//===-- SafeStack.cpp - Safe Stack Insertion ------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass splits the stack into the safe stack (kept as-is for LLVM backend) // and the unsafe stack (explicitly allocated and managed through the runtime // support library). // // http://clang.llvm.org/docs/SafeStack.html // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Instrumentation.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/Triple.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/CodeGen/Passes.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Module.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Format.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_os_ostream.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetSubtargetInfo.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/ModuleUtils.h" using namespace llvm; #define DEBUG_TYPE "safestack" enum UnsafeStackPtrStorageVal { ThreadLocalUSP, SingleThreadUSP }; static cl::opt<UnsafeStackPtrStorageVal> USPStorage("safe-stack-usp-storage", cl::Hidden, cl::init(ThreadLocalUSP), cl::desc("Type of storage for the unsafe stack pointer"), cl::values(clEnumValN(ThreadLocalUSP, "thread-local", "Thread-local storage"), clEnumValN(SingleThreadUSP, "single-thread", "Non-thread-local storage"), clEnumValEnd)); namespace llvm { STATISTIC(NumFunctions, "Total number of functions"); STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack"); STATISTIC(NumUnsafeStackRestorePointsFunctions, "Number of functions that use setjmp or exceptions"); STATISTIC(NumAllocas, "Total number of allocas"); STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas"); STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas"); STATISTIC(NumUnsafeByValArguments, "Number of unsafe byval arguments"); STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads"); } // namespace llvm namespace { /// Rewrite an SCEV expression for a memory access address to an expression that /// represents offset from the given alloca. /// /// The implementation simply replaces all mentions of the alloca with zero. class AllocaOffsetRewriter : public SCEVRewriteVisitor<AllocaOffsetRewriter> { const Value *AllocaPtr; public: AllocaOffsetRewriter(ScalarEvolution &SE, const Value *AllocaPtr) : SCEVRewriteVisitor(SE), AllocaPtr(AllocaPtr) {} const SCEV *visitUnknown(const SCEVUnknown *Expr) { if (Expr->getValue() == AllocaPtr) return SE.getZero(Expr->getType()); return Expr; } }; /// The SafeStack pass splits the stack of each function into the safe /// stack, which is only accessed through memory safe dereferences (as /// determined statically), and the unsafe stack, which contains all /// local variables that are accessed in ways that we can't prove to /// be safe. class SafeStack : public FunctionPass { const TargetMachine *TM; const TargetLoweringBase *TL; const DataLayout *DL; ScalarEvolution *SE; Type *StackPtrTy; Type *IntPtrTy; Type *Int32Ty; Type *Int8Ty; Value *UnsafeStackPtr = nullptr; /// Unsafe stack alignment. Each stack frame must ensure that the stack is /// aligned to this value. We need to re-align the unsafe stack if the /// alignment of any object on the stack exceeds this value. /// /// 16 seems like a reasonable upper bound on the alignment of objects that we /// might expect to appear on the stack on most common targets. enum { StackAlignment = 16 }; /// \brief Build a value representing a pointer to the unsafe stack pointer. Value *getOrCreateUnsafeStackPtr(IRBuilder<> &IRB, Function &F); /// \brief Find all static allocas, dynamic allocas, return instructions and /// stack restore points (exception unwind blocks and setjmp calls) in the /// given function and append them to the respective vectors. void findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas, SmallVectorImpl<AllocaInst *> &DynamicAllocas, SmallVectorImpl<Argument *> &ByValArguments, SmallVectorImpl<ReturnInst *> &Returns, SmallVectorImpl<Instruction *> &StackRestorePoints); /// \brief Calculate the allocation size of a given alloca. Returns 0 if the /// size can not be statically determined. uint64_t