//===- InstCombineCalls.cpp -----------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the visitCall and visitInvoke functions. // //===----------------------------------------------------------------------===// #include "InstCombineInternal.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Statepoint.h" #include "llvm/Transforms/Utils/BuildLibCalls.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/SimplifyLibCalls.h" using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "instcombine" STATISTIC(NumSimplified, "Number of library calls simplified"); /// getPromotedType - Return the specified type promoted as it would be to pass /// though a va_arg area. static Type *getPromotedType(Type *Ty) { if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) { if (ITy->getBitWidth() < 32) return Type::getInt32Ty(Ty->getContext()); } return Ty; } /// reduceToSingleValueType - Given an aggregate type which ultimately holds a /// single scalar element, like {{{type}}} or [1 x type], return type. static Type *reduceToSingleValueType(Type *T) { while (!T->isSingleValueType()) { if (StructType *STy = dyn_cast<StructType>(T)) { if (STy->getNumElements() == 1) T = STy->getElementType(0); else break; } else if (ArrayType *ATy = dyn_cast<ArrayType>(T)) { if (ATy->getNumElements() == 1) T = ATy->getElementType(); else break; } else break; } return T; } Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) { unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL, MI, AC, DT); unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL, MI, AC, DT); unsigned MinAlign = std::min(DstAlign, SrcAlign); unsigned CopyAlign = MI->getAlignment(); if (CopyAlign < MinAlign) { MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), MinAlign, false)); return MI; } // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with // load/store. ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2)); if (!MemOpLength) return nullptr; // Source and destination pointer types are always "i8*" for intrinsic. See // if the size is something we can handle with a single primitive load/store. // A single load+store correctly handles overlapping memory in the memmove // case. uint64_t Size = MemOpLength->getLimitedValue(); assert(Size && "0-sized memory transferring should be removed already."); if (Size > 8 || (Size&(Size-1))) return nullptr; // If not 1/2/4/8 bytes, exit. // Use an integer load+store unless we can find something better. unsigned SrcAddrSp = cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace(); unsigned DstAddrSp = cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace(); IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3); Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp); Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp); // Memcpy forces the use of i8* for the source and destination. That means // that if you're using memcpy to move one double around, you'll get a cast // from double* to i8*. We'd much rather use a double load+store rather than // an i64 load+store, here because this improves the odds that the source or // dest address will be promotable. See if we can find a better type than the // integer datatype. Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts(); MDNode *CopyMD = nullptr; if (StrippedDest != MI->getArgOperand(0)) { Type *SrcETy = cast<PointerType>(StrippedDest->getType()) ->getElementType(); if (SrcETy->isSized() && DL.getTypeStoreSize(SrcETy) == Size) { // The SrcETy might be something like {{{double}}} or [1 x double]. Rip // down through these levels if so. SrcETy = reduceToSingleValueType(SrcETy); if (SrcETy->isSingleValueType()) { NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp); NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp); // If the memcpy has metadata describing the members, see if we can // get the TBAA tag describing our copy. if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) { if (M->getNumOperands() == 3 && M->getOperand(0) && mdconst::hasa<ConstantInt>(M->getOperand(0)) && mdconst::extract<ConstantInt>(M->getOperand(0))->isNullValue() && M->getOperand(1) && mdconst::hasa<ConstantInt>(M->getOperand(1)) && mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() == Size && M->getOperand(2) && isa<MDNode>(M->getOperand(2))) CopyMD = cast<MDNode>(M->getOperand(2)); } } } } // If the memcpy/memmove provides better alignment info than we can // infer, use it. SrcAlign = std::max(SrcAlign, CopyAlign); DstAlign = std::max(DstAlign, CopyAlign); Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy); Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy); LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile()); L->setAlignment(SrcAlign); if (CopyMD) L->setMetadata(LLVMContext::MD_tbaa, CopyMD); StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile()); S->setAlignment(DstAlign); if (CopyMD) S->setMetadata(LLVMContext::MD_tbaa, CopyMD); // Set the size of the copy to 0, it will be deleted on the next iteration. MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType())); return MI; } Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) { unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, AC, DT); if (MI->getAlignment() < Alignment) { MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Alignment, false)); return MI; } // Extract the length and alignment and fill if they are constant. ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength()); ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue()); if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8)) return nullptr; uint64_t Len = LenC->getLimitedValue(); Alignment = MI->getAlignment(); assert(Len && "0-sized memory setting should be removed already."); // memset(s,c,n) -> store s, c (for n=1,2,4,8) if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) { Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8. Value *Dest = MI->getDest(); unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace(); Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp); Dest = Builder->CreateBitCast(Dest, NewDstPtrTy); // Alignment 0 is identity for alignment 1 for memset, but not store. if (Alignment == 0) Alignment = 1; // Extract the fill value and store. uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL; StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest, MI->isVolatile()); S->setAlignment(Alignment); // Set the size of the copy to 0, it will be deleted on the next iteration. MI->setLength(Constant::getNullValue(LenC->getType())); return MI; } return nullptr; } static Value *SimplifyX86immshift(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder) { bool LogicalShift = false; bool ShiftLeft = false; switch (II.getIntrinsicID()) { default: return nullptr; case Intrinsic::x86_sse2_psra_d: case Intrinsic::x86_sse2_psra_w: case Intrinsic::x86_sse2_psrai_d: case Intrinsic::x86_sse2_psrai_w: case Intrinsic::x86_avx2_psra_d: case Intrinsic::x86_avx2_psra_w: case Intrinsic::x86_avx2_psrai_d: case Intrinsic::x86_avx2_psrai_w: LogicalShift = false; ShiftLeft = false; break; case Intrinsic::x86_sse2_psrl_d: case Intrinsic::x86_sse2_psrl_q: case Intrinsic::x86_sse2_psrl_w: case Intrinsic::x86_sse2_psrli_d: case Intrinsic::x86_sse2_psrli_q: case Intrinsic::x86_sse2_psrli_w: case Intrinsic::x86_avx2_psrl_d: case Intrinsic::x86_avx2_psrl_q: case Intrinsic::x86_avx2_psrl_w: case Intrinsic::x86_avx2_psrli_d: case Intrinsic::x86_avx2_psrli_q: case Intrinsic::x86_avx2_psrli_w: LogicalShift = true; ShiftLeft = false; break; case Intrinsic::x86_sse2_psll_d: case Intrinsic::x86_sse2_psll_q: case Intrinsic::x86_sse2_psll_w: case Intrinsic::x86_sse2_pslli_d: case Intrinsic::x86_sse2_pslli_q: case Intrinsic::x86_sse2_pslli_w: case Intrinsic::x86_avx2_psll_d: case Intrinsic::x86_avx2_psll_q: case Intrinsic::x86_avx2_psll_w: case Intrinsic::x86_avx2_pslli_d: case Intrinsic::x86_avx2_pslli_q: case Intrinsic::x86_avx2_pslli_w: LogicalShift = true; ShiftLeft = true; break; } assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left"); // Simplify if count is constant. auto Arg1 = II.getArgOperand(1); auto CAZ = dyn_cast<ConstantAggregateZero>(Arg1); auto CDV = dyn_cast<ConstantDataVector>(Arg1); auto CInt = dyn_cast<ConstantInt>(Arg1); if (!CAZ && !CDV && !CInt) return nullptr; APInt Count(64, 0); if (CDV) { // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector // operand to compute the shift amount. auto VT = cast<VectorType>(CDV->getType()); unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits(); assert((64 % BitWidth) == 0 && "Unexpected packed shift size"); unsigned NumSubElts = 64 / BitWidth; // Concatenate the sub-elements to create the 64-bit value. for (unsigned i = 0; i != NumSubElts; ++i) { unsigned SubEltIdx = (NumSubElts - 1) - i; auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx)); Count = Count.shl(BitWidth); Count |= SubElt->getValue().zextOrTrunc(64); } } else if (CInt) Count = CInt->getValue(); auto Vec = II.getArgOperand(0); auto VT = cast<VectorType>(Vec->getType()); auto SVT = VT->getElementType(); unsigned VWidth = VT->getNumElements(); unsigned BitWidth = SVT->getPrimitiveSizeInBits(); // If shift-by-zero then just return the original value. if (Count == 0) return Vec; // Handle cases when Shift >= BitWidth. if (Count.uge(BitWidth)) { // If LogicalShift - just return zero. if (LogicalShift) return ConstantAggregateZero::get(VT); // If ArithmeticShift - clamp Shift to (BitWidth - 1). Count = APInt(64, BitWidth - 1); } // Get a constant vector of the same type as the first operand. auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth)); auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt); if (ShiftLeft) return Builder.CreateShl(Vec, ShiftVec); if (LogicalShift) return Builder.CreateLShr(Vec, ShiftVec); return Builder.CreateAShr(Vec, ShiftVec); } static Value *SimplifyX86extend(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder, bool SignExtend) { VectorType *SrcTy = cast<VectorType>(II.getArgOperand(0)->getType()); VectorType *DstTy = cast<VectorType>(II.getType()); unsigned NumDstElts = DstTy->getNumElements(); // Extract a subvector of the first NumDstElts lanes