//===- LoopDistribute.cpp - Loop Distribution Pass ------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Loop Distribution Pass. Its main focus is to // distribute loops that cannot be vectorized due to dependence cycles. It // tries to isolate the offending dependences into a new loop allowing // vectorization of the remaining parts. // // For dependence analysis, the pass uses the LoopVectorizer's // LoopAccessAnalysis. Because this analysis presumes no change in the order of // memory operations, special care is taken to preserve the lexical order of // these operations. // // Similarly to the Vectorizer, the pass also supports loop versioning to // run-time disambiguate potentially overlapping arrays. // //===----------------------------------------------------------------------===// #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/EquivalenceClasses.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/LoopAccessAnalysis.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/LoopVersioning.h" #include <list> #define LDIST_NAME "loop-distribute" #define DEBUG_TYPE LDIST_NAME using namespace llvm; static cl::opt<bool> LDistVerify("loop-distribute-verify", cl::Hidden, cl::desc("Turn on DominatorTree and LoopInfo verification " "after Loop Distribution"), cl::init(false)); static cl::opt<bool> DistributeNonIfConvertible( "loop-distribute-non-if-convertible", cl::Hidden, cl::desc("Whether to distribute into a loop that may not be " "if-convertible by the loop vectorizer"), cl::init(false)); static cl::opt<unsigned> DistributeSCEVCheckThreshold( "loop-distribute-scev-check-threshold", cl::init(8), cl::Hidden, cl::desc("The maximum number of SCEV checks allowed for Loop " "Distribution")); STATISTIC(NumLoopsDistributed, "Number of loops distributed"); namespace { /// \brief Maintains the set of instructions of the loop for a partition before /// cloning. After cloning, it hosts the new loop. class InstPartition { typedef SmallPtrSet<Instruction *, 8> InstructionSet; public: InstPartition(Instruction *I, Loop *L, bool DepCycle = false) : DepCycle(DepCycle), OrigLoop(L), ClonedLoop(nullptr) { Set.insert(I); } /// \brief Returns whether this partition contains a dependence cycle. bool hasDepCycle() const { return DepCycle; } /// \brief Adds an instruction to this partition. void add(Instruction *I) { Set.insert(I); } /// \brief Collection accessors. InstructionSet::iterator begin() { return Set.begin(); } InstructionSet::iterator end() { return Set.end(); } InstructionSet::const_iterator begin() const { return Set.begin(); } InstructionSet::const_iterator end() const { return Set.end(); } bool empty() const { return Set.empty(); } /// \brief Moves this partition into \p Other. This partition becomes empty /// after this. void moveTo(InstPartition &Other) { Other.Set.insert(Set.begin(), Set.end()); Set.clear(); Other.DepCycle |= DepCycle; } /// \brief Populates the partition with a transitive closure of all the /// instructions that the seeded instructions dependent on. void populateUsedSet() { // FIXME: We currently don't use control-dependence but simply include all // blocks (possibly empty at the end) and let simplifycfg mostly clean this // up. for (auto *B : OrigLoop->getBlocks()) Set.insert(B->getTerminator()); // Follow the use-def chains to form a transitive closure of all the // instructions that the originally seeded instructions depend on. SmallVector<Instruction *, 8> Worklist(Set.begin(), Set.end()); while (!Worklist.empty()) { Instruction *I = Worklist.pop_back_val(); // Insert instructions from the loop that we depend on. for (Value *V : I->operand_values()) { auto *I = dyn_cast<Instruction>(V); if (I && OrigLoop->contains(I->getParent()) && Set.insert(I).second) Worklist.push_back(I); } } } /// \brief