunc->arg_end(); I != E; ++I) { unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0; if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) { if (!DTCalculated) { DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent() ->getParent())); DTCalculated = true; } // If we can already prove the asserted alignment in the context of the // caller, then don't bother inserting the assumption. Value *Arg = CS.getArgument(I->getArgNo()); if (getKnownAlignment(Arg, DL, CS.getInstruction(), &IFI.ACT->getAssumptionCache(*CS.getCaller()), &DT) >= Align) continue; IRBuilder<>(CS.getInstruction()) .CreateAlignmentAssumption(DL, Arg, Align); } } } /// Once we have cloned code over from a callee into the caller, /// update the specified callgraph to reflect the changes we made. /// Note that it's possible that not all code was copied over, so only /// some edges of the callgraph may remain. static void UpdateCallGraphAfterInlining(CallSite CS, Function::iterator FirstNewBlock, ValueToValueMapTy &VMap, InlineFunctionInfo &IFI) { CallGraph &CG = *IFI.CG; const Function *Caller = CS.getInstruction()->getParent()->getParent(); const Function *Callee = CS.getCalledFunction(); CallGraphNode *CalleeNode = CG[Callee]; CallGraphNode *CallerNode = CG[Caller]; // Since we inlined some uninlined call sites in the callee into the caller, // add edges from the caller to all of the callees of the callee. CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); // Consider the case where CalleeNode == CallerNode. CallGraphNode::CalledFunctionsVector CallCache; if (CalleeNode == CallerNode) { CallCache.assign(I, E); I = CallCache.begin(); E = CallCache.end(); } for (; I != E; ++I) { const Value *OrigCall = I->first; ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); // Only copy the edge if the call was inlined! if (VMI == VMap.end() || VMI->second == nullptr) continue; // If the call was inlined, but then constant folded, there is no edge to // add. Check for this case. Instruction *NewCall = dyn_cast<Instruction>(VMI->second); if (!NewCall) continue; // We do not treat intrinsic calls like real function calls because we // expect them to become inline code; do not add an edge for an intrinsic. CallSite CS = CallSite(NewCall); if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic()) continue; // Remember that this call site got inlined for the client of // InlineFunction. IFI.InlinedCalls.push_back(NewCall); // It's possible that inlining the callsite will cause it to go from an // indirect to a direct call by resolving a function pointer. If this // happens, set the callee of the new call site to a more precise // destination. This can also happen if the call graph node of the caller // was just unnecessarily imprecise. if (!I->second->getFunction()) if (Function *F = CallSite(NewCall).getCalledFunction()) { // Indirect call site resolved to direct call. CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); continue; } CallerNode->addCalledFunction(CallSite(NewCall), I->second); } // Update the call graph by deleting the edge from Callee to Caller. We must // do this after the loop above in case Caller and Callee are the same. CallerNode->removeCallEdgeFor(CS); } static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, BasicBlock *InsertBlock, InlineFunctionInfo &IFI) { Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); // Always generate a memcpy of alignment 1 here because we don't know // the alignment of the src pointer. Other optimizations can infer // better alignment. Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1); } /// When inlining a call site that has a byval argument, /// we have to make the implicit memcpy explicit by adding it. static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, const Function *CalledFunc, InlineFunctionInfo &IFI, unsigned ByValAlignment) { PointerType *ArgTy = cast<PointerType>(Arg->getType()); Type *AggTy = ArgTy->getElementType(); Function *Caller = TheCall->getParent()->getParent(); // If the called function is readonly, then it could not mutate the caller's // copy of the byval'd memory. In this case, it is safe to elide the copy and // temporary. if (CalledFunc->onlyReadsMemory()) { // If the byval argument has a specified alignment that is greater than the // passed in pointer, then we either have to round up the input pointer or // give up on this transformation. if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. return Arg; const DataLayout &DL = Caller->getParent()->getDataLayout(); // If the pointer is already known to be sufficiently aligned, or if we can // round it up to a larger alignment, then we don't need a