and sign/zero extend. SmallVector<int, 8> ShuffleMask; for (int i = 0; i != (int)NumDstElts; ++i) ShuffleMask.push_back(i); Value *SV = Builder.CreateShuffleVector(II.getArgOperand(0), UndefValue::get(SrcTy), ShuffleMask); return SignExtend ? Builder.CreateSExt(SV, DstTy) : Builder.CreateZExt(SV, DstTy); } static Value *SimplifyX86insertps(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder) { if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) { VectorType *VecTy = cast<VectorType>(II.getType()); assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type"); // The immediate permute control byte looks like this: // [3:0] - zero mask for each 32-bit lane // [5:4] - select one 32-bit destination lane // [7:6] - select one 32-bit source lane uint8_t Imm = CInt->getZExtValue(); uint8_t ZMask = Imm & 0xf; uint8_t DestLane = (Imm >> 4) & 0x3; uint8_t SourceLane = (Imm >> 6) & 0x3; ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy); // If all zero mask bits are set, this was just a weird way to // generate a zero vector. if (ZMask == 0xf) return ZeroVector; // Initialize by passing all of the first source bits through. int ShuffleMask[4] = { 0, 1, 2, 3 }; // We may replace the second operand with the zero vector. Value *V1 = II.getArgOperand(1); if (ZMask) { // If the zero mask is being used with a single input or the zero mask // overrides the destination lane, this is a shuffle with the zero vector. if ((II.getArgOperand(0) == II.getArgOperand(1)) || (ZMask & (1 << DestLane))) { V1 = ZeroVector; // We may still move 32-bits of the first source vector from one lane // to another. ShuffleMask[DestLane] = SourceLane; // The zero mask may override the previous insert operation. for (unsigned i = 0; i < 4; ++i) if ((ZMask >> i) & 0x1) ShuffleMask[i] = i + 4; } else { // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle? return nullptr; } } else { // Replace the selected destination lane with the selected source lane. ShuffleMask[DestLane] = SourceLane + 4; } return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask); } return nullptr; } /// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding /// or conversion to a shuffle vector. static Value *SimplifyX86extrq(IntrinsicInst &II, Value *Op0, ConstantInt *CILength, ConstantInt *CIIndex, InstCombiner::BuilderTy &Builder) { auto LowConstantHighUndef = [&](uint64_t Val) { Type *IntTy64 = Type::getInt64Ty(II.getContext()); Constant *Args[] = {ConstantInt::get(IntTy64, Val), UndefValue::get(IntTy64)}; return ConstantVector::get(Args); }; // See if we're dealing with constant values. Constant *C0 = dyn_cast<Constant>(Op0); ConstantInt *CI0 = C0 ? dyn_cast<ConstantInt>(C0->getAggregateElement((unsigned)0)) : nullptr; // Attempt to constant fold. if (CILength && CIIndex) { // From AMD documentation: "The bit index and field length are each six // bits in length other bits of the field are ignored." APInt APIndex = CIIndex->getValue().zextOrTrunc(6); APInt APLength = CILength->getValue().zextOrTrunc(6); unsigned Index = APIndex.getZExtValue(); // From AMD documentation: "a value of zero in the field length is // defined as length of 64". unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue(); // From AMD documentation: "If the sum of the bit index + length field // is greater than 64, the results are undefined". unsigned End = Index + Length; // Note that both field index and field length are 8-bit quantities. // Since variables 'Index' and 'Length' are unsigned values // obtained from zero-extending field index and field length // respectively, their sum should never wrap around. if (End > 64) return UndefValue::get(II.getType()); // If we are inserting whole bytes, we can convert this to a shuffle. // Lowering can recognize EXTRQI shuffle masks. if ((Length % 8) == 0 && (Index % 8) == 0) { // Convert bit indices to byte indices. Length /= 8; Index /= 8; Type *IntTy8 = Type::getInt8Ty(II.getContext()); Type *IntTy32 = Type::getInt32Ty(II.getContext()); VectorType *ShufTy = VectorType::get(IntTy8, 16); SmallVector<Constant *, 16> ShuffleMask; for (int i = 0; i != (int)Length; ++i) ShuffleMask.push_back( Constant::getIntegerValue(IntTy32, APInt(32, i + Index))); for (int i = Length; i != 8; ++i) ShuffleMask.push_back( Constant::getIntegerValue(IntTy32, APInt(32, i + 16))); for (int i = 8; i != 16; ++i) ShuffleMask.push_back(UndefValue::get(IntTy32)); Value *SV = Builder.CreateShuffleVector( Builder.CreateBitCast(Op0, ShufTy), ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask)); return Builder.CreateBitCast(SV, II.getType()); } // Constant Fold - shift Index'th bit to lowest position and mask off // Length bits. if (CI0) { APInt Elt = CI0->getValue(); Elt = Elt.lshr(Index).zextOrTrunc(Length); return LowConstantHighUndef(Elt.getZExtValue()); } // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI. if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) { Value *Args[] = {Op0, CILength, CIIndex}; Module *M = II.getModule(); Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi); return Builder.CreateCall(F, Args); } } // Constant Fold - extraction from zero is always {zero, undef}. if (CI0 && CI0->equalsInt(0)) return LowConstantHighUndef(0); return nullptr; } /// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant /// folding or conversion to a shuffle vector. static Value *SimplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1, APInt APLength, APInt APIndex, InstCombiner::BuilderTy &Builder) { // From AMD documentation: "The bit index and field length are each six bits // in length other bits of the field are ignored." APIndex = APIndex.zextOrTrunc(6); APLength = APLength.zextOrTrunc(6); // Attempt to constant fold. unsigned Index = APIndex.getZExtValue(); // From AMD documentation: "a value of zero in the field length is // defined as length of 64". unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue(); // From AMD documentation: "If the sum of the bit index + length field // is greater than 64, the results are undefined". unsigned End = Index + Length; // Note that both field index and field length are 8-bit quantities. // Since variables 'Index' and 'Length' are unsigned values // obtained from zero-extending field index and field length // respectively, their sum should never wrap around. if (End > 64) return UndefValue::get(II.getType()); // If we are inserting whole bytes, we can convert this to a shuffle. // Lowering can recognize INSERTQI shuffle masks. if ((Length % 8) == 0 && (Index % 8) == 0) { // Convert bit indices to byte indices. Length /= 8; Index /= 8; Type *IntTy8 = Type::getInt8Ty(II.getContext()); Type *IntTy32 = Type::getInt32Ty(II.getContext()); VectorType *ShufTy = VectorType::get(IntTy8, 16); SmallVector<Constant *, 16> ShuffleMask; for (int i = 0; i != (int)Index; ++i) ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i))); for (int i = 0; i != (int)Length; ++i) ShuffleMask.push_back( Constant::getIntegerValue(IntTy32, APInt(32, i + 16))); for (int i = Index + Length; i != 8; ++i) ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i))); for (int i = 8; i != 16; ++i) ShuffleMask.push_back(UndefValue::get(IntTy32)); Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy), Builder.CreateBitCast(Op1, ShufTy), ConstantVector::get(ShuffleMask)); return Builder.CreateBitCast(SV, II.getType()); } // See if we're dealing with constant values. Constant *C0 = dyn_cast<Constant>(Op0); Constant *C1 = dyn_cast<Constant>(Op1); ConstantInt *CI00 = C0 ? dyn_cast<ConstantInt>(C0->getAggregateElement((unsigned)0)) : nullptr; ConstantInt *CI10 = C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)0)) : nullptr; // Constant Fold - insert bottom Length bits starting at the Index'th bit. if (CI00 && CI10) { APInt V00 = CI00->getValue(); APInt V10 = CI10->getValue(); APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index); V00 = V00 & ~Mask; V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index); APInt Val = V00 | V10; Type *IntTy64 = Type::getInt64Ty(II.getContext()); Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()), UndefValue::get(IntTy64)}; return ConstantVector::get(Args); } // If we were an INSERTQ call, we'll save demanded elements if we convert to // INSERTQI. if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) { Type *IntTy8 = Type::getInt8Ty(II.getContext()); Constant *CILength = ConstantInt::get(IntTy8, Length, false); Constant *CIIndex = ConstantInt::get(IntTy8, Index, false); Value *Args[] = {Op0, Op1, CILength, CIIndex}; Module *M = II.getModule(); Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi); return Builder.CreateCall(F, Args); } return nullptr; } /// The shuffle mask for a perm2*128 selects any two halves of two 256-bit /// source vectors, unless a zero bit is set. If a zero bit is set, /// then ignore that half of the mask and clear that half of the vector. static Value *SimplifyX86vperm2(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder) { if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) { VectorType *VecTy = cast<VectorType>(II.getType()); ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy); // The immediate permute control byte looks like this: // [1:0] - select 128 bits from sources for low half of destination // [2] - ignore // [3] - zero low half of destination // [5:4] - select 128 bits from sources for high half of destination // [6] - ignore // [7] - zero high half of destination uint8_t Imm = CInt->getZExtValue(); bool LowHalfZero = Imm & 0x08; bool HighHalfZero = Imm & 0x80; // If both zero mask bits are set, this was just a weird way to // generate a zero vector. if (LowHalfZero && HighHalfZero) return ZeroVector; // If 0 or 1 zero mask bits are set, this is a simple shuffle. unsigned NumElts = VecTy->getNumElements(); unsigned HalfSize = NumElts / 2; SmallVector<int, 8> ShuffleMask(NumElts); // The high bit of the selection field chooses the 1st or 2nd operand. bool LowInputSelect = Imm & 0x02; bool HighInputSelect = Imm & 0x20; // The low bit of the selection field chooses the low or high half // of the selected operand. bool LowHalfSelect = Imm & 0x01; bool