Clones the original loop. /// /// Updates LoopInfo and DominatorTree using the information that block \p /// LoopDomBB dominates the loop. Loop *cloneLoopWithPreheader(BasicBlock *InsertBefore, BasicBlock *LoopDomBB, unsigned Index, LoopInfo *LI, DominatorTree *DT) { ClonedLoop = ::cloneLoopWithPreheader(InsertBefore, LoopDomBB, OrigLoop, VMap, Twine(".ldist") + Twine(Index), LI, DT, ClonedLoopBlocks); return ClonedLoop; } /// \brief The cloned loop. If this partition is mapped to the original loop, /// this is null. const Loop *getClonedLoop() const { return ClonedLoop; } /// \brief Returns the loop where this partition ends up after distribution. /// If this partition is mapped to the original loop then use the block from /// the loop. const Loop *getDistributedLoop() const { return ClonedLoop ? ClonedLoop : OrigLoop; } /// \brief The VMap that is populated by cloning and then used in /// remapinstruction to remap the cloned instructions. ValueToValueMapTy &getVMap() { return VMap; } /// \brief Remaps the cloned instructions using VMap. void remapInstructions() { remapInstructionsInBlocks(ClonedLoopBlocks, VMap); } /// \brief Based on the set of instructions selected for this partition, /// removes the unnecessary ones. void removeUnusedInsts() { SmallVector<Instruction *, 8> Unused; for (auto *Block : OrigLoop->getBlocks()) for (auto &Inst : *Block) if (!Set.count(&Inst)) { Instruction *NewInst = &Inst; if (!VMap.empty()) NewInst = cast<Instruction>(VMap[NewInst]); assert(!isa<BranchInst>(NewInst) && "Branches are marked used early on"); Unused.push_back(NewInst); } // Delete the instructions backwards, as it has a reduced likelihood of // having to update as many def-use and use-def chains. for (auto *Inst : make_range(Unused.rbegin(), Unused.rend())) { if (!Inst->use_empty()) Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); Inst->eraseFromParent(); } } void print() const { if (DepCycle) dbgs() << " (cycle)\n"; for (auto *I : Set) // Prefix with the block name. dbgs() << " " << I->getParent()->getName() << ":" << *I << "\n"; } void printBlocks() const { for (auto *BB : getDistributedLoop()->getBlocks()) dbgs() << *BB; } private: /// \brief Instructions from OrigLoop selected for this partition. InstructionSet Set; /// \brief Whether this partition contains a dependence cycle. bool DepCycle; /// \brief The original loop. Loop *OrigLoop; /// \brief The cloned loop. If this partition is mapped to the original loop, /// this is null. Loop *ClonedLoop; /// \brief The blocks of ClonedLoop including the preheader. If this /// partition is mapped to the original loop, this is empty. SmallVector<BasicBlock *, 8> ClonedLoopBlocks; /// \brief These gets populated once the set of instructions have been /// finalized. If this partition is mapped to the original loop, these are not /// set. ValueToValueMapTy VMap; }; /// \brief Holds the set of Partitions. It populates them, merges them and then /// clones the loops. class InstPartitionContainer { typedef DenseMap<Instruction *, int> InstToPartitionIdT; public: InstPartitionContainer(Loop *L, LoopInfo *LI, DominatorTree *DT) : L(L), LI(LI), DT(DT) {} /// \brief Returns the number of partitions. unsigned getSize() const { return PartitionContainer.size(); } /// \brief Adds \p Inst into the current partition if that is marked to /// contain cycles. Otherwise start a new partition for it. void addToCyclicPartition(Instruction *Inst) { // If the current partition is non-cyclic. Start a new one. if (PartitionContainer.empty() || !PartitionContainer.back().hasDepCycle()) PartitionContainer.emplace_back(Inst, L, /*DepCycle=*/true); else PartitionContainer.back().add(Inst); } /// \brief Adds \p Inst into a partition that is not marked to contain /// dependence cycles. /// // Initially we