temporary. if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, &IFI.ACT->getAssumptionCache(*Caller)) >= ByValAlignment) return Arg; // Otherwise, we have to make a memcpy to get a safe alignment. This is bad // for code quality, but rarely happens and is required for correctness. } // Create the alloca. If we have DataLayout, use nice alignment. unsigned Align = Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy); // If the byval had an alignment specified, we *must* use at least that // alignment, as it is required by the byval argument (and uses of the // pointer inside the callee). Align = std::max(Align, ByValAlignment); Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(), &*Caller->begin()->begin()); IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); // Uses of the argument in the function should use our new alloca // instead. return NewAlloca; } // Check whether this Value is used by a lifetime intrinsic. static bool isUsedByLifetimeMarker(Value *V) { for (User *U : V->users()) { if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { switch (II->getIntrinsicID()) { default: break; case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: return true; } } } return false; } // Check whether the given alloca already has // lifetime.start or lifetime.end intrinsics. static bool hasLifetimeMarkers(AllocaInst *AI) { Type *Ty = AI->getType(); Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), Ty->getPointerAddressSpace()); if (Ty == Int8PtrTy) return isUsedByLifetimeMarker(AI); // Do a scan to find all the casts to i8*. for (User *U : AI->users()) { if (U->getType() != Int8PtrTy) continue; if (U->stripPointerCasts() != AI) continue; if (isUsedByLifetimeMarker(U)) return true; } return false; } /// Rebuild the entire inlined-at chain for this instruction so that the top of /// the chain now is inlined-at the new call site. static DebugLoc updateInlinedAtInfo(DebugLoc DL, DILocation *InlinedAtNode, LLVMContext &Ctx, DenseMap<const DILocation *, DILocation *> &IANodes) { SmallVector<DILocation *, 3> InlinedAtLocations; DILocation *Last = InlinedAtNode; DILocation *CurInlinedAt = DL; // Gather all the inlined-at nodes while (DILocation *IA = CurInlinedAt->getInlinedAt()) { // Skip any we've already built nodes for if (DILocation *Found = IANodes[IA]) { Last = Found; break; } InlinedAtLocations.push_back(IA); CurInlinedAt = IA; } // Starting from the top, rebuild the nodes to point to the new inlined-at // location (then rebuilding the rest of the chain behind it) and update the // map of already-constructed inlined-at nodes. for (const DILocation *MD : make_range(InlinedAtLocations.rbegin(), InlinedAtLocations.rend())) { Last = IANodes[MD] = DILocation::getDistinct( Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last); } // And finally create the normal location for this instruction, referring to // the new inlined-at chain. return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), Last); } /// Update inlined instructions' line numbers to /// to encode location where these instructions are inlined. static void fixupLineNumbers(Function *Fn, Function::iterator FI, Instruction *TheCall) { DebugLoc TheCallDL = TheCall->getDebugLoc(); if (!TheCallDL) return; auto &Ctx = Fn->getContext(); DILocation *InlinedAtNode = TheCallDL; // Create a unique call site, not to be confused with any other call from the // same location. InlinedAtNode = DILocation::getDistinct( Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); // Cache the inlined-at nodes as they're built so they are reused, without // this every instruction's inlined-at chain would become distinct from each // other. DenseMap<const DILocation *, DILocation *> IANodes; for (; FI != Fn->end(); ++FI) { for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) { DebugLoc DL = BI->getDebugLoc(); if (!DL) { // If the inlined instruction has no line number, make it look as if it // originates from the call location. This is important for // ((__always_inline__, __nodebug__)) functions which must use caller // location for all instructions in their function body. // Don't update static allocas, as they may get moved later. if (auto *AI = dyn_cast<AllocaInst>(BI)) if (isa<Constant>(AI->getArraySize())) continue; BI->setDebugLoc(TheCallDL); } else { BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes)); } } } } /// This function inlines the called function into the basic block of the /// caller. This returns false if it is not possible to inline this call. /// The program is still in a well defined state if this occurs though. /// /// Note that this only does one level of inlining. For example, if the /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now /// exists in the instruction stream. Similarly this will inline a recursive /// function by one level. bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, AAResults *CalleeAAR, bool InsertLifetime) { Instruction *TheCall = CS.getInstruction(); assert(TheCall->getParent() && TheCall->getParent()->getParent() && "Instruction not in function!"); // If IFI has any state in it, zap it before we fill it in. IFI.reset(); const Function *CalledFunc = CS.getCalledFunction(); if (!CalledFunc || // Can't inline external function or indirect CalledFunc->isDeclaration() || // call, or call to a vararg function! CalledFunc->getFunctionType()->isVarArg()) return false; // The inliner does not know how to inline through calls with operand bundles // in general ... if (CS.hasOperandBundles()) { for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { uint32_t Tag = CS.getOperandBundleAt(i).getTagID(); // ... but it knows how to inline through "deopt" operand bundles ... if (Tag == LLVMContext::OB_deopt) continue; // ... and "funclet" operand bundles. if (Tag == LLVMContext::OB_funclet) continue; return false; } } // If the call to the callee cannot throw, set the 'nounwind' flag on any // calls that we inline. bool MarkNoUnwind = CS.doesNotThrow(); BasicBlock *OrigBB = TheCall->getParent(); Function *Caller = OrigBB->getParent(); // GC poses two hazards to inlining, which only occur when the callee has GC: // 1. If the caller has no GC, then the callee's GC must be propagated to the // caller. // 2. If the caller has a differing GC, it is invalid to inline. if (CalledFunc->hasGC()) { if (!Caller->hasGC()) Caller->setGC(CalledFunc->getGC()); else if (CalledFunc->getGC() != Caller->getGC()) return false; } // Get the personality function from the callee if it contains a landing pad. Constant *CalledPersonality = CalledFunc->hasPersonalityFn() ? CalledFunc->getPersonalityFn()->stripPointerCasts() : nullptr; // Find the personality function used by the landing pads of the caller. If it // exists, then check to see that it matches the personality function used in // the callee. Constant *CallerPersonality = Caller->hasPersonalityFn() ? Caller->getPersonalityFn()->stripPointerCasts() : nullptr; if (CalledPersonality) { if (!CallerPersonality) Caller->setPersonalityFn(CalledPersonality); // If the personality functions match, then we can perform the // inlining. Otherwise, we can't inline. // TODO: This isn't 100% true. Some personality functions are proper // supersets of others and can be used in place of the other. else if (CalledPersonality != CallerPersonality) return false; } // We need to figure out which funclet the callsite was in so that we may // properly nest the callee. Instruction *CallSiteEHPad = nullptr; if (CallerPersonality) { EHPersonality Personality = classifyEHPersonality(CallerPersonality); if (isFuncletEHPersonality(Personality)) { Optional<OperandBundleUse> ParentFunclet = CS.getOperandBundle(LLVMContext::OB_funclet); if (ParentFunclet) CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); // OK, the inlining site is legal. What about the target function? if (CallSiteEHPad) { if (Personality == EHPersonality::MSVC_CXX) { // The MSVC personality cannot tolerate catches getting inlined into // cleanup funclets. if (isa<CleanupPadInst>(CallSiteEHPad)) { // Ok, the call site is within a cleanuppad. Let's check the callee // for catchpads. for (const BasicBlock &CalledBB : *CalledFunc) { if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) return false; } } } else if (isAsynchronousEHPersonality(Personality)) { // SEH is even less tolerant, there may not be any sort of exceptional // funclet in the callee. for (const BasicBlock &CalledBB : *CalledFunc) { if (CalledBB.isEHPad()) return false; } } } } } // Get an iterator to the last basic block in the function, which will have // the new function inlined after it. Function::iterator LastBlock = --Caller->end(); // Make sure to capture all of the return instructions from the cloned // function. SmallVector<ReturnInst*, 8> Returns; ClonedCodeInfo InlinedFunctionInfo; Function::iterator FirstNewBlock; { // Scope to destroy VMap after cloning. ValueToValueMapTy VMap; // Keep a list of pair (dst, src) to emit byval initializations. SmallVector<std::pair<Value*, Value*>, 4> ByValInit; auto &DL = Caller->getParent()->getDataLayout(); assert(CalledFunc->arg_size() == CS.arg_size() && "No varargs calls can be inlined!"); // Calculate the vector of arguments to pass into the function cloner, which // matches up the formal to the actual argument values. CallSite::arg_iterator AI = CS.arg_begin(); unsigned ArgNo = 0; for (Function::const_arg_iterator I = CalledFunc->arg_begin(), E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { Value *ActualArg = *AI; // When byval arguments actually inlined, we need to make the copy implied // by them explicit. However, we don't do this if the callee is readonly // or readnone, because the copy would be unneeded: the callee doesn't // modify the struct. if (CS.isByValArgument(ArgNo)) { ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, CalledFunc->getParamAlignment(ArgNo+1)); if (ActualArg != *AI) ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); } VMap[&*I] = ActualArg; } // Add alignment assumptions if necessary. We do this before the inlined // instructions are actually cloned into the caller so that we can easily // check what will be known at the start of the inlined code. AddAlignmentAssumptions(CS, IFI); // We want the inliner to prune the code as it copies. We would LOVE to // have no dead or constant instructions leftover after inlining occurs // (which can happen, e.g., because an argument was constant), but we'll be // happy with whatever the cloner can do. CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, /*ModuleLevelChanges=*/false, Returns, ".i", &InlinedFunctionInfo, TheCall); // Remember the first block that is newly cloned over. FirstNewBlock = LastBlock; ++FirstNewBlock; // Inject byval arguments initialization. for (std::pair<Value*, Value*> &Init : ByValInit) HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), &*FirstNewBlock, IFI); Optional<OperandBundleUse> ParentDeopt = CS.getOperandBundle(LLVMContext::OB_deopt); if (ParentDeopt) { SmallVector<OperandBundleDef, 2> OpDefs; for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { Instruction *I = dyn_cast_or_null<Instruction>(VH); if (!I) continue; // instruction was DCE'd or RAUW'ed to undef OpDefs.clear(); CallSite ICS(I); OpDefs.reserve(ICS.getNumOperandBundles()); for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) { auto ChildOB = ICS.getOperandBundleAt(i); if (ChildOB.getTagID() != LLVMContext::OB_deopt) { // If the inlined call has other operand bundles, let them be OpDefs.emplace_back(ChildOB); continue; } // It may be useful to separate this logic (of handling operand // bundles) out to a separate "policy" component if this gets crowded. // Prepend the parent's deoptimization continuation to the newly // inlined call's deoptimization continuation. std::vector<Value *> MergedDeoptArgs; MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + ChildOB.Inputs.size()); MergedDeoptArgs.insert(MergedDeoptArgs.end(), ParentDeopt->Inputs.begin(), ParentDeopt->Inputs.end()); MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(), ChildOB.Inputs.end()); OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); } Instruction *NewI = nullptr; if (isa<CallInst>(I)) NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I); else NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I); // Note: the RAUW does the appropriate fixup in VMap, so we need to do // this even if the call returns void. I->replaceAllUsesWith(NewI); VH = nullptr; I->eraseFromParent(); } } // Update the callgraph if requested. if (IFI.CG) UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); // Update inlined instructions' line number information. fixupLineNumbers(Caller, FirstNewBlock, TheCall); // Clone existing noalias metadata if necessary. CloneAliasScopeMetadata(CS, VMap); // Add noalias metadata if necessary. AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR); // FIXME: We could register any cloned assumptions instead of clearing the // whole function's cache. if (IFI.ACT) IFI.ACT->getAssumptionCache(*Caller).clear(); } // If there are any alloca instructions in the block that used to be the entry // block for the callee, move them to the entry block of the caller. First // calculate which instruction they should be inserted before. We insert the // instructions at the end of the current alloca list. { BasicBlock::iterator InsertPoint = Caller->begin()->begin(); for (BasicBlock::iterator I = FirstNewBlock->begin(), E = FirstNewBlock->end(); I != E; ) { AllocaInst *AI = dyn_cast<AllocaInst>(I++); if (!AI) continue; // If the alloca is now dead, remove it. This often occurs due to code // specialization. if (AI->use_empty()) { AI->eraseFromParent(); continue; } if (!isa<Constant>(AI->getArraySize())) continue; // Keep track of the static allocas that we inline into the caller. IFI.StaticAllocas.push_back(AI); // Scan for the block of allocas that we can move over, and move them // all at once. while (isa<AllocaInst>(I) && isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); ++I; } // Transfer