HighHalfSelect = Imm & 0x10; // Determine which operand(s) are actually in use for this instruction. Value *V0 = LowInputSelect ? II.getArgOperand(1) : II.getArgOperand(0); Value *V1 = HighInputSelect ? II.getArgOperand(1) : II.getArgOperand(0); // If needed, replace operands based on zero mask. V0 = LowHalfZero ? ZeroVector : V0; V1 = HighHalfZero ? ZeroVector : V1; // Permute low half of result. unsigned StartIndex = LowHalfSelect ? HalfSize : 0; for (unsigned i = 0; i < HalfSize; ++i) ShuffleMask[i] = StartIndex + i; // Permute high half of result. StartIndex = HighHalfSelect ? HalfSize : 0; StartIndex += NumElts; for (unsigned i = 0; i < HalfSize; ++i) ShuffleMask[i + HalfSize] = StartIndex + i; return Builder.CreateShuffleVector(V0, V1, ShuffleMask); } return nullptr; } /// Decode XOP integer vector comparison intrinsics. static Value *SimplifyX86vpcom(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder, bool IsSigned) { if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) { uint64_t Imm = CInt->getZExtValue() & 0x7; VectorType *VecTy = cast<VectorType>(II.getType()); CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; switch (Imm) { case 0x0: Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break; case 0x1: Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break; case 0x2: Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break; case 0x3: Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break; case 0x4: Pred = ICmpInst::ICMP_EQ; break; case 0x5: Pred = ICmpInst::ICMP_NE; break; case 0x6: return ConstantInt::getSigned(VecTy, 0); // FALSE case 0x7: return ConstantInt::getSigned(VecTy, -1); // TRUE } if (Value *Cmp = Builder.CreateICmp(Pred, II.getArgOperand(0), II.getArgOperand(1))) return Builder.CreateSExtOrTrunc(Cmp, VecTy); } return nullptr; } /// visitCallInst - CallInst simplification. This mostly only handles folding /// of intrinsic instructions. For normal calls, it allows visitCallSite to do /// the heavy lifting. /// Instruction *InstCombiner::visitCallInst(CallInst &CI) { auto Args = CI.arg_operands(); if (Value *V = SimplifyCall(CI.getCalledValue(), Args.begin(), Args.end(), DL, TLI, DT, AC)) return ReplaceInstUsesWith(CI, V); if (isFreeCall(&CI, TLI)) return visitFree(CI); // If the caller function is nounwind, mark the call as nounwind, even if the // callee isn't. if (CI.getParent()->getParent()->doesNotThrow() && !CI.doesNotThrow()) { CI.setDoesNotThrow(); return &CI; } IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI); if (!II) return visitCallSite(&CI); // Intrinsics cannot occur in an invoke, so handle them here instead of in // visitCallSite. if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) { bool Changed = false; // memmove/cpy/set of zero bytes is a noop. if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) { if (NumBytes->isNullValue()) return EraseInstFromFunction(CI); if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) if (CI->getZExtValue() == 1) { // Replace the instruction with just byte operations. We would // transform other cases to loads/stores, but we don't know if // alignment is sufficient. } } // No other transformations apply to volatile transfers. if (MI->isVolatile()) return nullptr; // If we have a memmove and the source operation is a constant global, // then the source and dest pointers can't alias, so we can change this // into a call to memcpy. if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) { if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource())) if (GVSrc->isConstant()) { Module *M = CI.getModule(); Intrinsic::ID MemCpyID = Intrinsic::memcpy; Type *Tys[3] = { CI.getArgOperand(0)->getType(), CI.getArgOperand(1)->getType(), CI.getArgOperand(2)->getType() }; CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys)); Changed = true; } } if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove(x,x,size) -> noop. if (MTI->getSource() == MTI->getDest()) return EraseInstFromFunction(CI); } // If we can determine a pointer alignment that is bigger than currently // set, update the alignment. if (isa<MemTransferInst>(MI)) { if (Instruction *I = SimplifyMemTransfer(MI)) return I; } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) { if (Instruction *I = SimplifyMemSet(MSI)) return I; } if (Changed) return II; } auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width, unsigned DemandedWidth) { APInt UndefElts(Width, 0); APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth); return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts); }; switch (II->getIntrinsicID()) { default: break; case Intrinsic::objectsize: { uint64_t Size; if (getObjectSize(II->getArgOperand(0), Size, DL, TLI)) return ReplaceInstUsesWith(CI, ConstantInt::get(CI.getType(), Size)); return nullptr; } case Intrinsic::bswap: { Value *IIOperand = II->getArgOperand(0); Value *X = nullptr; // bswap(bswap(x)) -> x if (match(IIOperand, m_BSwap(m_Value(X)))) return ReplaceInstUsesWith(CI, X); // bswap(trunc(bswap(x))) -> trunc(lshr(x, c)) if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) { unsigned C = X->getType()->getPrimitiveSizeInBits() - IIOperand->getType()->getPrimitiveSizeInBits(); Value *CV = ConstantInt::get(X->getType(), C); Value *V = Builder->CreateLShr(X, CV); return new TruncInst(V, IIOperand->getType()); } break; } case Intrinsic::bitreverse: { Value *IIOperand = II->getArgOperand(0); Value *X = nullptr; // bitreverse(bitreverse(x)) -> x if (match(IIOperand, m_Intrinsic<Intrinsic::bitreverse>(m_Value(X)))) return ReplaceInstUsesWith(CI, X); break; } case Intrinsic::powi: if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) { // powi(x, 0) -> 1.0 if (Power->isZero()) return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0)); // powi(x, 1) -> x if (Power->isOne()) return ReplaceInstUsesWith(CI, II->getArgOperand(0)); // powi(x, -1) -> 1/x if (Power->isAllOnesValue()) return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0), II->getArgOperand(0)); } break; case Intrinsic::cttz: { // If all bits below the first known one are known zero, // this value is constant. IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType()); // FIXME: Try to simplify vectors of integers. if (!IT) break; uint32_t BitWidth = IT->getBitWidth(); APInt KnownZero(BitWidth, 0); APInt KnownOne(BitWidth, 0); computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II); unsigned TrailingZeros = KnownOne.countTrailingZeros(); APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros)); if ((Mask & KnownZero) == Mask) return ReplaceInstUsesWith(CI, ConstantInt::get(IT, APInt(BitWidth, TrailingZeros))); } break; case Intrinsic::ctlz: { // If all bits above the first known one are known zero, // this value is constant. IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType()); // FIXME: Try to simplify vectors of integers. if (!IT) break; uint32_t BitWidth = IT->getBitWidth(); APInt KnownZero(BitWidth, 0); APInt KnownOne(BitWidth, 0); computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II); unsigned LeadingZeros = KnownOne.countLeadingZeros(); APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros)); if ((Mask & KnownZero) == Mask) return ReplaceInstUsesWith(CI, ConstantInt::get(IT, APInt(BitWidth, LeadingZeros))); } break; case Intrinsic::uadd_with_overflow: case Intrinsic::sadd_with_overflow: case Intrinsic::umul_with_overflow: case Intrinsic::smul_with_overflow: if (isa<Constant>(II->getArgOperand(0)) && !isa<Constant>(II->getArgOperand(1))) { // Canonicalize constants into the RHS. Value *LHS = II->getArgOperand(0); II->setArgOperand(0, II->getArgOperand(1)); II->setArgOperand(1, LHS); return II; } // fall through case Intrinsic::usub_with_overflow: case Intrinsic::ssub_with_overflow: { OverflowCheckFlavor OCF = IntrinsicIDToOverflowCheckFlavor(II->getIntrinsicID()); assert(OCF != OCF_INVALID && "unexpected!"); Value *OperationResult = nullptr; Constant *OverflowResult = nullptr; if (OptimizeOverflowCheck(OCF, II->getArgOperand(0), II->getArgOperand(1), *II, OperationResult, OverflowResult)) return CreateOverflowTuple(II, OperationResult, OverflowResult); break; } case Intrinsic::minnum: case Intrinsic::maxnum: { Value *Arg0 = II->getArgOperand(0); Value *Arg1 = II->getArgOperand(1); // fmin(x, x) -> x if (Arg0 == Arg1) return ReplaceInstUsesWith(CI, Arg0); const ConstantFP *C0 = dyn_cast<ConstantFP>(Arg0); const ConstantFP *C1 = dyn_cast<ConstantFP>(Arg1); // Canonicalize constants into the RHS. if (C0 && !C1) { II->setArgOperand(0, Arg1); II->setArgOperand(1, Arg0); return II; } // fmin(x, nan) -> x if (C1 && C1->isNaN()) return ReplaceInstUsesWith(CI, Arg0); // This is the value because if undef were NaN, we would return the other // value and cannot return a NaN unless both operands are. // // fmin(undef, x) -> x if (isa<UndefValue>(Arg0)) return ReplaceInstUsesWith(CI, Arg1); // fmin(x, undef) -> x if (isa<UndefValue>(Arg1)) return ReplaceInstUsesWith(CI, Arg0); Value *X = nullptr; Value *Y = nullptr; if (II->getIntrinsicID() == Intrinsic::minnum) { // fmin(x, fmin(x, y)) -> fmin(x, y) // fmin(y, fmin(x, y)) -> fmin(x, y) if (match(Arg1, m_FMin(m_Value(X), m_Value(Y)))) { if (Arg0 == X || Arg0 == Y) return ReplaceInstUsesWith(CI, Arg1); } // fmin(fmin(x, y), x) -> fmin(x, y) // fmin(fmin(x, y), y) -> fmin(x, y) if (match(Arg0, m_FMin(m_Value(X), m_Value(Y)))) { if (Arg1 == X || Arg1 == Y) return ReplaceInstUsesWith(CI, Arg0); } // TODO: fmin(nnan x, inf) -> x // TODO: fmin(nnan ninf x, flt_max) -> x if (C1 && C1->isInfinity()) { // fmin(x, -inf) -> -inf if (C1->isNegative()) return ReplaceInstUsesWith(CI, Arg1); } } else { assert(II->getIntrinsicID() == Intrinsic::maxnum); // fmax(x, fmax(x, y)) -> fmax(x, y) // fmax(y, fmax(x, y)) -> fmax(x, y) if (match(Arg1, m_FMax(m_Value(X), m_Value(Y)))) { if (Arg0 == X || Arg0 == Y) return ReplaceInstUsesWith(CI, Arg1); } // fmax(fmax(x, y), x) -> fmax(x, y) // fmax(fmax(x, y), y) -> fmax(x, y) if (match(Arg0, m_FMax(m_Value(X), m_Value(Y)))) { if (Arg1 == X || Arg1 == Y) return ReplaceInstUsesWith(CI, Arg0); } // TODO: fmax(nnan x, -inf) -> x // TODO: fmax(nnan ninf x, -flt_max) -> x if (C1 && C1->isInfinity()) { // fmax(x, inf) -> inf if (!C1->isNegative()) return ReplaceInstUsesWith(CI, Arg1); } } break; } case Intrinsic::ppc_altivec_lvx: case Intrinsic::ppc_altivec_lvxl: // Turn PPC lvx -> load if the pointer is known aligned. if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >= 16) { Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), PointerType::getUnqual(II->getType())); return new LoadInst(Ptr); } break; case Intrinsic::ppc_vsx_lxvw4x: case Intrinsic::ppc_vsx_lxvd2x: { // Turn PPC VSX loads into normal loads. Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), PointerType::getUnqual(II->getType())); return new LoadInst(Ptr, Twine(""), false, 1); } case Intrinsic::ppc_altivec_stvx: case Intrinsic::ppc_altivec_stvxl: // Turn stvx -> store if the pointer is known aligned. if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >= 16) { Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType()); Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy); return new StoreInst(II->getArgOperand(0), Ptr); } break; case Intrinsic::ppc_vsx_stxvw4x: case Intrinsic::ppc_vsx_stxvd2x: { // Turn PPC VSX stores into normal stores. Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType()); Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy); return new StoreInst(II->getArgOperand(0), Ptr, false, 1); } case Intrinsic::ppc_qpx_qvlfs: // Turn PPC QPX qvlfs -> load if the pointer is known aligned. if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >= 16) { Type *VTy = VectorType::get(Builder->getFloatTy(), II->getType()->getVectorNumElements()); Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), PointerType::getUnqual(VTy)); Value *Load = Builder->CreateLoad(Ptr); return new FPExtInst(Load, II->getType()); } break; case Intrinsic::ppc_qpx_qvlfd: // Turn PPC QPX qvlfd -> load if the pointer is known aligned. if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, AC, DT) >= 32) { Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), PointerType::getUnqual(II->getType())); return new LoadInst(Ptr); } break; case Intrinsic::ppc_qpx_qvstfs: // Turn PPC QPX qvstfs -> store if the pointer is known aligned. if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >= 16) { Type *VTy = VectorType::get(Builder->getFloatTy(), II->getArgOperand(0)->getType()->getVectorNumElements()); Value *TOp = Builder->CreateFPTrunc(II->getArgOperand(0), VTy); Type *OpPtrTy = PointerType::getUnqual(VTy); Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy); return new StoreInst(TOp, Ptr); } break; case Intrinsic::ppc_qpx_qvstfd: // Turn PPC QPX qvstfd -> store if the pointer is known aligned. if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, AC, DT) >= 32) { Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType()); Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy); return new StoreInst(II->getArgOperand(0), Ptr); } break; case Intrinsic::x86_sse_storeu_ps: case Intrinsic::x86_sse2_storeu_pd: case Intrinsic::x86_sse2_storeu_dq: // Turn X86 storeu -> store if the pointer is known aligned. if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >= 16) { Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(1)->getType()); Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy); return new StoreInst(II->getArgOperand(1), Ptr); } break; case Intrinsic::x86_vcvtph2ps_128: case Intrinsic::x86_vcvtph2ps_256: { auto Arg = II->getArgOperand(0); auto ArgType = cast<VectorType>(Arg->getType()); auto RetType = cast<VectorType>(II->getType()); unsigned ArgWidth = ArgType->getNumElements(); unsigned RetWidth = RetType->getNumElements(); assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths"); assert(ArgType->isIntOrIntVectorTy() && ArgType->getScalarSizeInBits() == 16 && "CVTPH2PS input type should be 16-bit integer vector"); assert(RetType->getScalarType()->isFloatTy() && "CVTPH2PS output type should be 32-bit float vector"); // Constant folding: Convert to generic half to single conversion. if (isa<ConstantAggregateZero>(Arg)) return ReplaceInstUsesWith(*II, ConstantAggregateZero::get(RetType)); if (isa<ConstantDataVector>(Arg)) { auto VectorHalfAsShorts = Arg; if (RetWidth < ArgWidth) { SmallVector<int, 8> SubVecMask; for (unsigned i = 0; i != RetWidth; ++i) SubVecMask.push_back((int)i); VectorHalfAsShorts = Builder->CreateShuffleVector( Arg, UndefValue::get(ArgType), SubVecMask); } auto VectorHalfType = VectorType::get(Type::getHalfTy(II->getContext()), RetWidth); auto VectorHalfs = Builder->CreateBitCast(VectorHalfAsShorts, VectorHalfType); auto VectorFloats = Builder->CreateFPExt(VectorHalfs, RetType); return ReplaceInstUsesWith(*II, VectorFloats); } // We only use the lowest lanes of the argument. if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) { II->setArgOperand(0, V); return II; } break; } case Intrinsic::x86_sse_cvtss2si: case Intrinsic::x86_sse_cvtss2si64: case Intrinsic::x86_sse_cvttss2si: case Intrinsic::x86_sse_cvttss2si64: case Intrinsic::x86_sse2_cvtsd2si: case Intrinsic::x86_sse2_cvtsd2si64: case Intrinsic::x86_sse2_cvttsd2si: case Intrinsic::x86_sse2_cvttsd2si64: { // These intrinsics only demand the 0th element of their input vectors. If // we can simplify the input based on that, do so now. Value *Arg = II->getArgOperand(0); unsigned VWidth = Arg->getType()->getVectorNumElements(); if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) { II->setArgOperand(0, V); return II; } break; } // Constant fold ashr( <A x Bi>, Ci ). // Constant fold lshr( <A x Bi>, Ci ). // Constant fold shl( <A x Bi>, Ci ). case Intrinsic::x86_sse2_psrai_d: case Intrinsic::x86_sse2_psrai_w: case Intrinsic::x86_avx2_psrai_d: case Intrinsic::x86_avx2_psrai_w: case Intrinsic::x86_sse2_psrli_d: case Intrinsic::x86_sse2_psrli_q: case Intrinsic::x86_sse2_psrli_w: case Intrinsic::x86_avx2_psrli_d: case Intrinsic::x86_avx2_psrli_q: case Intrinsic::x86_avx2_psrli_w: case Intrinsic::x86_sse2_pslli_d: case Intrinsic::x86_sse2_pslli_q: case Intrinsic::x86_sse2_pslli_w: case Intrinsic::x86_avx2_pslli_d: case Intrinsic::x86_avx2_pslli_q: case Intrinsic::x86_avx2_pslli_w: if (Value *V = SimplifyX86immshift(*II, *Builder)) return ReplaceInstUsesWith(*II, V); break; case Intrinsic::x86_sse2_psra_d: case Intrinsic::x86_sse2_psra_w: case Intrinsic::x86_avx2_psra_d: case Intrinsic::x86_avx2_psra_w: case Intrinsic::x86_sse2_psrl_d: case Intrinsic::x86_sse2_psrl_q: case Intrinsic::x86_sse2_psrl_w: case Intrinsic::x86_avx2_psrl_d: case Intrinsic::x86_avx2_psrl_q: case Intrinsic::x86_avx2_psrl_w: case Intrinsic::x86_sse2_psll_d: case Intrinsic::x86_sse2_psll_q: case Intrinsic::x86_sse2_psll_w: case Intrinsic::x86_avx2_psll_d: case Intrinsic::x86_avx2_psll_q: case Intrinsic::x86_avx2_psll_w: { if (Value *V = SimplifyX86immshift(*II, *Builder)) return ReplaceInstUsesWith(*II, V); // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector // operand to compute the shift amount. Value *Arg1 = II->getArgOperand(1); assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 && "Unexpected packed shift size"); unsigned VWidth = Arg1->getType()->getVectorNumElements(); if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) { II->setArgOperand(1, V); return II; } break; } case Intrinsic::x86_avx2_pmovsxbd: case Intrinsic::x86_avx2_pmovsxbq: case Intrinsic::x86_avx2_pmovsxbw: case Intrinsic::x86_avx2_pmovsxdq: case Intrinsic::x86_avx2_pmovsxwd: case Intrinsic::x86_avx2_pmovsxwq: if (Value *V = SimplifyX86extend(*II, *Builder, true)) return ReplaceInstUsesWith(*II, V); break; case Intrinsic::x86_sse41_pmovzxbd: case Intrinsic::x86_sse41_pmovzxbq: case Intrinsic::x86_sse41_pmovzxbw: case Intrinsic::x86_sse41_pmovzxdq: case Intrinsic::x86_sse41_pmovzxwd: case Intrinsic::x86_sse41_pmovzxwq: case Intrinsic::x86_avx2_pmovzxbd: case Intrinsic::x86_avx2_pmovzxbq: case Intrinsic::x86_avx2_pmovzxbw: case Intrinsic::x86_avx2_pmovzxdq: case Intrinsic::x86_avx2_pmovzxwd: case Intrinsic::x86_avx2_pmovzxwq: if (Value *V = SimplifyX86extend(*II, *Builder, false)) return ReplaceInstUsesWith(*II, V); break; case Intrinsic::x86_sse41_insertps: if (Value *V = SimplifyX86insertps(*II, *Builder)) return ReplaceInstUsesWith(*II, V); break; case Intrinsic::x86_sse4a_extrq: { Value *Op0 = II->getArgOperand(0); Value *Op1 = II->getArgOperand(1); unsigned VWidth0 = Op0->getType()->getVectorNumElements(); unsigned VWidth1 = Op1->getType()->getVectorNumElements(); assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 && VWidth1 == 16 && "Unexpected operand sizes"); // See if we're dealing with constant values. Constant *C1 = dyn_cast<Constant>(Op1); ConstantInt *CILength = C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)0)) : nullptr; ConstantInt *CIIndex = C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)1)) : nullptr; // Attempt to simplify to a constant, shuffle vector or EXTRQI call. if (Value *V = SimplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder)) return ReplaceInstUsesWith(*II, V); // EXTRQ only uses the lowest 64-bits of the first 128-bit vector // operands and the lowest 16-bits of the second. if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) { II->setArgOperand(0, V); return II; } if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) { II->setArgOperand(1, V); return II; } break; } case Intrinsic::x86_sse4a_extrqi: { // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining // bits of the lower 64-bits. The upper 64-bits are undefined. Value *Op0 = II->getArgOperand(0); unsigned VWidth = Op0->getType()->getVectorNumElements(); assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 && "Unexpected operand size"); // See if we're dealing with constant values. ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1)); ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2)); // Attempt to simplify to a constant or shuffle vector. if (Value *V = SimplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder)) return ReplaceInstUsesWith(*II, V); // EXTRQI only uses the lowest 64-bits of the first 128-bit vector // operand. if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) { II->setArgOperand(0, V); return II; } break; } case Intrinsic::x86_sse4a_insertq: { Value *Op0 = II->getArgOperand(0); Value *Op1 = II->getArgOperand(1); unsigned VWidth = Op0->getType()->getVectorNumElements(); assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 && Op1->getType()->getVectorNumElements() == 2 && "Unexpected operand size"); // See if we're dealing with constant values. Constant *C1 = dyn_cast<Constant>(Op1); ConstantInt *CI11 = C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)1)) : nullptr; // Attempt to simplify to a constant, shuffle vector or INSERTQI call. if (CI11) { APInt V11 = CI11->getValue(); APInt Len = V11.zextOrTrunc(6); APInt Idx = V11.lshr(8).zextOrTrunc(6); if (Value *V = SimplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder)) return ReplaceInstUsesWith(*II, V); } // INSERTQ only uses the lowest 64-bits of the first 128-bit vector // operand. if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) { II->setArgOperand(0, V); return II; } break; } case Intrinsic::x86_sse4a_insertqi: { // INSERTQI: Extract lowest Length bits from lower half of second source and // insert over first source starting at Index bit. The upper 64-bits are // undefined. Value *Op0 = II->getArgOperand(0); Value *Op1 = II->getArgOperand(1); unsigned VWidth0 = Op0->getType()->getVectorNumElements(); unsigned VWidth1 = Op1->getType()->getVectorNumElements(); assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 && VWidth1 == 2 && "Unexpected operand sizes"); // See if we're dealing with constant values. ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2)); ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3)); // Attempt to simplify to a constant or shuffle vector. if (CILength && CIIndex) { APInt Len = CILength->getValue().zextOrTrunc(6); APInt Idx = CIIndex->getValue().zextOrTrunc(6); if (Value *V = SimplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder)) return ReplaceInstUsesWith(*II, V); } // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector // operands. if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) { II->setArgOperand(0, V); return II; } if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) { II->setArgOperand(1, V); return II; } break; } case Intrinsic::x86_sse41_pblendvb: case Intrinsic::x86_sse41_blendvps: case Intrinsic::x86_sse41_blendvpd: case Intrinsic::x86_avx_blendv_ps_256: case Intrinsic::x86_avx_blendv_pd_256: case Intrinsic::x86_avx2_pblendvb: { // Convert blendv* to vector selects if the mask is constant. // This optimization is convoluted because the intrinsic is defined as // getting a vector of floats or doubles for the ps and pd versions. // FIXME: That should be changed. Value *Op0 = II->getArgOperand(0); Value *Op1 = II->getArgOperand(1); Value *Mask = II->getArgOperand(2); // fold (blend A, A, Mask) -> A if (Op0 == Op1) return ReplaceInstUsesWith(CI, Op0); // Zero Mask - select 1st argument. if (isa<ConstantAggregateZero>(Mask)) return ReplaceInstUsesWith(CI, Op0); // Constant Mask - select 1st/2nd argument lane based on top bit of mask. if (auto C = dyn_cast<ConstantDataVector>(Mask)) { auto Tyi1 = Builder->getInt1Ty(); auto SelectorType = cast<VectorType>(Mask->getType()); auto EltTy = SelectorType->getElementType(); unsigned Size = SelectorType->getNumElements(); unsigned BitWidth = EltTy->isFloatTy() ? 32 : (EltTy->isDoubleTy() ? 64 : EltTy->getIntegerBitWidth()); assert((BitWidth == 64 || BitWidth == 32 || BitWidth == 8) && "Wrong arguments for variable blend intrinsic"); SmallVector<Constant *, 32> Selectors; for (unsigned I = 0; I < Size; ++I) { // The intrinsics only read the top bit uint64_t Selector; if (BitWidth == 8) Selector = C->getElementAsInteger(I); else Selector = C->getElementAsAPFloat(I).bitcastToAPInt().getZExtValue(); Selectors.push_back(ConstantInt::get(Tyi1, Selector >> (BitWidth - 1))); } auto NewSelector = ConstantVector::get(Selectors); return SelectInst::Create(NewSelector, Op1, Op0, "blendv"); } break; } case Intrinsic::x86_ssse3_pshuf_b_128: case Intrinsic::x86_avx2_pshuf_b: { // Turn pshufb(V1,mask) -> shuffle(V1,Zero,mask) if mask is a constant. auto *V = II->getArgOperand(1); auto *VTy = cast<VectorType>(V->getType()); unsigned NumElts = VTy->getNumElements(); assert((NumElts == 16 || NumElts == 32) && "Unexpected number of elements in shuffle mask!"); // Initialize the resulting shuffle mask to all zeroes. uint32_t Indexes[32] = {0}; if (auto *Mask = dyn_cast<ConstantDataVector>(V)) { // Each byte in the shuffle control mask forms an index to permute the // corresponding byte in the destination operand. for (unsigned I = 0; I < NumElts; ++I) { int8_t Index = Mask->getElementAsInteger(I); // If the most significant bit (bit[7]) of each byte of the shuffle // control mask is set, then zero is written in the result byte. // The zero vector is in the right-hand side of the resulting // shufflevector. // The value of each index is the least significant 4 bits of the // shuffle control byte. Indexes[I] = (Index < 0) ? NumElts : Index & 0xF; } } else if (!isa<ConstantAggregateZero>(V)) break; // The value of each index for the high 128-bit lane is the least // significant 4 bits of the respective shuffle control byte. for (unsigned I = 16; I < NumElts; ++I) Indexes[I] += I & 0xF0; auto NewC = ConstantDataVector::get(V->getContext(), makeArrayRef(Indexes, NumElts)); auto V1 = II->getArgOperand(0); auto V2 = Constant::getNullValue(II->getType()); auto Shuffle = Builder->CreateShuffleVector(V1, V2, NewC); return ReplaceInstUsesWith(CI, Shuffle); } case Intrinsic::x86_avx_vpermilvar_ps: case Intrinsic::x86_avx_vpermilvar_ps_256: case Intrinsic::x86_avx_vpermilvar_pd: case Intrinsic::x86_avx_vpermilvar_pd_256: { // Convert vpermil* to shufflevector if the mask is constant. Value *V = II->getArgOperand(1); unsigned Size = cast<VectorType>(V->getType())->getNumElements(); assert(Size == 8 || Size == 4 || Size == 2); uint32_t Indexes[8]; if (auto C = dyn_cast<ConstantDataVector>(V)) { // The intrinsics only read one or two bits, clear the rest. for (unsigned I = 0; I < Size; ++I) { uint32_t Index = C->getElementAsInteger(I) & 0x3; if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd || II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256) Index >>= 1; Indexes[I] = Index; } } else if (isa<ConstantAggregateZero>(V)) { for (unsigned I = 0; I < Size; ++I) Indexes[I] = 0; } else { break; } // The _256 variants are a bit trickier since the mask bits always index // into the corresponding 128 half. In order to convert to a generic // shuffle, we have to make that explicit. if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_ps_256 || II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256) { for (unsigned I = Size / 2; I < Size; ++I) Indexes[I] += Size / 2; } auto NewC = ConstantDataVector::get(V->getContext(), makeArrayRef(Indexes, Size)); auto V1 = II->getArgOperand(0); auto V2 = UndefValue::get(V1->getType()); auto Shuffle = Builder->CreateShuffleVector(V1, V2, NewC); return ReplaceInstUsesWith(CI, Shuffle); } case Intrinsic::x86_avx_vperm2f128_pd_256: case Intrinsic::x86_avx_vperm2f128_ps_256: case Intrinsic::x86_avx_vperm2f128_si_256: case Intrinsic::x86_avx2_vperm2i128: if (Value *V = SimplifyX86vperm2(*II, *Builder)) return ReplaceInstUsesWith(*II, V); break; case Intrinsic::x86_xop_vpcomb: case Intrinsic::x86_xop_vpcomd: case Intrinsic::x86_xop_vpcomq: case Intrinsic::x86_xop_vpcomw: if (Value *V = SimplifyX86vpcom(*II, *Builder, true)) return ReplaceInstUsesWith(*II, V); break; case Intrinsic::x86_xop_vpcomub: case Intrinsic::x86_xop_vpcomud: case Intrinsic::x86_xop_vpcomuq: case Intrinsic::x86_xop_vpcomuw: if (Value *V = SimplifyX86vpcom(*II, *Builder, false)) return ReplaceInstUsesWith(*II, V); break; case Intrinsic::ppc_altivec_vperm: // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. // Note that ppc_altivec_vperm has a big-endian bias, so when creating // a vectorshuffle for little endian, we must undo the transformation // performed on vec_perm in altivec.h. That is, we must complement // the permutation mask with respect to 31 and reverse the order of // V1 and V2. if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) { assert(Mask->getType()->getVectorNumElements() == 16 && "Bad type for intrinsic!"); // Check that all of the elements are integer constants or undefs. bool AllEltsOk = true; for (unsigned i = 0; i != 16; ++i) { Constant *Elt = Mask->getAggregateElement(i); if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) { AllEltsOk = false; break; } } if (AllEltsOk) { // Cast the input vectors to byte vectors. Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0), Mask->getType()); Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1), Mask->getType()); Value *Result = UndefValue::get(Op0->getType()); // Only extract each element once. Value *ExtractedElts[32]; memset(ExtractedElts, 0, sizeof(ExtractedElts)); for (unsigned i = 0; i != 16; ++i) { if (isa<UndefValue>(Mask->getAggregateElement(i))) continue; unsigned Idx = cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue(); Idx &= 31; // Match the hardware behavior. if (DL.isLittleEndian()) Idx = 31 - Idx; if (!ExtractedElts[Idx]) { Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0; Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1; ExtractedElts[Idx] = Builder->CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse, Builder->getInt32(Idx&15)); } // Insert this value into the result vector. Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx], Builder->getInt32(i)); } return CastInst::Create(Instruction::BitCast, Result, CI.getType()); } } break; case Intrinsic::arm_neon_vld1: case Intrinsic::arm_neon_vld2: case Intrinsic::arm_neon_vld3: case Intrinsic::arm_neon_vld4: case Intrinsic::arm_neon_vld2lane: case Intrinsic::arm_neon_vld3lane: case Intrinsic::arm_neon_vld4lane: case Intrinsic::arm_neon_vst1: case Intrinsic::arm_neon_vst2: case Intrinsic::arm_neon_vst3: case Intrinsic::arm_neon_vst4: case Intrinsic::arm_neon_vst2lane: case Intrinsic::arm_neon_vst3lane: case Intrinsic::arm_neon_vst4lane: { unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), DL, II, AC, DT); unsigned AlignArg = II->getNumArgOperands() - 1; ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg)); if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) { II->setArgOperand(AlignArg, ConstantInt::get(Type::getInt32Ty(II->getContext()), MemAlign, false)); return II; } break; } case Intrinsic::arm_neon_vmulls: case Intrinsic::arm_neon_vmullu: case Intrinsic::aarch64_neon_smull: case Intrinsic::aarch64_neon_umull: { Value *Arg0 = II->getArgOperand(0); Value *Arg1 = II->getArgOperand(1); // Handle mul by zero first: if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) { return ReplaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType())); } // Check for constant LHS & RHS - in this case we just simplify. bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu || II->getIntrinsicID() == Intrinsic::aarch64_neon_umull); VectorType *NewVT = cast<VectorType>(II->getType()); if (Constant *CV0 = dyn_cast<Constant>(Arg0)) { if (Constant *CV1 = dyn_cast<Constant>(Arg1)) { CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext); CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext); return ReplaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1)); } // Couldn't simplify - canonicalize constant to the RHS. std::swap(Arg0, Arg1); } // Handle mul by one: if (Constant *CV1 = dyn_cast<Constant>(Arg1)) if (ConstantInt *Splat = dyn_cast_or_null<ConstantInt>(CV1->getSplatValue())) if (Splat->isOne()) return CastInst::CreateIntegerCast(Arg0, II->getType(), /*isSigned=*/!Zext); break; } case Intrinsic::AMDGPU_rcp: { if (const ConstantFP *C = dyn_cast<ConstantFP>(II->getArgOperand(0))) { const APFloat &ArgVal = C->getValueAPF(); APFloat Val(ArgVal.getSemantics(), 1.0); APFloat::opStatus Status = Val.divide(ArgVal, APFloat::rmNearestTiesToEven); // Only do this if it was exact and therefore not dependent on the // rounding mode. if (Status == APFloat::opOK) return ReplaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val)); } break; } case Intrinsic::stackrestore: { // If the save is right next to the restore, remove the restore. This can // happen when variable allocas are DCE'd. if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) { if (SS->getIntrinsicID() == Intrinsic::stacksave) { if (&*++SS->getIterator() == II) return EraseInstFromFunction(CI); } } // Scan down this block to see if there is another stack restore in the // same block without an intervening call/alloca. BasicBlock::iterator BI(II); TerminatorInst *TI = II->getParent()->getTerminator(); bool CannotRemove = false; for (++BI; &*BI != TI; ++BI) { if (isa<AllocaInst>(BI)) { CannotRemove = true; break; } if (CallInst *BCI = dyn_cast<CallInst>(BI)) { if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) { // If there is a stackrestore below this one, remove this one. if (II->getIntrinsicID() == Intrinsic::stackrestore) return EraseInstFromFunction(CI); // Otherwise, ignore the intrinsic. } else { // If we found a non-intrinsic call, we can't remove the stack // restore. CannotRemove = true; break; } } } // If the stack restore is in a return, resume, or unwind block and if there // are no allocas or calls between the restore and the return, nuke the // restore. if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI))) return EraseInstFromFunction(CI); break; } case Intrinsic::lifetime_start: { // Remove trivially empty lifetime_start/end ranges, i.e. a start // immediately followed by an end (ignoring debuginfo or other // lifetime markers in between). BasicBlock::iterator BI = II->getIterator(), BE = II->getParent()->end(); for (++BI; BI != BE; ++BI) { if (IntrinsicInst *LTE = dyn_cast<IntrinsicInst>(BI)) { if (isa<DbgInfoIntrinsic>(LTE) || LTE->getIntrinsicID() == Intrinsic::lifetime_start) continue; if (LTE->getIntrinsicID() == Intrinsic::lifetime_end) { if (II->getOperand(0) == LTE->getOperand(0) && II->getOperand(1) == LTE->getOperand(1)) { EraseInstFromFunction(*LTE); return EraseInstFromFunction(*II); } continue; } } break; } break; } case Intrinsic::assume: { // Canonicalize assume(a && b) -> assume(a); assume(b); // Note: New assumption intrinsics created here are registered by // the InstCombineIRInserter object. Value *IIOperand = II->getArgOperand(0), *A, *B, *AssumeIntrinsic = II->getCalledValue(); if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) { Builder->CreateCall(AssumeIntrinsic, A, II->getName()); Builder->CreateCall(AssumeIntrinsic, B, II->getName()); return EraseInstFromFunction(*II); } // assume(!(a || b)) -> assume(!a); assume(!b); if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) { Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(A), II->getName()); Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(B), II->getName()); return EraseInstFromFunction(*II); } // assume( (load addr) != null ) -> add 'nonnull' metadata to load // (if assume is valid at the load) if (ICmpInst* ICmp = dyn_cast<ICmpInst>(IIOperand)) { Value *LHS = ICmp->getOperand(0); Value *RHS = ICmp->getOperand(1); if (ICmpInst::ICMP_NE == ICmp->getPredicate() && isa<LoadInst>(LHS) && isa<Constant>(RHS) && RHS->getType()->isPointerTy() && cast<Constant>(RHS)->isNullValue()) { LoadInst* LI = cast<LoadInst>(LHS); if (isValidAssumeForContext(II, LI, DT)) { MDNode *MD = MDNode::get(II->getContext(), None); LI->setMetadata(LLVMContext::MD_nonnull, MD); return EraseInstFromFunction(*II); } } // TODO: apply nonnull return attributes to calls and invokes // TODO: apply range metadata for range check patterns? } // If there is a dominating assume with the same condition as this one, // then this one is redundant, and should be removed. APInt KnownZero(1, 0), KnownOne(1, 0); computeKnownBits(IIOperand, KnownZero, KnownOne, 0, II); if (KnownOne.isAllOnesValue()) return EraseInstFromFunction(*II); break; } case Intrinsic::experimental_gc_relocate: { // Translate facts known about a pointer before relocating into // facts about the relocate value, while being careful to // preserve relocation semantics. GCRelocateOperands Operands(II); Value *DerivedPtr = Operands.getDerivedPtr(); auto *GCRelocateType = cast<PointerType>(II->getType()); // Remove the relocation if unused, note that this check is required // to prevent the cases below from looping forever. if (II->use_empty()) return EraseInstFromFunction(*II); // Undef is undef, even after relocation. // TODO: provide a hook for this in GCStrategy. This is clearly legal for // most practical collectors, but there was discussion in the review thread // about whether it was legal for all possible collectors. if (isa<UndefValue>(DerivedPtr)) { // gc_relocate is uncasted. Use undef of gc_relocate's type to replace it. return ReplaceInstUsesWith(*II, UndefValue::get(GCRelocateType)); } // The relocation of null will be null for most any collector. // TODO: provide a hook for this in GCStrategy. There might be some weird // collector this property does not hold for. if (isa<ConstantPointerNull>(DerivedPtr)) { // gc_relocate is uncasted. Use null-pointer of gc_relocate's type to replace it. return ReplaceInstUsesWith(*II, ConstantPointerNull::get(GCRelocateType)); } // isKnownNonNull -> nonnull attribute if (isKnownNonNullAt(DerivedPtr, II, DT, TLI)) II->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull); // isDereferenceablePointer -> deref attribute if (isDereferenceablePointer(DerivedPtr, DL)) { if (Argument *A = dyn_cast<Argument>(DerivedPtr)) { uint64_t Bytes = A->getDereferenceableBytes(); II->addDereferenceableAttr(AttributeSet::ReturnIndex, Bytes); } } // TODO: bitcast(relocate(p)) -> relocate(bitcast(p)) // Canonicalize on the type from the uses to the defs // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...) } } return visitCallSite(II); } // InvokeInst simplification // Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) { return visitCallSite(&II); } /// isSafeToEliminateVarargsCast - If this cast does not affect the value /// passed through the varargs area, we can eliminate the use of the cast. static bool isSafeToEliminateVarargsCast(const CallSite CS, const DataLayout &DL, const CastInst *const CI, const int ix) { if (!CI->isLosslessCast()) return false; // If this is a GC intrinsic, avoid munging types. We need types for // statepoint reconstruction in SelectionDAG. // TODO: This is probably something which should be expanded to all // intrinsics since the entire point of intrinsics is that // they are understandable by the optimizer. if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS)) return false; // The size of ByVal or InAlloca arguments is derived from the type, so we // can't change to a type with a different size. If the size were // passed explicitly we could avoid this check. if (!CS.isByValOrInAllocaArgument(ix)) return true; Type* SrcTy = cast<PointerType>(CI->getOperand(0)->getType())->getElementType(); Type* DstTy = cast<PointerType>(CI->getType())->getElementType(); if (!SrcTy->isSized() || !DstTy->isSized()) return false; if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy)) return false; return true; } // Try to fold some different type of calls here. // Currently we're only working with the checking functions, memcpy_chk, // mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk, // strcat_chk and strncat_chk. Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) { if (!CI->getCalledFunction()) return nullptr; auto InstCombineRAUW = [this](Instruction *From, Value *With) { ReplaceInstUsesWith(*From, With); }; LibCallSimplifier Simplifier(DL, TLI, InstCombineRAUW); if (Value *With = Simplifier.optimizeCall(CI)) { ++NumSimplified; return CI->use_empty() ? CI : ReplaceInstUsesWith(*CI, With); } return nullptr; } static IntrinsicInst *FindInitTrampolineFromAlloca(Value *TrampMem) { // Strip off at most one level of pointer casts, looking for an alloca. This // is good enough in practice and simpler than handling any number of casts. Value *Underlying = TrampMem->stripPointerCasts(); if (Underlying != TrampMem && (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem)) return nullptr; if (!isa<AllocaInst>(Underlying)) return nullptr; IntrinsicInst *InitTrampoline = nullptr; for (User *U : TrampMem->users()) { IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); if (!II) return nullptr; if (II->getIntrinsicID() == Intrinsic::init_trampoline) { if (InitTrampoline) // More than one init_trampoline writes to this value. Give up. return nullptr; InitTrampoline = II; continue; } if (II->getIntrinsicID() == Intrinsic::adjust_trampoline) // Allow any number of calls to adjust.trampoline. continue; return nullptr; } // No call to init.trampoline found. if (!InitTrampoline) return nullptr; // Check that the alloca is being used in the expected way. if (InitTrampoline->getOperand(0) != TrampMem) return nullptr; return InitTrampoline; } static IntrinsicInst *FindInitTrampolineFromBB(IntrinsicInst *AdjustTramp, Value *TrampMem) { // Visit all the previous instructions in the basic block, and try to find a // init.trampoline which has a direct path to the adjust.trampoline. for (BasicBlock::iterator I = AdjustTramp->getIterator(), E = AdjustTramp->getParent()->begin(); I != E;) { Instruction *Inst = &*--I; if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) if (II->getIntrinsicID() == Intrinsic::init_trampoline && II->getOperand(0) == TrampMem) return II; if (Inst->mayWriteToMemory()) return nullptr; } return nullptr; } // Given a call to llvm.adjust.trampoline, find and return the corresponding // call to llvm.init.trampoline if the call to the trampoline can be optimized // to a direct call to a function. Otherwise return NULL. // static IntrinsicInst *FindInitTrampoline(Value *Callee) { Callee = Callee->stripPointerCasts(); IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee); if (!AdjustTramp || AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline) return nullptr; Value *TrampMem = AdjustTramp->getOperand(0); if (IntrinsicInst *IT = FindInitTrampolineFromAlloca(TrampMem)) return IT; if (IntrinsicInst *IT = FindInitTrampolineFromBB(AdjustTramp, TrampMem)) return IT; return nullptr; } // visitCallSite - Improvements for call and invoke instructions. // Instruction *InstCombiner::visitCallSite(CallSite CS) { if (isAllocLikeFn(CS.getInstruction(), TLI)) return visitAllocSite(*CS.getInstruction()); bool Changed = false; // Mark any parameters that are known to be non-null with the nonnull // attribute. This is helpful for inlining calls to functions with null // checks on their arguments. SmallVector<unsigned, 4> Indices; unsigned ArgNo = 0; for (Value *V : CS.args()) { if (V->getType()->isPointerTy() && !CS.paramHasAttr(ArgNo+1, Attribute::NonNull) && isKnownNonNullAt(V, CS.getInstruction(), DT, TLI)) Indices.push_back(ArgNo + 1); ArgNo++; } assert(ArgNo == CS.arg_size() && "sanity check"); if (!Indices.empty()) { AttributeSet AS = CS.getAttributes(); LLVMContext &Ctx = CS.getInstruction()->getContext(); AS = AS.addAttribute(Ctx, Indices, Attribute::get(Ctx, Attribute::NonNull)); CS.setAttributes(AS); Changed = true; } // If the callee is a pointer to a function, attempt to move any casts to the // arguments of the call/invoke. Value *Callee = CS.getCalledValue(); if (!isa<Function>(Callee) && transformConstExprCastCall(CS)) return nullptr; if (Function *CalleeF = dyn_cast<Function>(Callee)) // If the call and callee calling conventions don't match, this call must // be unreachable, as the call is undefined. if (CalleeF->getCallingConv() != CS.getCallingConv() && // Only do this for calls to a function with a body. A prototype may // not actually end up matching the implementation's calling conv for a // variety of reasons (e.g. it may be written in assembly). !CalleeF->isDeclaration()) { Instruction *OldCall = CS.getInstruction(); new StoreInst(ConstantInt::getTrue(Callee->getContext()), UndefValue::get(Type::getInt1PtrTy(Callee->getContext())), OldCall); // If OldCall does not return void then replaceAllUsesWith undef. // This allows ValueHandlers and custom metadata to adjust itself. if (!OldCall->getType()->isVoidTy()) ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType())); if (isa<CallInst>(OldCall)) return EraseInstFromFunction(*OldCall); // We cannot remove an invoke, because it would change the CFG, just // change the callee to a null pointer. cast<InvokeInst>(OldCall)->setCalledFunction( Constant::getNullValue(CalleeF->getType())); return nullptr; } if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { // If CS does not return void then replaceAllUsesWith undef. // This allows ValueHandlers and custom metadata to adjust itself. if (!CS.getInstruction()->getType()->isVoidTy()) ReplaceInstUsesWith(*CS.getInstruction(), UndefValue::get(CS.getInstruction()->getType())); if (isa<InvokeInst>(CS.getInstruction())) { // Can't remove an invoke because we cannot change the CFG. return nullptr; } // This instruction is not reachable, just remove it. We insert a store to // undef so that we know that this code is not reachable, despite the fact // that we can't modify the CFG here. new StoreInst(ConstantInt::getTrue(Callee->getContext()), UndefValue::get(Type::getInt1PtrTy(Callee->getContext())), CS.getInstruction()); return EraseInstFromFunction(*CS.getInstruction()); } if (IntrinsicInst *II = FindInitTrampoline(Callee)) return transformCallThroughTrampoline(CS, II); PointerType *PTy = cast<PointerType>(Callee->getType()); FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); if (FTy->isVarArg()) { int ix = FTy->getNumParams(); // See if we can optimize any arguments passed through the varargs area of // the call. for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(), E = CS.arg_end(); I != E; ++I, ++ix) { CastInst *CI = dyn_cast<CastInst>(*I); if (CI && isSafeToEliminateVarargsCast(CS, DL, CI, ix)) { *I = CI->getOperand(0); Changed = true; } } } if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) { // Inline asm calls cannot throw - mark them 'nounwind'. CS.setDoesNotThrow(); Changed = true; } // Try to optimize the call if possible, we require DataLayout for most of // this. None of these calls are seen as possibly dead so go ahead and // delete the instruction now. if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) { Instruction *I = tryOptimizeCall(CI); // If we changed something return the result, etc. Otherwise let // the fallthrough check. if (I) return EraseInstFromFunction(*I); } return Changed ? CS.getInstruction() : nullptr; } // transformConstExprCastCall - If the callee is a constexpr cast of a function, // attempt to move the cast to the arguments of the call/invoke. // bool InstCombiner::transformConstExprCastCall(CallSite CS) { Function *Callee = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts()); if (!Callee) return false; // The prototype of thunks are a lie, don't try to directly call such // functions. if (Callee->hasFnAttribute("thunk")) return false; Instruction *Caller = CS.getInstruction(); const AttributeSet &CallerPAL = CS.getAttributes(); // Okay, this is a cast from a function to a different type. Unless doing so // would cause a type conversion of one of our arguments, change this call to // be a direct call with arguments casted to the appropriate types. // FunctionType *FT = Callee->getFunctionType(); Type *OldRetTy = Caller->getType(); Type *NewRetTy = FT->getReturnType(); // Check to see if we are changing the return type... if (OldRetTy != NewRetTy) { if (NewRetTy->isStructTy()) return false; // TODO: Handle multiple return values. if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) { if (Callee->isDeclaration()) return false; // Cannot transform this return value. if (!Caller->use_empty() && // void -> non-void is handled specially !NewRetTy->isVoidTy()) return false; // Cannot transform this return value. } if (!CallerPAL.isEmpty() && !Caller->use_empty()) { AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex); if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy))) return false; // Attribute not compatible with transformed value. } // If the callsite is an invoke instruction, and the return value is used by // a PHI node in a successor, we cannot change the return type of the call // because there is no place to put the cast instruction (without breaking // the critical edge). Bail out in this case. if (!Caller->use_empty()) if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) for (User *U : II->users()) if (PHINode *PN = dyn_cast<PHINode>(U)) if (PN->getParent() == II->getNormalDest() || PN->getParent() == II->getUnwindDest()) return false; } unsigned NumActualArgs = CS.arg_size(); unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); // Prevent us turning: // declare void @takes_i32_inalloca(i32* inalloca) // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0) // // into: // call void @takes_i32_inalloca(i32* null) // // Similarly, avoid folding away bitcasts of byval calls. if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) || Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal)) return false; CallSite::arg_iterator AI = CS.arg_begin(); for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { Type *ParamTy = FT->getParamType(i); Type *ActTy = (*AI)->getType(); if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL)) return false; // Cannot transform this parameter value. if (AttrBuilder(CallerPAL.getParamAttributes(i + 1), i + 1). overlaps(AttributeFuncs::typeIncompatible(ParamTy))) return false; // Attribute not compatible with transformed value. if (CS.isInAllocaArgument(i)) return false; // Cannot transform to and from inalloca. // If the parameter is passed as a byval argument, then we have to have a // sized type and the sized type has to have the same size as the old type. if (ParamTy != ActTy && CallerPAL.getParamAttributes(i + 1).hasAttribute(i + 1, Attribute::ByVal)) { PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy); if (!ParamPTy || !ParamPTy->getElementType()->isSized()) return false; Type *CurElTy = ActTy->getPointerElementType(); if (DL.getTypeAllocSize(CurElTy) != DL.getTypeAllocSize(ParamPTy->getElementType())) return false; } } if (Callee->isDeclaration()) { // Do not delete arguments unless we have a function body. if (FT->getNumParams() < NumActualArgs && !FT->isVarArg()) return false; // If the callee is just a