isolate memory instructions into as many partitions as // possible, then later we may merge them back together. void addToNewNonCyclicPartition(Instruction *Inst) { PartitionContainer.emplace_back(Inst, L); } /// \brief Merges adjacent non-cyclic partitions. /// /// The idea is that we currently only want to isolate the non-vectorizable /// partition. We could later allow more distribution among these partition /// too. void mergeAdjacentNonCyclic() { mergeAdjacentPartitionsIf( [](const InstPartition *P) { return !P->hasDepCycle(); }); } /// \brief If a partition contains only conditional stores, we won't vectorize /// it. Try to merge it with a previous cyclic partition. void mergeNonIfConvertible() { mergeAdjacentPartitionsIf([&](const InstPartition *Partition) { if (Partition->hasDepCycle()) return true; // Now, check if all stores are conditional in this partition. bool seenStore = false; for (auto *Inst : *Partition) if (isa<StoreInst>(Inst)) { seenStore = true; if (!LoopAccessInfo::blockNeedsPredication(Inst->getParent(), L, DT)) return false; } return seenStore; }); } /// \brief Merges the partitions according to various heuristics. void mergeBeforePopulating() { mergeAdjacentNonCyclic(); if (!DistributeNonIfConvertible) mergeNonIfConvertible(); } /// \brief Merges partitions in order to ensure that no loads are duplicated. /// /// We can't duplicate loads because that could potentially reorder them. /// LoopAccessAnalysis provides dependency information with the context that /// the order of memory operation is preserved. /// /// Return if any partitions were merged. bool mergeToAvoidDuplicatedLoads() { typedef DenseMap<Instruction *, InstPartition *> LoadToPartitionT; typedef EquivalenceClasses<InstPartition *> ToBeMergedT; LoadToPartitionT LoadToPartition; ToBeMergedT ToBeMerged; // Step through the partitions and create equivalence between partitions // that contain the same load. Also put partitions in between them in the // same equivalence class to avoid reordering of memory operations. for (PartitionContainerT::iterator I = PartitionContainer.begin(), E = PartitionContainer.end(); I != E; ++I) { auto *PartI = &*I; // If a load occurs in two partitions PartI and PartJ, merge all // partitions (PartI, PartJ] into PartI. for (Instruction *Inst : *PartI) if (isa<LoadInst>(Inst)) { bool NewElt; LoadToPartitionT::iterator LoadToPart; std::tie(LoadToPart, NewElt) = LoadToPartition.insert(std::make_pair(Inst, PartI)); if (!NewElt) { DEBUG(dbgs() << "Merging partitions due to this load in multiple " << "partitions: " << PartI << ", " << LoadToPart->second << "\n" << *Inst << "\n"); auto PartJ = I; do { --PartJ; ToBeMerged.unionSets(PartI, &*PartJ); } while (&*PartJ != LoadToPart->second); } } } if (ToBeMerged.empty()) return false; // Merge the member of an equivalence class into its class leader. This // makes the members empty. for (ToBeMergedT::iterator I = ToBeMerged.begin(), E = ToBeMerged.end(); I != E; ++I) { if (!I->isLeader()) continue; auto PartI = I->getData(); for (auto PartJ : make_range(std::next(ToBeMerged.member_begin(I)), ToBeMerged.member_end())) { PartJ->moveTo(*PartI); } } // Remove the empty partitions. PartitionContainer.remove_if( [](const InstPartition &P) { return P.empty(); }); return true; } /// \brief Sets up the mapping between instructions to partitions. If the /// instruction is duplicated across multiple partitions, set the entry to -1. void setupPartitionIdOnInstructions() { int PartitionID = 0; for (const auto &Partition : PartitionContainer) { for (Instruction *Inst : Partition) { bool NewElt; InstToPartitionIdT::iterator Iter; std::tie(Iter, NewElt) = InstToPartitionId.insert(std::make_pair(Inst, PartitionID)); if (!NewElt) Iter->second = -1; } ++PartitionID; } } /// \brief Populates