//===- AddDiscriminators.cpp - Insert DWARF path discriminators -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file adds DWARF discriminators to the IR. Path discriminators are // used to decide what CFG path was taken inside sub-graphs whose instructions // share the same line and column number information. // // The main user of this is the sample profiler. Instruction samples are // mapped to line number information. Since a single line may be spread // out over several basic blocks, discriminators add more precise location // for the samples. // // For example, // // 1 #define ASSERT(P) // 2 if (!(P)) // 3 abort() // ... // 100 while (true) { // 101 ASSERT (sum < 0); // 102 ... // 130 } // // when converted to IR, this snippet looks something like: // // while.body: ; preds = %entry, %if.end // %0 = load i32* %sum, align 4, !dbg !15 // %cmp = icmp slt i32 %0, 0, !dbg !15 // br i1 %cmp, label %if.end, label %if.then, !dbg !15 // // if.then: ; preds = %while.body // call void @abort(), !dbg !15 // br label %if.end, !dbg !15 // // Notice that all the instructions in blocks 'while.body' and 'if.then' // have exactly the same debug information. When this program is sampled // at runtime, the profiler will assume that all these instructions are // equally frequent. This, in turn, will consider the edge while.body->if.then // to be frequently taken (which is incorrect). // // By adding a discriminator value to the instructions in block 'if.then', // we can distinguish instructions at line 101 with discriminator 0 from // the instructions at line 101 with discriminator 1. // // For more details about DWARF discriminators, please visit // http://wiki.dwarfstd.org/index.php?title=Path_Discriminators //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseMap.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" using namespace llvm; #define DEBUG_TYPE "add-discriminators" namespace { struct AddDiscriminators : public FunctionPass { static char ID; // Pass identification, replacement for typeid AddDiscriminators() : FunctionPass(ID) { initializeAddDiscriminatorsPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; }; } char AddDiscriminators::ID = 0; INITIALIZE_PASS_BEGIN(AddDiscriminators, "add-discriminators", "Add DWARF path discriminators", false, false) INITIALIZE_PASS_END(AddDiscriminators, "add-discriminators", "Add DWARF path discriminators", false, false) // Command line option to disable discriminator generation even in the // presence of debug information. This is only needed when debugging // debug info generation issues. static cl::opt<bool> NoDiscriminators( "no-discriminators", cl::init(false), cl::desc("Disable generation of discriminator information.")); FunctionPass *llvm::createAddDiscriminatorsPass() { return new AddDiscriminators(); } static bool hasDebugInfo(const Function &F) { DISubprogram *S = getDISubprogram(&F); return S != nullptr; } /// \brief Assign DWARF discriminators. /// /// To assign discriminators, we examine the boundaries of every /// basic block and its successors. Suppose there is a basic block B1 /// with successor B2. The last instruction I1 in B1 and the first /// instruction I2 in B2 are located at the same file and line number. /// This situation is illustrated in the following code snippet: /// /// if (i < 10) x = i; /// /// entry: /// br i1 %cmp, label %if.then, label %if.end, !dbg !10 /// if.then: /// %1 = load i32* %i.addr, align 4, !dbg !10 /// store i32 %1, i32* %x, align 4, !dbg !10 /// br label %if.end, !dbg !10 /// if.end: /// ret void, !dbg !12 /// /// Notice how the branch instruction in block 'entry' and all the /// instructions in block 'if.then' have the exact same debug location /// information (!dbg !10). /// /// To distinguish instructions in block 'entry' from instructions in /// block 'if.then', we generate a new lexical block for all the /// instruction in block 'if.then' that share the same file and line /// location with the last instruction of block 'entry'. /// /// This new lexical block will have the same location information as /// the previous one, but with a new DWARF discriminator value. /// /// One of the main uses of this discriminator