getStaticAllocaAllocationSize(const AllocaInst* AI); /// \brief Allocate space for all static allocas in \p StaticAllocas, /// replace allocas with pointers into the unsafe stack and generate code to /// restore the stack pointer before all return instructions in \p Returns. /// /// \returns A pointer to the top of the unsafe stack after all unsafe static /// allocas are allocated. Value *moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F, ArrayRef<AllocaInst *> StaticAllocas, ArrayRef<Argument *> ByValArguments, ArrayRef<ReturnInst *> Returns); /// \brief Generate code to restore the stack after all stack restore points /// in \p StackRestorePoints. /// /// \returns A local variable in which to maintain the dynamic top of the /// unsafe stack if needed. AllocaInst * createStackRestorePoints(IRBuilder<> &IRB, Function &F, ArrayRef<Instruction *> StackRestorePoints, Value *StaticTop, bool NeedDynamicTop); /// \brief Replace all allocas in \p DynamicAllocas with code to allocate /// space dynamically on the unsafe stack and store the dynamic unsafe stack /// top to \p DynamicTop if non-null. void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop, ArrayRef<AllocaInst *> DynamicAllocas); bool IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize); bool IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U, const Value *AllocaPtr, uint64_t AllocaSize); bool IsAccessSafe(Value *Addr, uint64_t Size, const Value *AllocaPtr, uint64_t AllocaSize); public: static char ID; // Pass identification, replacement for typeid. SafeStack(const TargetMachine *TM) : FunctionPass(ID), TM(TM), TL(nullptr), DL(nullptr) { initializeSafeStackPass(*PassRegistry::getPassRegistry()); } SafeStack() : SafeStack(nullptr) {} void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired<ScalarEvolutionWrapperPass>(); } bool doInitialization(Module &M) override { DL = &M.getDataLayout(); StackPtrTy = Type::getInt8PtrTy(M.getContext()); IntPtrTy = DL->getIntPtrType(M.getContext()); Int32Ty = Type::getInt32Ty(M.getContext()); Int8Ty = Type::getInt8Ty(M.getContext()); return false; } bool runOnFunction(Function &F) override; }; // class SafeStack uint64_t SafeStack::getStaticAllocaAllocationSize(const AllocaInst* AI) { uint64_t Size = DL->getTypeAllocSize(AI->getAllocatedType()); if (AI->isArrayAllocation()) { auto C = dyn_cast<ConstantInt>(AI->getArraySize()); if (!C) return 0; Size *= C->getZExtValue(); } return Size; } bool SafeStack::IsAccessSafe(Value *Addr, uint64_t AccessSize, const Value *AllocaPtr, uint64_t AllocaSize) { AllocaOffsetRewriter Rewriter(*SE, AllocaPtr); const SCEV *Expr = Rewriter.visit(SE->getSCEV(Addr)); uint64_t BitWidth = SE->getTypeSizeInBits(Expr->getType()); ConstantRange AccessStartRange = SE->getUnsignedRange(Expr); ConstantRange SizeRange = ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AccessSize)); ConstantRange AccessRange = AccessStartRange.add(SizeRange); ConstantRange AllocaRange = ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AllocaSize)); bool Safe = AllocaRange.contains(AccessRange); DEBUG(dbgs() << "[SafeStack] " << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ") << *AllocaPtr << "\n" << " Access " << *Addr << "\n" << " SCEV " << *Expr << " U: " << SE->getUnsignedRange(Expr) << ", S: " << SE->getSignedRange(Expr) << "\n" << " Range " << AccessRange << "\n" << " AllocaRange " << AllocaRange << "\n" << " " << (Safe ? "safe" : "unsafe") << "\n"); return Safe; } bool SafeStack::IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U, const Value *AllocaPtr, uint64_t AllocaSize) { // All MemIntrinsics have destination address in Arg0 and size in Arg2. if (MI->getRawDest() != U) return true; const auto *Len = dyn_cast<ConstantInt>(MI->getLength()); // Non-constant size => unsafe. FIXME: try SCEV getRange. if (!Len) return false; return IsAccessSafe(U, Len->getZExtValue(), AllocaPtr, AllocaSize); } /// Check whether a given allocation must be put on the safe /// stack or not. The function analyzes all uses of AI and checks whether it is /// only accessed in a memory safe way (as decided statically). bool