the partition with everything that the seeding /// instructions require. void populateUsedSet() { for (auto &P : PartitionContainer) P.populateUsedSet(); } /// \brief This performs the main chunk of the work of cloning the loops for /// the partitions. void cloneLoops() { BasicBlock *OrigPH = L->getLoopPreheader(); // At this point the predecessor of the preheader is either the memcheck // block or the top part of the original preheader. BasicBlock *Pred = OrigPH->getSinglePredecessor(); assert(Pred && "Preheader does not have a single predecessor"); BasicBlock *ExitBlock = L->getExitBlock(); assert(ExitBlock && "No single exit block"); Loop *NewLoop; assert(!PartitionContainer.empty() && "at least two partitions expected"); // We're cloning the preheader along with the loop so we already made sure // it was empty. assert(&*OrigPH->begin() == OrigPH->getTerminator() && "preheader not empty"); // Create a loop for each partition except the last. Clone the original // loop before PH along with adding a preheader for the cloned loop. Then // update PH to point to the newly added preheader. BasicBlock *TopPH = OrigPH; unsigned Index = getSize() - 1; for (auto I = std::next(PartitionContainer.rbegin()), E = PartitionContainer.rend(); I != E; ++I, --Index, TopPH = NewLoop->getLoopPreheader()) { auto *Part = &*I; NewLoop = Part->cloneLoopWithPreheader(TopPH, Pred, Index, LI, DT); Part->getVMap()[ExitBlock] = TopPH; Part->remapInstructions(); } Pred->getTerminator()->replaceUsesOfWith(OrigPH, TopPH); // Now go in forward order and update the immediate dominator for the // preheaders with the exiting block of the previous loop. Dominance // within the loop is updated in cloneLoopWithPreheader. for (auto Curr = PartitionContainer.cbegin(), Next = std::next(PartitionContainer.cbegin()), E = PartitionContainer.cend(); Next != E; ++Curr, ++Next) DT->changeImmediateDominator( Next->getDistributedLoop()->getLoopPreheader(), Curr->getDistributedLoop()->getExitingBlock()); } /// \brief Removes the dead instructions from the cloned loops. void removeUnusedInsts() { for (auto &Partition : PartitionContainer) Partition.removeUnusedInsts(); } /// \brief For each memory pointer, it computes the partitionId the pointer is /// used in. /// /// This returns an array of int where the I-th entry corresponds to I-th /// entry in LAI.getRuntimePointerCheck(). If the pointer is used in multiple /// partitions its entry is set to -1. SmallVector<int, 8> computePartitionSetForPointers(const LoopAccessInfo &LAI) { const RuntimePointerChecking *RtPtrCheck = LAI.getRuntimePointerChecking(); unsigned N = RtPtrCheck->Pointers.size(); SmallVector<int, 8> PtrToPartitions(N); for (unsigned I = 0; I < N; ++I) { Value *Ptr = RtPtrCheck->Pointers[I].PointerValue; auto Instructions = LAI.getInstructionsForAccess(Ptr, RtPtrCheck->Pointers[I].IsWritePtr); int &Partition = PtrToPartitions[I]; // First set it to uninitialized. Partition = -2; for (Instruction *Inst : Instructions) { // Note that this could be -1 if Inst is duplicated across multiple // partitions. int ThisPartition = this->InstToPartitionId[Inst]; if (Partition == -2) Partition = ThisPartition; // -1 means belonging to multiple partitions. else if (Partition == -1) break; else if (Partition != (int)ThisPartition) Partition = -1; } assert(Partition != -2 && "Pointer not belonging to any partition"); } return PtrToPartitions; } void print(raw_ostream &OS) const { unsigned Index = 0; for (const auto &P : PartitionContainer) { OS << "Partition " << Index++ << " (" << &P << "):\n"; P.print(); } } void dump() const { print(dbgs()); } #ifndef NDEBUG friend raw_ostream &operator<<(raw_ostream &OS, const InstPartitionContainer &Partitions) { Partitions.print(OS); return OS; } #endif void printBlocks() const { unsigned Index = 0; for (const auto &P : PartitionContainer) { dbgs() << "\nPartition " << Index++ << " (" << &P << "):\n"; P.printBlocks(); } } private: typedef std::list<InstPartition> PartitionContainerT; /// \brief List of partitions. PartitionContainerT PartitionContainer; /// \brief Mapping from Instruction to partition Id. If the instruction /// belongs to multiple partitions the entry contains -1. InstToPartitionIdT InstToPartitionId; Loop *L; LoopInfo *LI; DominatorTree *DT; /// \brief The control structure to merge adjacent partitions if both satisfy /// the \p Predicate. template <class UnaryPredicate> void mergeAdjacentPartitionsIf(UnaryPredicate Predicate) { InstPartition *PrevMatch = nullptr; for (auto I = PartitionContainer.begin(); I != PartitionContainer.end();) { auto DoesMatch = Predicate(&*I); if (PrevMatch == nullptr && DoesMatch) { PrevMatch = &*I; ++I; } else if (PrevMatch != nullptr && DoesMatch) { I->moveTo(*PrevMatch); I = PartitionContainer.erase(I); } else { PrevMatch = nullptr; ++I; } } } }; /// \brief For each memory instruction, this class maintains difference of the /// number of unsafe dependences that start out from this instruction minus /// those that end here. /// /// By traversing the memory instructions in program order and accumulating this /// number, we know whether any unsafe dependence crosses over a program point. class MemoryInstructionDependences { typedef MemoryDepChecker::Dependence Dependence; public: struct Entry { Instruction *Inst; unsigned NumUnsafeDependencesStartOrEnd; Entry(Instruction *Inst) : Inst(Inst), NumUnsafeDependencesStartOrEnd(0) {} }; typedef SmallVector<Entry, 8> AccessesType; AccessesType::const_iterator begin() const { return Accesses.begin(); } AccessesType::const_iterator end() const { return Accesses.end(); } MemoryInstructionDependences( const SmallVectorImpl<Instruction *> &Instructions, const SmallVectorImpl<Dependence> &Dependences) { Accesses.append(Instructions.begin(), Instructions.end()); DEBUG(dbgs() << "Backward dependences:\n"); for (auto &Dep : Dependences) if (Dep.isPossiblyBackward()) { // Note that the designations source and destination follow the program // order, i.e. source is always first. (The direction is given by the // DepType.) ++Accesses[Dep.Source].NumUnsafeDependencesStartOrEnd; --Accesses[Dep.Destination].NumUnsafeDependencesStartOrEnd; DEBUG(Dep.print(dbgs(), 2, Instructions)); } } private: AccessesType Accesses; }; /// \brief The pass class. class LoopDistribute : public FunctionPass { public: LoopDistribute() : FunctionPass(ID) { initializeLoopDistributePass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); LAA = &getAnalysis<LoopAccessAnalysis>(); DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); // Build up a worklist of inner-loops to vectorize. This is necessary as the // act of distributing a loop creates new loops and can invalidate iterators // across the loops. SmallVector<Loop *, 8> Worklist; for (Loop *TopLevelLoop : *LI) for (Loop *L : depth_first(TopLevelLoop)) // We only handle inner-most loops. if (L->empty()) Worklist.push_back(L); // Now walk the identified inner loops. bool Changed = false; for (Loop *L : Worklist) Changed |= processLoop(L); // Process each loop nest in the function. return Changed; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired<ScalarEvolutionWrapperPass>(); AU.addRequired<LoopInfoWrapperPass>(); AU.addPreserved<LoopInfoWrapperPass>(); AU.addRequired<LoopAccessAnalysis>(); AU.addRequired<DominatorTreeWrapperPass>(); AU.addPreserved<DominatorTreeWrapperPass>(); } static char ID; private: /// \brief Filter out checks between pointers from the same partition. /// /// \p PtrToPartition contains the partition number for pointers. Partition /// number -1 means that the