declaration, don't change the varargsness of the // call. We don't want to introduce a varargs call where one doesn't // already exist. PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType()); if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg()) return false; // If both the callee and the cast type are varargs, we still have to make // sure the number of fixed parameters are the same or we have the same // ABI issues as if we introduce a varargs call. if (FT->isVarArg() && cast<FunctionType>(APTy->getElementType())->isVarArg() && FT->getNumParams() != cast<FunctionType>(APTy->getElementType())->getNumParams()) return false; } if (FT->getNumParams() < NumActualArgs && FT->isVarArg() && !CallerPAL.isEmpty()) // In this case we have more arguments than the new function type, but we // won't be dropping them. Check that these extra arguments have attributes // that are compatible with being a vararg call argument. for (unsigned i = CallerPAL.getNumSlots(); i; --i) { unsigned Index = CallerPAL.getSlotIndex(i - 1); if (Index <= FT->getNumParams()) break; // Check if it has an attribute that's incompatible with varargs. AttributeSet PAttrs = CallerPAL.getSlotAttributes(i - 1); if (PAttrs.hasAttribute(Index, Attribute::StructRet)) return false; } // Okay, we decided that this is a safe thing to do: go ahead and start // inserting cast instructions as necessary. std::vector<Value*> Args; Args.reserve(NumActualArgs); SmallVector<AttributeSet, 8> attrVec; attrVec.reserve(NumCommonArgs); // Get any return attributes. AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex); // If the return value is not being used, the type may not be compatible // with the existing attributes. Wipe out any problematic attributes. RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy)); // Add the new return attributes. if (RAttrs.hasAttributes()) attrVec.push_back(AttributeSet::get(Caller->getContext(), AttributeSet::ReturnIndex, RAttrs)); AI = CS.arg_begin(); for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { Type *ParamTy = FT->getParamType(i); if ((*AI)->getType() == ParamTy) { Args.push_back(*AI); } else { Args.push_back(Builder->CreateBitOrPointerCast(*AI, ParamTy)); } // Add any parameter attributes. AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1); if (PAttrs.hasAttributes()) attrVec.push_back(AttributeSet::get(Caller->getContext(), i + 1, PAttrs)); } // If the function takes more arguments than the call was taking, add them // now. for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) Args.push_back(Constant::getNullValue(FT->getParamType(i))); // If we are removing arguments to the function, emit an obnoxious warning. if (FT->getNumParams() < NumActualArgs) { // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722 if (FT->isVarArg()) { // Add all of the arguments in their promoted form to the arg list. for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { Type *PTy = getPromotedType((*AI)->getType()); if (PTy != (*AI)->getType()) { // Must promote to pass through va_arg area! Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false, PTy, false); Args.push_back(Builder->CreateCast(opcode, *AI, PTy)); } else { Args.push_back(*AI); } // Add any parameter attributes. AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1); if (PAttrs.hasAttributes()) attrVec.push_back(AttributeSet::get(FT->getContext(), i + 1, PAttrs)); } } } AttributeSet FnAttrs = CallerPAL.getFnAttributes(); if (CallerPAL.hasAttributes(AttributeSet::FunctionIndex)) attrVec.push_back(AttributeSet::get(Callee->getContext(), FnAttrs)); if (NewRetTy->isVoidTy()) Caller->setName(""); // Void type should not have a name. const AttributeSet &NewCallerPAL = AttributeSet::get(Callee->getContext(), attrVec); SmallVector<OperandBundleDef, 1> OpBundles; CS.getOperandBundlesAsDefs(OpBundles); Instruction *NC; if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { NC = Builder->CreateInvoke(Callee, II->getNormalDest(), II->getUnwindDest(), Args, OpBundles); NC->takeName(II); cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv()); cast<InvokeInst>(NC)->setAttributes(NewCallerPAL); } else { CallInst *CI = cast<CallInst>(Caller); NC = Builder->CreateCall(Callee, Args, OpBundles); NC->takeName(CI); if (CI->isTailCall()) cast<CallInst>(NC)->setTailCall(); cast<CallInst>(NC)->setCallingConv(CI->getCallingConv()); cast<CallInst>(NC)->setAttributes(NewCallerPAL); } // Insert a cast of the return type as necessary. Value *NV = NC; if (OldRetTy != NV->getType() && !Caller->use_empty()) { if (!NV->getType()->isVoidTy()) { NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy); NC->setDebugLoc(Caller->getDebugLoc()); // If this is an invoke instruction, we should insert it after the first // non-phi, instruction in the normal successor block. if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt(); InsertNewInstBefore(NC, *I); } else { // Otherwise, it's a call, just insert cast right after the call. InsertNewInstBefore(NC, *Caller); } Worklist.AddUsersToWorkList(*Caller); } else { NV = UndefValue::get(Caller->getType()); } } if (!Caller->use_empty()) ReplaceInstUsesWith(*Caller, NV); else if (Caller->hasValueHandle()) { if (OldRetTy == NV->getType()) ValueHandleBase::ValueIsRAUWd(Caller, NV); else // We cannot call ValueIsRAUWd with a different type, and the // actual tracked value will disappear. ValueHandleBase::ValueIsDeleted(Caller); } EraseInstFromFunction(*Caller); return true; } // transformCallThroughTrampoline - Turn a call to a function created by // init_trampoline / adjust_trampoline intrinsic pair into a direct call to the // underlying function. // Instruction * InstCombiner::transformCallThroughTrampoline(CallSite CS, IntrinsicInst *Tramp) { Value *Callee = CS.getCalledValue(); PointerType *PTy = cast<PointerType>(Callee->getType()); FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); const AttributeSet &Attrs = CS.getAttributes(); // If the call already has the 'nest' attribute somewhere then give up - // otherwise 'nest' would occur twice after splicing in the chain. if (Attrs.hasAttrSomewhere(Attribute::Nest)) return nullptr; assert(Tramp && "transformCallThroughTrampoline called with incorrect CallSite."); Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts()); PointerType *NestFPTy = cast<PointerType>(NestF->getType()); FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType()); const AttributeSet &NestAttrs = NestF->getAttributes(); if (!NestAttrs.isEmpty()) { unsigned NestIdx = 1; Type *NestTy = nullptr; AttributeSet NestAttr; // Look for a parameter marked with the 'nest' attribute. for (FunctionType::param_iterator I = NestFTy->param_begin(), E = NestFTy->param_end(); I != E; ++NestIdx, ++I) if (NestAttrs.hasAttribute(NestIdx, Attribute::Nest)) { // Record the parameter type and any other attributes. NestTy = *I; NestAttr = NestAttrs.getParamAttributes(NestIdx); break; } if (NestTy) { Instruction *Caller = CS.getInstruction(); std::vector<Value*> NewArgs; NewArgs.reserve(CS.arg_size() + 1); SmallVector<AttributeSet, 8> NewAttrs; NewAttrs.reserve(Attrs.getNumSlots() + 1); // Insert the nest argument into the call argument list, which may // mean appending it. Likewise for attributes. // Add any result attributes. if (Attrs.hasAttributes(AttributeSet::ReturnIndex)) NewAttrs.push_back(AttributeSet::get(Caller->getContext(), Attrs.getRetAttributes())); { unsigned Idx = 1; CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); do { if (Idx == NestIdx) { // Add the chain argument and attributes. Value *NestVal = Tramp->getArgOperand(2); if (NestVal->getType() != NestTy) NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest"); NewArgs.push_back(NestVal); NewAttrs.push_back(AttributeSet::get(Caller->getContext(), NestAttr)); } if (I == E) break; // Add the original argument and attributes. NewArgs.push_back(*I); AttributeSet Attr = Attrs.getParamAttributes(Idx); if (Attr.hasAttributes(Idx)) { AttrBuilder B(Attr, Idx); NewAttrs.push_back(AttributeSet::get(Caller->getContext(), Idx + (Idx >= NestIdx), B)); } ++Idx, ++I; } while (1); } // Add any function attributes. if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) NewAttrs.push_back(AttributeSet::get(FTy->getContext(), Attrs.getFnAttributes())); // The trampoline may have been bitcast to a bogus type (FTy). // Handle this by synthesizing a new function type, equal to FTy // with the chain parameter inserted. std::vector<Type*> NewTypes; NewTypes.reserve(FTy->getNumParams()+1); // Insert the chain's type into the list of parameter types, which may // mean appending it. { unsigned Idx = 1; FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); do { if (Idx == NestIdx) // Add the chain's type. NewTypes.push_back(NestTy); if (I == E) break; // Add the original type. NewTypes.push_back(*I); ++Idx, ++I; } while (1); } // Replace the trampoline call with a direct call. Let the generic // code sort out any function type mismatches. FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg()); Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ? NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy)); const AttributeSet &NewPAL = AttributeSet::get(FTy->getContext(), NewAttrs); Instruction *NewCaller; if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { NewCaller = InvokeInst::Create(NewCallee, II->getNormalDest(), II->getUnwindDest(), NewArgs); cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv()); cast<InvokeInst>(NewCaller)->setAttributes(NewPAL); } else { NewCaller = CallInst::Create(NewCallee, NewArgs); if (cast<CallInst>(Caller)->isTailCall()) cast<CallInst>(NewCaller)->setTailCall(); cast<CallInst>(NewCaller)-> setCallingConv(cast<CallInst>(Caller)->getCallingConv()); cast<CallInst>(NewCaller)->setAttributes(NewPAL); } return NewCaller; } } // Replace the trampoline call with a direct call. Since there is no 'nest' // parameter, there is no need to adjust the argument list. Let the generic // code sort out any function type mismatches. Constant *NewCallee = NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy); CS.setCalledFunction(NewCallee); return CS.getInstruction(); }