SafeStack::IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize) { // Go through all uses of this alloca and check whether all accesses to the // allocated object are statically known to be memory safe and, hence, the // object can be placed on the safe stack. SmallPtrSet<const Value *, 16> Visited; SmallVector<const Value *, 8> WorkList; WorkList.push_back(AllocaPtr); // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc. while (!WorkList.empty()) { const Value *V = WorkList.pop_back_val(); for (const Use &UI : V->uses()) { auto I = cast<const Instruction>(UI.getUser()); assert(V == UI.get()); switch (I->getOpcode()) { case Instruction::Load: { if (!IsAccessSafe(UI, DL->getTypeStoreSize(I->getType()), AllocaPtr, AllocaSize)) return false; break; } case Instruction::VAArg: // "va-arg" from a pointer is safe. break; case Instruction::Store: { if (V == I->getOperand(0)) { // Stored the pointer - conservatively assume it may be unsafe. DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr << "\n store of address: " << *I << "\n"); return false; } if (!IsAccessSafe(UI, DL->getTypeStoreSize(I->getOperand(0)->getType()), AllocaPtr, AllocaSize)) return false; break; } case Instruction::Ret: { // Information leak. return false; } case Instruction::Call: case Instruction::Invoke: { ImmutableCallSite CS(I); if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { if (II->getIntrinsicID() == Intrinsic::lifetime_start || II->getIntrinsicID() == Intrinsic::lifetime_end) continue; } if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { if (!IsMemIntrinsicSafe(MI, UI, AllocaPtr, AllocaSize)) { DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr << "\n unsafe memintrinsic: " << *I << "\n"); return false; } continue; } // LLVM 'nocapture' attribute is only set for arguments whose address // is not stored, passed around, or used in any other non-trivial way. // We assume that passing a pointer to an object as a 'nocapture // readnone' argument is safe. // FIXME: a more precise solution would require an interprocedural // analysis here, which would look at all uses of an argument inside // the function being called. ImmutableCallSite::arg_iterator B = CS.arg_begin(), E = CS.arg_end(); for (ImmutableCallSite::arg_iterator A = B; A != E; ++A) if (A->get() == V) if (!(CS.doesNotCapture(A - B) && (CS.doesNotAccessMemory(A - B) || CS.doesNotAccessMemory()))) { DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr << "\n unsafe call: " << *I << "\n"); return false; } continue; } default: if (Visited.insert(I).second) WorkList.push_back(cast<const Instruction>(I)); } } } // All uses of the alloca are safe, we can place it on the safe stack. return true; } Value *SafeStack::getOrCreateUnsafeStackPtr(IRBuilder<> &IRB, Function &F) { // Check if there is a target-specific location for the unsafe stack pointer. if (TL) if (Value *V = TL->getSafeStackPointerLocation(IRB)) return V; // Otherwise, assume the target links with compiler-rt, which provides a // thread-local variable with a magic name. Module &M = *F.getParent(); const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; auto UnsafeStackPtr = dyn_cast_or_null<GlobalVariable>(M.getNamedValue(UnsafeStackPtrVar)); bool UseTLS = USPStorage == ThreadLocalUSP; if (!UnsafeStackPtr) { auto TLSModel = UseTLS ? GlobalValue::InitialExecTLSModel : GlobalValue::NotThreadLocal; // The global variable is not defined yet, define it ourselves. // We use the initial-exec TLS model because we do not support the // variable living anywhere other than in the main executable. UnsafeStackPtr = new GlobalVariable( M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, UnsafeStackPtrVar, nullptr, TLSModel); } else { // The variable exists, check its type and attributes. if (UnsafeStackPtr->getValueType() != StackPtrTy) report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); if (UseTLS != UnsafeStackPtr->isThreadLocal()) report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + (UseTLS ? "" : "not ") + "be thread-local"); } return UnsafeStackPtr; } void SafeStack::findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas, SmallVectorImpl<AllocaInst *> &DynamicAllocas, SmallVectorImpl<Argument *> &ByValArguments, SmallVectorImpl<ReturnInst *> &Returns, SmallVectorImpl<Instruction *> &StackRestorePoints) { for (Instruction &I : instructions(&F)) { if (auto AI = dyn_cast<AllocaInst>(&I)) { ++NumAllocas; uint64_t Size = getStaticAllocaAllocationSize(AI); if (IsSafeStackAlloca(AI, Size)) continue; if (AI->isStaticAlloca()) { ++NumUnsafeStaticAllocas; StaticAllocas.push_back(AI); } else { ++NumUnsafeDynamicAllocas; DynamicAllocas.push_back(AI); } } else if (auto RI = dyn_cast<ReturnInst>(&I)) { Returns.push_back(RI); } else if (auto CI = dyn_cast<CallInst>(&I)) { // setjmps require stack restore. if (CI->getCalledFunction() && CI->canReturnTwice()) StackRestorePoints.push_back(CI); } else if (auto LP = dyn_cast<LandingPadInst>(&I)) { // Exception landing pads require stack restore. StackRestorePoints.push_back(LP); } else if (auto II = dyn_cast<IntrinsicInst>(&I)) { if (II->getIntrinsicID() == Intrinsic::gcroot) llvm::report_fatal_error( "gcroot intrinsic not compatible with safestack attribute"); } } for (Argument &Arg : F.args()) { if (!Arg.hasByValAttr()) continue; uint64_t Size = DL->getTypeStoreSize(Arg.getType()->getPointerElementType()); if (IsSafeStackAlloca(&Arg, Size)) continue; ++NumUnsafeByValArguments; ByValArguments.push_back(&Arg); } } AllocaInst * SafeStack::createStackRestorePoints(IRBuilder<> &IRB, Function &F, ArrayRef<Instruction *> StackRestorePoints, Value *StaticTop, bool NeedDynamicTop) { if (StackRestorePoints.empty()) return nullptr; // We need the current value of the shadow stack pointer to restore // after longjmp or exception catching. // FIXME: On some platforms this could be handled by the longjmp/exception // runtime itself. AllocaInst *DynamicTop = nullptr; if (NeedDynamicTop) // If we also have dynamic alloca's, the stack pointer value changes // throughout the function. For now we store it in an alloca. DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr, "unsafe_stack_dynamic_ptr"); if (!StaticTop) // We need the original unsafe stack pointer value, even if there are // no unsafe static allocas. StaticTop = IRB.CreateLoad(UnsafeStackPtr, false, "unsafe_stack_ptr"); if (NeedDynamicTop) IRB.CreateStore(StaticTop, DynamicTop); // Restore current stack pointer after longjmp/exception catch. for (Instruction *I : StackRestorePoints) { ++NumUnsafeStackRestorePoints; IRB.SetInsertPoint(I->getNextNode()); Value *CurrentTop = DynamicTop ? IRB.CreateLoad(DynamicTop) : StaticTop; IRB.CreateStore(CurrentTop, UnsafeStackPtr); } return DynamicTop; } Value *SafeStack::moveStaticAllocasToUnsafeStack( IRBuilder<> &IRB, Function &F, ArrayRef<AllocaInst *> StaticAllocas, ArrayRef<Argument *> ByValArguments, ArrayRef<ReturnInst *> Returns) { if (StaticAllocas.empty() && ByValArguments.empty()) return nullptr; DIBuilder DIB(*F.getParent()); // We explicitly compute and set the unsafe stack layout for all unsafe // static alloca instructions. We save the unsafe "base pointer" in the // prologue into a local variable and restore it in the epilogue. // Load the current stack pointer (we'll also use it as a base pointer). // FIXME: use a dedicated register for it ? Instruction *BasePointer = IRB.CreateLoad(UnsafeStackPtr, false, "unsafe_stack_ptr"); assert(BasePointer->getType() == StackPtrTy); for (ReturnInst *RI : Returns) { IRB.SetInsertPoint(RI); IRB.CreateStore(BasePointer, UnsafeStackPtr); } // Compute maximum alignment among static objects on the unsafe stack. unsigned MaxAlignment = 0; for (Argument *Arg : ByValArguments) { Type *Ty = Arg->getType()->getPointerElementType(); unsigned Align = std::max((unsigned)DL->getPrefTypeAlignment(Ty), Arg->getParamAlignment()); if (Align > MaxAlignment) MaxAlignment = Align; } for (AllocaInst *AI : StaticAllocas) { Type *Ty = AI->getAllocatedType(); unsigned Align = std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment()); if (Align > MaxAlignment) MaxAlignment = Align; } if (MaxAlignment > StackAlignment) { // Re-align the base pointer according to the max requested