pointer is used in multiple partitions. In this /// case we can't safely omit the check. SmallVector<RuntimePointerChecking::PointerCheck, 4> includeOnlyCrossPartitionChecks( const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &AllChecks, const SmallVectorImpl<int> &PtrToPartition, const RuntimePointerChecking *RtPtrChecking) { SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks; std::copy_if(AllChecks.begin(), AllChecks.end(), std::back_inserter(Checks), [&](const RuntimePointerChecking::PointerCheck &Check) { for (unsigned PtrIdx1 : Check.first->Members) for (unsigned PtrIdx2 : Check.second->Members) // Only include this check if there is a pair of pointers // that require checking and the pointers fall into // separate partitions. // // (Note that we already know at this point that the two // pointer groups need checking but it doesn't follow // that each pair of pointers within the two groups need // checking as well. // // In other words we don't want to include a check just // because there is a pair of pointers between the two // pointer groups that require checks and a different // pair whose pointers fall into different partitions.) if (RtPtrChecking->needsChecking(PtrIdx1, PtrIdx2) && !RuntimePointerChecking::arePointersInSamePartition( PtrToPartition, PtrIdx1, PtrIdx2)) return true; return false; }); return Checks; } /// \brief Try to distribute an inner-most loop. bool processLoop(Loop *L) { assert(L->empty() && "Only process inner loops."); DEBUG(dbgs() << "\nLDist: In \"" << L->getHeader()->getParent()->getName() << "\" checking " << *L << "\n"); BasicBlock *PH = L->getLoopPreheader(); if (!PH) { DEBUG(dbgs() << "Skipping; no preheader"); return false; } if (!L->getExitBlock()) { DEBUG(dbgs() << "Skipping; multiple exit blocks"); return false; } // LAA will check that we only have a single exiting block. const LoopAccessInfo &LAI = LAA->getInfo(L, ValueToValueMap()); // Currently, we only distribute to isolate the part of the loop with // dependence cycles to enable partial vectorization. if (LAI.canVectorizeMemory()) { DEBUG(dbgs() << "Skipping; memory operations are safe for vectorization"); return false; } auto *Dependences = LAI.getDepChecker().getDependences(); if (!Dependences || Dependences->empty()) { DEBUG(dbgs() << "Skipping; No unsafe dependences to isolate"); return false; } InstPartitionContainer Partitions(L, LI, DT); // First, go through each memory operation and assign them to consecutive // partitions (the order of partitions follows program order). Put those // with unsafe dependences into "cyclic" partition otherwise put each store // in its own "non-cyclic" partition (we'll merge these later). // // Note that a memory operation (e.g. Load2 below) at a program point that // has an unsafe dependence (Store3->Load1) spanning over it must be // included in the same cyclic partition as the dependent operations. This // is to preserve the original program order after distribution. E.g.: // // NumUnsafeDependencesStartOrEnd NumUnsafeDependencesActive // Load1 -. 1 0->1 // Load2 | /Unsafe/ 0 1 // Store3 -' -1 1->0 // Load4 0 0 // // NumUnsafeDependencesActive > 0 indicates this situation and in this case // we just keep assigning to the same cyclic partition until // NumUnsafeDependencesActive reaches 0. const MemoryDepChecker &DepChecker = LAI.getDepChecker(); MemoryInstructionDependences MID(DepChecker.getMemoryInstructions(), *Dependences); int NumUnsafeDependencesActive = 0; for (auto &InstDep : MID) { Instruction *I = InstDep.Inst; // We update NumUnsafeDependencesActive post-instruction, catch the // start of a dependence directly via NumUnsafeDependencesStartOrEnd. if (NumUnsafeDependencesActive || InstDep.NumUnsafeDependencesStartOrEnd > 0) Partitions.addToCyclicPartition(I); else