value is in runtime /// sample profilers. It allows the profiler to distinguish instructions /// at location !dbg !10 that execute on different basic blocks. This is /// important because while the predicate 'if (x < 10)' may have been /// executed millions of times, the assignment 'x = i' may have only /// executed a handful of times (meaning that the entry->if.then edge is /// seldom taken). /// /// If we did not have discriminator information, the profiler would /// assign the same weight to both blocks 'entry' and 'if.then', which /// in turn will make it conclude that the entry->if.then edge is very /// hot. /// /// To decide where to create new discriminator values, this function /// traverses the CFG and examines instruction at basic block boundaries. /// If the last instruction I1 of a block B1 is at the same file and line /// location as instruction I2 of successor B2, then it creates a new /// lexical block for I2 and all the instruction in B2 that share the same /// file and line location as I2. This new lexical block will have a /// different discriminator number than I1. bool AddDiscriminators::runOnFunction(Function &F) { // If the function has debug information, but the user has disabled // discriminators, do nothing. // Simlarly, if the function has no debug info, do nothing. // Finally, if this module is built with dwarf versions earlier than 4, // do nothing (discriminator support is a DWARF 4 feature). if (NoDiscriminators || !hasDebugInfo(F) || F.getParent()->getDwarfVersion() < 4) return false; bool Changed = false; Module *M = F.getParent(); LLVMContext &Ctx = M->getContext(); DIBuilder Builder(*M, /*AllowUnresolved*/ false); typedef std::pair<StringRef, unsigned> Location; typedef DenseMap<const BasicBlock *, Metadata *> BBScopeMap; typedef DenseMap<Location, BBScopeMap> LocationBBMap; LocationBBMap LBM; // Traverse all instructions in the function. If the source line location // of the instruction appears in other basic block, assign a new // discriminator for this instruction. for (BasicBlock &B : F) { for (auto &I : B.getInstList()) { if (isa<DbgInfoIntrinsic>(&I)) continue; const DILocation *DIL = I.getDebugLoc(); if (!DIL) continue; Location L = std::make_pair(DIL->getFilename(), DIL->getLine()); auto &BBMap = LBM[L]; auto R = BBMap.insert(std::make_pair(&B, (Metadata *)nullptr)); if (BBMap.size() == 1) continue; bool InsertSuccess = R.second; Metadata *&NewScope = R.first->second; // If we could insert a different block in the same location, a // discriminator is needed to distinguish both instructions. if (InsertSuccess) { auto *Scope = DIL->getScope(); auto *File = Builder.createFile(DIL->getFilename(), Scope->getDirectory()); NewScope = Builder.createLexicalBlockFile( Scope, File, DIL->computeNewDiscriminator()); } I.setDebugLoc(DILocation::get(Ctx, DIL->getLine(), DIL->getColumn(), NewScope, DIL->getInlinedAt())); DEBUG(dbgs() << DIL->getFilename() << ":" << DIL->getLine() << ":" << DIL->getColumn() << ":" << dyn_cast<DILexicalBlockFile>(NewScope)->getDiscriminator() << I << "\n"); Changed = true; } } // Traverse all instructions and assign new discriminators to call // instructions with the same lineno that are in the same basic block. // Sample base profile needs to distinguish different function calls within // a same source line for correct profile annotation. for (BasicBlock &B : F) { const DILocation *FirstDIL = NULL; for (auto &I : B.getInstList()) { CallInst *Current = dyn_cast<CallInst>(&I); if (!Current || isa<DbgInfoIntrinsic>(&I)) continue; DILocation *CurrentDIL = Current->getDebugLoc(); if (FirstDIL) { if (CurrentDIL && CurrentDIL->getLine() == FirstDIL->getLine() && CurrentDIL->getFilename() == FirstDIL->getFilename()) { auto *Scope = FirstDIL->getScope(); auto *File = Builder.createFile(FirstDIL->getFilename(), Scope->getDirectory()); auto *NewScope = Builder.createLexicalBlockFile( Scope, File, FirstDIL->computeNewDiscriminator()); Current->setDebugLoc(DILocation::get( Ctx, CurrentDIL->getLine(), CurrentDIL->getColumn(), NewScope, CurrentDIL->getInlinedAt())); Changed = true; } else { FirstDIL = CurrentDIL; } } else { FirstDIL = CurrentDIL; } } } return Changed; }