all of the allocas over in a block. Using splice means // that the instructions aren't removed from the symbol table, then // reinserted. Caller->getEntryBlock().getInstList().splice( InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); } // Move any dbg.declares describing the allocas into the entry basic block. DIBuilder DIB(*Caller->getParent()); for (auto &AI : IFI.StaticAllocas) replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false); } bool InlinedMustTailCalls = false; if (InlinedFunctionInfo.ContainsCalls) { CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; if (CallInst *CI = dyn_cast<CallInst>(TheCall)) CallSiteTailKind = CI->getTailCallKind(); for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB) { for (Instruction &I : *BB) { CallInst *CI = dyn_cast<CallInst>(&I); if (!CI) continue; // We need to reduce the strength of any inlined tail calls. For // musttail, we have to avoid introducing potential unbounded stack // growth. For example, if functions 'f' and 'g' are mutually recursive // with musttail, we can inline 'g' into 'f' so long as we preserve // musttail on the cloned call to 'f'. If either the inlined call site // or the cloned call site is *not* musttail, the program already has // one frame of stack growth, so it's safe to remove musttail. Here is // a table of example transformations: // // f -> musttail g -> musttail f ==> f -> musttail f // f -> musttail g -> tail f ==> f -> tail f // f -> g -> musttail f ==> f -> f // f -> g -> tail f ==> f -> f CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); ChildTCK = std::min(CallSiteTailKind, ChildTCK); CI->setTailCallKind(ChildTCK); InlinedMustTailCalls |= CI->isMustTailCall(); // Calls inlined through a 'nounwind' call site should be marked // 'nounwind'. if (MarkNoUnwind) CI->setDoesNotThrow(); } } } // Leave lifetime markers for the static alloca's, scoping them to the // function we just inlined. if (InsertLifetime && !IFI.StaticAllocas.empty()) { IRBuilder<> builder(&FirstNewBlock->front()); for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { AllocaInst *AI = IFI.StaticAllocas[ai]; // If the alloca is already scoped to something smaller than the whole // function then there's no need to add redundant, less accurate markers. if (hasLifetimeMarkers(AI)) continue; // Try to determine the size of the allocation. ConstantInt *AllocaSize = nullptr; if (ConstantInt *AIArraySize = dyn_cast<ConstantInt>(AI->getArraySize())) { auto &DL = Caller->getParent()->getDataLayout(); Type *AllocaType = AI->getAllocatedType(); uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType); uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); // Don't add markers for zero-sized allocas. if (AllocaArraySize == 0) continue; // Check that array size doesn't saturate uint64_t and doesn't // overflow when it's multiplied by type size. if (AllocaArraySize != ~0ULL && UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), AllocaArraySize * AllocaTypeSize); } } builder.CreateLifetimeStart(AI, AllocaSize); for (ReturnInst *RI : Returns) { // Don't insert llvm.lifetime.end calls between a musttail call and a // return. The return kills all local allocas. if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) continue; IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); } } } // If the inlined code contained dynamic alloca instructions, wrap the inlined // code with llvm.stacksave/llvm.stackrestore intrinsics. if (InlinedFunctionInfo.ContainsDynamicAllocas) { Module *M = Caller->getParent(); // Get the two intrinsics we care about. Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); // Insert the llvm.stacksave. CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) .CreateCall(StackSave, {}, "savedstack"); // Insert a call to llvm.stackrestore before any return instructions in the // inlined function. for (ReturnInst *RI : Returns) { // Don't insert llvm.stackrestore calls between a musttail call and a // return. The return will restore the stack pointer. if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) continue; IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); } } // Update the lexical scopes of the new funclets and callsites. // Anything that had 'none' as its parent is now nested inside the callsite's // EHPad. if (CallSiteEHPad) { for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); BB != E; ++BB) { // Add bundle operands to any top-level call sites. SmallVector<OperandBundleDef, 1> OpBundles; for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) { Instruction *I = &*BBI++; CallSite CS(I); if (!CS) continue; // Skip call sites which are nounwind intrinsics. auto *CalledFn = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts()); if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow()) continue; // Skip call sites which already have a "funclet" bundle. if (CS.getOperandBundle(LLVMContext::OB_funclet)) continue; CS.getOperandBundlesAsDefs(OpBundles); OpBundles.emplace_back("funclet", CallSiteEHPad); Instruction *NewInst; if (CS.isCall()) NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I); else NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I); NewInst->setDebugLoc(I->getDebugLoc()); NewInst->takeName(I); I->replaceAllUsesWith(NewInst); I->eraseFromParent(); OpBundles.clear(); } Instruction *I = BB->getFirstNonPHI(); if (!I->isEHPad()) continue; if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) CatchSwitch->setParentPad(CallSiteEHPad); } else { auto *FPI = cast<FuncletPadInst>(I); if (isa<ConstantTokenNone>(FPI->getParentPad())) FPI->setParentPad(CallSiteEHPad); } } } // If we are inlining for an invoke instruction, we must make sure to rewrite // any call instructions into invoke instructions. if (auto *II = dyn_cast<InvokeInst>(TheCall)) { BasicBlock *UnwindDest = II->getUnwindDest(); Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); if (isa<LandingPadInst>(FirstNonPHI)) { HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); } else { HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); } } // Handle any inlined musttail call sites. In order for a new call site to be // musttail, the source of the clone and the inlined call site must have been // musttail. Therefore it's safe to return without merging control into the // phi below. if (InlinedMustTailCalls) { // Check if we need to bitcast the result of any musttail calls. Type *NewRetTy = Caller->getReturnType(); bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; // Handle the returns preceded by musttail calls separately. SmallVector<ReturnInst *, 8> NormalReturns; for (ReturnInst *RI : Returns) { CallInst *ReturnedMustTail = RI->getParent()->getTerminatingMustTailCall(); if (!ReturnedMustTail) { NormalReturns.push_back(RI); continue; } if (!NeedBitCast) continue; // Delete the old return and any preceding bitcast. BasicBlock *CurBB = RI->getParent(); auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); RI->eraseFromParent(); if (OldCast) OldCast->eraseFromParent(); // Insert a new bitcast and return with the right type. IRBuilder<> Builder(CurBB); Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); } // Leave behind the normal returns so we can merge control flow. std::swap(Returns, NormalReturns); } // If we cloned in _exactly one_ basic block, and if that block ends in a // return instruction, we splice the body of the inlined callee directly into // the calling basic block. if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { // Move all of the instructions right before the call. OrigBB->getInstList().splice(TheCall->getIterator(), FirstNewBlock->getInstList(), FirstNewBlock->begin(), FirstNewBlock->end()); // Remove the cloned basic block. Caller->getBasicBlockList().pop_back(); // If the call site was an invoke instruction, add a branch to the normal // destination. if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); NewBr->setDebugLoc(Returns[0]->getDebugLoc()); } // If the return instruction returned a value, replace uses of the call with // uses of the returned value. if (!TheCall->use_empty()) { ReturnInst *R = Returns[0]; if (TheCall == R->getReturnValue()) TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); else TheCall->replaceAllUsesWith(R->getReturnValue()); } // Since we are now done with the Call/Invoke, we can delete it. TheCall->eraseFromParent(); // Since we are now done with the return instruction, delete it also. Returns[0]->eraseFromParent(); // We are now done with the inlining. return true; } // Otherwise, we have the normal case, of more than one block to inline or // multiple return sites. // We want to clone the entire callee function into the hole between the // "starter" and "ender" blocks. How we accomplish this depends on whether // this is an invoke instruction or a call instruction. BasicBlock *AfterCallBB; BranchInst *CreatedBranchToNormalDest = nullptr; if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { // Add an unconditional branch to make this look like the CallInst case... CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); // Split the basic block. This guarantees that no PHI nodes will have to be // updated due to new incoming edges, and make the invoke case more // symmetric to the call case. AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), CalledFunc->getName() + ".exit"); } else { // It's a call // If this is a call instruction, we need to split the basic block that // the call lives in. // AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(), CalledFunc->getName() + ".exit"); } // Change the branch that used to go to AfterCallBB to branch to the first // basic block of the inlined function. // TerminatorInst *Br = OrigBB->getTerminator(); assert(Br && Br->getOpcode() == Instruction::Br && "splitBasicBlock broken!"); Br->setOperand(0, &*FirstNewBlock); // Now that the function is correct, make it a little bit nicer. In // particular, move the basic blocks inserted from the end of the function // into the space made by splitting the source basic block. Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), Caller->getBasicBlockList(), FirstNewBlock, Caller->end()); // Handle all of the return instructions that we just cloned in, and eliminate // any users of the original call/invoke instruction. Type *RTy = CalledFunc->getReturnType(); PHINode *PHI = nullptr; if (Returns.size() > 1) { // The PHI node should go at the front of the new basic block to merge all // possible incoming values. if (!TheCall->use_empty()) { PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), &AfterCallBB->front()); // Anything that used the result of the function call should now use the // PHI node as their operand. TheCall->replaceAllUsesWith(PHI); } // Loop over all of the return instructions adding entries to the PHI node // as appropriate. if (PHI) { for (unsigned i = 0, e = Returns.size(); i != e; ++i) { ReturnInst *RI = Returns[i]; assert(RI->getReturnValue()->getType() == PHI->getType() && "Ret value not consistent in function!"); PHI->addIncoming(RI->getReturnValue(), RI->getParent()); } } // Add a branch to the merge points and remove return instructions. DebugLoc Loc; for (unsigned i = 0, e = Returns.size(); i != e; ++i) { ReturnInst *RI = Returns[i]; BranchInst* BI = BranchInst::Create(AfterCallBB, RI); Loc = RI->getDebugLoc(); BI->setDebugLoc(Loc); RI->eraseFromParent(); } // We need to set the debug location to *somewhere* inside the // inlined function. The line number may be nonsensical, but the // instruction will at least be associated with the right // function. if (CreatedBranchToNormalDest) CreatedBranchToNormalDest->setDebugLoc(Loc); } else if (!Returns.empty()) { // Otherwise, if there is exactly one return value, just replace anything // using the return value of the call with the computed value. if (!TheCall->use_empty()) { if (TheCall == Returns[0]->getReturnValue()) TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); else TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); } // Update PHI nodes that use the ReturnBB to use the AfterCallBB. BasicBlock *ReturnBB = Returns[0]->getParent(); ReturnBB->replaceAllUsesWith(AfterCallBB); // Splice the code from the return block into the block that it will return // to, which contains the code that was after the call. AfterCallBB->getInstList().splice(AfterCallBB->begin(), ReturnBB->getInstList()); if (CreatedBranchToNormalDest) CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); // Delete the return instruction now and empty ReturnBB now. Returns[0]->eraseFromParent(); ReturnBB->eraseFromParent(); } else if (!TheCall->use_empty()) { // No returns, but something is using the return value of the call. Just // nuke the result. TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); } // Since we are now done with the Call/Invoke, we can delete it. TheCall->eraseFromParent(); // If we inlined any musttail calls and the original return is now // unreachable, delete it. It can only contain a bitcast and ret. if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) AfterCallBB->eraseFromParent(); // We should always be able to fold the entry block of the function into the // single predecessor of the block... assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); // Splice the code entry block into calling block, right before the // unconditional branch. CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); // Remove the unconditional branch. OrigBB->getInstList().erase(Br); // Now we can remove the CalleeEntry block, which is now empty. Caller->getBasicBlockList().erase(CalleeEntry); // If we inserted a phi node, check to see if it has a single value (e.g. all // the entries are the same or undef). If so, remove the PHI so it doesn't // block other optimizations. if (PHI) { auto &DL = Caller->getParent()->getDataLayout(); if (Value *V = SimplifyInstruction(PHI, DL, nullptr, nullptr, &IFI.ACT->getAssumptionCache(*Caller))) { PHI->replaceAllUsesWith(V); PHI->eraseFromParent(); } } return true; }