alignment. assert(isPowerOf2_32(MaxAlignment)); IRB.SetInsertPoint(BasePointer->getNextNode()); BasePointer = cast<Instruction>(IRB.CreateIntToPtr( IRB.CreateAnd(IRB.CreatePtrToInt(BasePointer, IntPtrTy), ConstantInt::get(IntPtrTy, ~uint64_t(MaxAlignment - 1))), StackPtrTy)); } int64_t StaticOffset = 0; // Current stack top. IRB.SetInsertPoint(BasePointer->getNextNode()); for (Argument *Arg : ByValArguments) { Type *Ty = Arg->getType()->getPointerElementType(); uint64_t Size = DL->getTypeStoreSize(Ty); if (Size == 0) Size = 1; // Don't create zero-sized stack objects. // Ensure the object is properly aligned. unsigned Align = std::max((unsigned)DL->getPrefTypeAlignment(Ty), Arg->getParamAlignment()); // Add alignment. // NOTE: we ensure that BasePointer itself is aligned to >= Align. StaticOffset += Size; StaticOffset = RoundUpToAlignment(StaticOffset, Align); Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8* ConstantInt::get(Int32Ty, -StaticOffset)); Value *NewArg = IRB.CreateBitCast(Off, Arg->getType(), Arg->getName() + ".unsafe-byval"); // Replace alloc with the new location. replaceDbgDeclare(Arg, BasePointer, BasePointer->getNextNode(), DIB, /*Deref=*/true, -StaticOffset); Arg->replaceAllUsesWith(NewArg); IRB.SetInsertPoint(cast<Instruction>(NewArg)->getNextNode()); IRB.CreateMemCpy(Off, Arg, Size, Arg->getParamAlignment()); } // Allocate space for every unsafe static AllocaInst on the unsafe stack. for (AllocaInst *AI : StaticAllocas) { IRB.SetInsertPoint(AI); Type *Ty = AI->getAllocatedType(); uint64_t Size = getStaticAllocaAllocationSize(AI); if (Size == 0) Size = 1; // Don't create zero-sized stack objects. // Ensure the object is properly aligned. unsigned Align = std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment()); // Add alignment. // NOTE: we ensure that BasePointer itself is aligned to >= Align. StaticOffset += Size; StaticOffset = RoundUpToAlignment(StaticOffset, Align); Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8* ConstantInt::get(Int32Ty, -StaticOffset)); Value *NewAI = IRB.CreateBitCast(Off, AI->getType(), AI->getName()); if (AI->hasName() && isa<Instruction>(NewAI)) cast<Instruction>(NewAI)->takeName(AI); // Replace alloc with the new location. replaceDbgDeclareForAlloca(AI, BasePointer, DIB, /*Deref=*/true, -StaticOffset); AI->replaceAllUsesWith(NewAI); AI->eraseFromParent(); } // Re-align BasePointer so that our callees would see it aligned as // expected. // FIXME: no need to update BasePointer in leaf functions. StaticOffset = RoundUpToAlignment(StaticOffset, StackAlignment); // Update shadow stack pointer in the function epilogue. IRB.SetInsertPoint(BasePointer->getNextNode()); Value *StaticTop = IRB.CreateGEP(BasePointer, ConstantInt::get(Int32Ty, -StaticOffset), "unsafe_stack_static_top"); IRB.CreateStore(StaticTop, UnsafeStackPtr); return StaticTop; } void SafeStack::moveDynamicAllocasToUnsafeStack( Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop, ArrayRef<AllocaInst *> DynamicAllocas) { DIBuilder DIB(*F.getParent()); for (AllocaInst *AI : DynamicAllocas) { IRBuilder<> IRB(AI); // Compute the new SP value (after AI). Value *ArraySize = AI->getArraySize(); if (ArraySize->getType() != IntPtrTy) ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false); Type *Ty = AI->getAllocatedType(); uint64_t TySize = DL->getTypeAllocSize(Ty); Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize)); Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(UnsafeStackPtr), IntPtrTy); SP = IRB.CreateSub(SP, Size); // Align the SP value to satisfy the AllocaInst, type and stack alignments. unsigned Align = std::max( std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment()), (unsigned)StackAlignment); assert(isPowerOf2_32(Align)); Value *NewTop = IRB.CreateIntToPtr( IRB.CreateAnd(SP, ConstantInt::get(IntPtrTy, ~uint64_t(Align - 1))), StackPtrTy); // Save the stack pointer. IRB.CreateStore(NewTop, UnsafeStackPtr); if (DynamicTop) IRB.CreateStore(NewTop, DynamicTop); Value *NewAI = IRB.CreatePointerCast(NewTop, AI->getType()); if (AI->hasName() && isa<Instruction>(NewAI)) NewAI->takeName(AI); replaceDbgDeclareForAlloca(AI, NewAI, DIB, /*Deref=*/true); AI->replaceAllUsesWith(NewAI); AI->eraseFromParent(); } if (!DynamicAllocas.empty()) { // Now go through the instructions again, replacing stacksave/stackrestore. for (inst_iterator It = inst_begin(&F), Ie = inst_end(&F); It != Ie;) { Instruction *I = &*(It++); auto II = dyn_cast<IntrinsicInst>(I); if (!II) continue; if (II->getIntrinsicID() == Intrinsic::stacksave) { IRBuilder<> IRB(II); Instruction *LI = IRB.CreateLoad(UnsafeStackPtr); LI->takeName(II); II->replaceAllUsesWith(LI); II->eraseFromParent(); } else if (II->getIntrinsicID() == Intrinsic::stackrestore) { IRBuilder<> IRB(II); Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr); SI->takeName(II); assert(II->use_empty()); II->eraseFromParent(); } } } } bool SafeStack::runOnFunction(Function &F) { DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n"); if (!F.hasFnAttribute(Attribute::SafeStack)) { DEBUG(dbgs() << "[SafeStack] safestack is not requested" " for this function\n"); return false; } if (F.isDeclaration()) { DEBUG(dbgs() << "[SafeStack] function definition" " is not available\n"); return false; } TL = TM ? TM->getSubtargetImpl(F)->getTargetLowering() : nullptr; SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); { // Make sure the regular stack protector won't run on this function // (safestack attribute takes precedence). AttrBuilder B; B.addAttribute(Attribute::StackProtect) .addAttribute(Attribute::StackProtectReq) .addAttribute(Attribute::StackProtectStrong); F.removeAttributes( AttributeSet::FunctionIndex, AttributeSet::get(F.getContext(), AttributeSet::FunctionIndex, B)); } ++NumFunctions; SmallVector<AllocaInst *, 16> StaticAllocas; SmallVector<AllocaInst *, 4> DynamicAllocas; SmallVector<Argument *, 4> ByValArguments; SmallVector<ReturnInst *, 4> Returns; // Collect all points where stack gets unwound and needs to be restored // This is only necessary because the runtime (setjmp and unwind code) is // not aware of the unsafe stack and won't unwind/restore it prorerly. // To work around this problem without changing the runtime, we insert // instrumentation to restore the unsafe stack pointer when necessary. SmallVector<Instruction *, 4> StackRestorePoints; // Find all static and dynamic alloca instructions that must be moved to the // unsafe stack, all return instructions and stack restore points. findInsts(F, StaticAllocas, DynamicAllocas, ByValArguments, Returns, StackRestorePoints); if (StaticAllocas.empty() && DynamicAllocas.empty() && ByValArguments.empty() && StackRestorePoints.empty()) return false; // Nothing to do in this function. if (!StaticAllocas.empty() || !DynamicAllocas.empty() || !ByValArguments.empty()) ++NumUnsafeStackFunctions; // This function has the unsafe stack. if (!StackRestorePoints.empty()) ++NumUnsafeStackRestorePointsFunctions; IRBuilder<> IRB(&F.front(), F.begin()->getFirstInsertionPt()); UnsafeStackPtr = getOrCreateUnsafeStackPtr(IRB, F); // The top of the unsafe stack after all unsafe static allocas are allocated. Value *StaticTop = moveStaticAllocasToUnsafeStack(IRB, F, StaticAllocas, ByValArguments, Returns); // Safe stack object that stores the current unsafe stack top. It is updated // as unsafe dynamic (non-constant-sized) allocas are allocated and freed. // This is only needed if we need to restore stack pointer after longjmp // or exceptions, and we have dynamic allocations. // FIXME: a better alternative might be to store the unsafe stack pointer // before setjmp / invoke instructions. AllocaInst *DynamicTop = createStackRestorePoints( IRB, F, StackRestorePoints, StaticTop, !DynamicAllocas.empty()); // Handle dynamic allocas. moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop, DynamicAllocas); DEBUG(dbgs() << "[SafeStack] safestack applied\n"); return true; } } // anonymous namespace char SafeStack::ID = 0; INITIALIZE_TM_PASS_BEGIN(SafeStack, "safe-stack", "Safe Stack instrumentation pass", false, false) INITIALIZE_TM_PASS_END(SafeStack, "safe-stack", "Safe Stack instrumentation pass", false, false) FunctionPass *llvm::createSafeStackPass(const llvm::TargetMachine *TM) { return new SafeStack(TM); }