Partitions.addToNewNonCyclicPartition(I); NumUnsafeDependencesActive += InstDep.NumUnsafeDependencesStartOrEnd; assert(NumUnsafeDependencesActive >= 0 && "Negative number of dependences active"); } // Add partitions for values used outside. These partitions can be out of // order from the original program order. This is OK because if the // partition uses a load we will merge this partition with the original // partition of the load that we set up in the previous loop (see // mergeToAvoidDuplicatedLoads). auto DefsUsedOutside = findDefsUsedOutsideOfLoop(L); for (auto *Inst : DefsUsedOutside) Partitions.addToNewNonCyclicPartition(Inst); DEBUG(dbgs() << "Seeded partitions:\n" << Partitions); if (Partitions.getSize() < 2) return false; // Run the merge heuristics: Merge non-cyclic adjacent partitions since we // should be able to vectorize these together. Partitions.mergeBeforePopulating(); DEBUG(dbgs() << "\nMerged partitions:\n" << Partitions); if (Partitions.getSize() < 2) return false; // Now, populate the partitions with non-memory operations. Partitions.populateUsedSet(); DEBUG(dbgs() << "\nPopulated partitions:\n" << Partitions); // In order to preserve original lexical order for loads, keep them in the // partition that we set up in the MemoryInstructionDependences loop. if (Partitions.mergeToAvoidDuplicatedLoads()) { DEBUG(dbgs() << "\nPartitions merged to ensure unique loads:\n" << Partitions); if (Partitions.getSize() < 2) return false; } // Don't distribute the loop if we need too many SCEV run-time checks. const SCEVUnionPredicate &Pred = LAI.PSE.getUnionPredicate(); if (Pred.getComplexity() > DistributeSCEVCheckThreshold) { DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n"); return false; } DEBUG(dbgs() << "\nDistributing loop: " << *L << "\n"); // We're done forming the partitions set up the reverse mapping from // instructions to partitions. Partitions.setupPartitionIdOnInstructions(); // To keep things simple have an empty preheader before we version or clone // the loop. (Also split if this has no predecessor, i.e. entry, because we // rely on PH having a predecessor.) if (!PH->getSinglePredecessor() || &*PH->begin() != PH->getTerminator()) SplitBlock(PH, PH->getTerminator(), DT, LI); // If we need run-time checks, version the loop now. auto PtrToPartition = Partitions.computePartitionSetForPointers(LAI); const auto *RtPtrChecking = LAI.getRuntimePointerChecking(); const auto &AllChecks = RtPtrChecking->getChecks(); auto Checks = includeOnlyCrossPartitionChecks(AllChecks, PtrToPartition, RtPtrChecking); if (!Pred.isAlwaysTrue() || !Checks.empty()) { DEBUG(dbgs() << "\nPointers:\n"); DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks)); LoopVersioning LVer(LAI, L, LI, DT, SE, false); LVer.setAliasChecks(std::move(Checks)); LVer.setSCEVChecks(LAI.PSE.getUnionPredicate()); LVer.versionLoop(DefsUsedOutside); } // Create identical copies of the original loop for each partition and hook // them up sequentially. Partitions.cloneLoops(); // Now, we remove the instruction from each loop that don't belong to that // partition. Partitions.removeUnusedInsts(); DEBUG(dbgs() << "\nAfter removing unused Instrs:\n"); DEBUG(Partitions.printBlocks()); if (LDistVerify) { LI->verify(); DT->verifyDomTree(); } ++NumLoopsDistributed; return true; } // Analyses used. LoopInfo *LI; LoopAccessAnalysis *LAA; DominatorTree *DT; ScalarEvolution *SE; }; } // anonymous namespace char LoopDistribute::ID; static const char ldist_name[] = "Loop Distribition"; INITIALIZE_PASS_BEGIN(LoopDistribute, LDIST_NAME, ldist_name, false, false) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_END(LoopDistribute, LDIST_NAME, ldist_name, false, false) namespace llvm { FunctionPass *createLoopDistributePass() { return new LoopDistribute(); } }