//===-- LowerBitSets.cpp - Bitset lowering pass ---------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass lowers bitset metadata and calls to the llvm.bitset.test intrinsic.
// See http://llvm.org/docs/LangRef.html#bitsets for more information.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/LowerBitSets.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"

using namespace llvm;

#define DEBUG_TYPE "lowerbitsets"

STATISTIC(ByteArraySizeBits, "Byte array size in bits");
STATISTIC(ByteArraySizeBytes, "Byte array size in bytes");
STATISTIC(NumByteArraysCreated, "Number of byte arrays created");
STATISTIC(NumBitSetCallsLowered, "Number of bitset calls lowered");
STATISTIC(NumBitSetDisjointSets, "Number of disjoint sets of bitsets");

static cl::opt<bool> AvoidReuse(
    "lowerbitsets-avoid-reuse",
    cl::desc("Try to avoid reuse of byte array addresses using aliases"),
    cl::Hidden, cl::init(true));

bool BitSetInfo::containsGlobalOffset(uint64_t Offset) const {
  if (Offset < ByteOffset)
    return false;

  if ((Offset - ByteOffset) % (uint64_t(1) << AlignLog2) != 0)
    return false;

  uint64_t BitOffset = (Offset - ByteOffset) >> AlignLog2;
  if (BitOffset >= BitSize)
    return false;

  return Bits.count(BitOffset);
}

bool BitSetInfo::containsValue(
    const DataLayout &DL,
    const DenseMap<GlobalObject *, uint64_t> &GlobalLayout, Value *V,
    uint64_t COffset) const {
  if (auto GV = dyn_cast<GlobalObject>(V)) {
    auto I = GlobalLayout.find(GV);
    if (I == GlobalLayout.end())
      return false;
    return containsGlobalOffset(I->second + COffset);
  }

  if (auto GEP = dyn_cast<GEPOperator>(V)) {
    APInt APOffset(DL.getPointerSizeInBits(0), 0);
    bool Result = GEP->accumulateConstantOffset(DL, APOffset);
    if (!Result)
      return false;
    COffset += APOffset.getZExtValue();
    return containsValue(DL, GlobalLayout, GEP->getPointerOperand(),
                         COffset);
  }

  if (auto Op = dyn_cast<Operator>(V)) {
    if (Op->getOpcode() == Instruction::BitCast)
      return containsValue(DL, GlobalLayout, Op->getOperand(0), COffset);

    if (Op->getOpcode() == Instruction::Select)
      return containsValue(DL, GlobalLayout, Op->getOperand(1), COffset) &&
             containsValue(DL, GlobalLayout, Op->getOperand(2), COffset);
  }

  return false;
}

void BitSetInfo::print(raw_ostream &OS) const {
  OS << "offset " << ByteOffset << " size " << BitSize << " align "
     << (1 << AlignLog2);

  if (isAllOnes()) {
    OS << " all-ones\n";
    return;
  }

  OS << " { ";
  for (uint64_t B : Bits)
    OS << B << ' ';
  OS << "}\n";
}

BitSetInfo BitSetBuilder::build() {
  if (Min > Max)
    Min = 0;

  // Normalize each offset against the minimum observed offset, and compute
  // the bitwise OR of each of the offsets. The number of trailing zeros
  // in the mask gives us the log2 of the alignment of all offsets, which
  // allows us to compress the bitset by only storing one bit per aligned
  // address.
  uint64_t Mask = 0;
  for (uint64_t &Offset : Offsets) {
    Offset -= Min;
    Mask |= Offset;
  }

  BitSetInfo BSI;
  BSI.ByteOffset = Min;

  BSI.AlignLog2 = 0;
  if (Mask != 0)
    BSI.AlignLog2 = countTrailingZeros(Mask, ZB_Undefined);

  // Build the compressed bitset while normalizing the offsets against the
  // computed alignment.
  BSI.BitSize = ((Max - Min) >> BSI.AlignLog2) + 1;
  for (uint64_t Offset : Offsets) {
    Offset >>= BSI.AlignLog2;
    BSI.Bits.insert(Offset);
  }

  return BSI;
}

void GlobalLayoutBuilder::addFragment(const std::set<uint64_t> &F) {
  // Create a new fragment to hold the layout for F.
  Fragments.emplace_back();
  std::vector<uint64_t> &Fragment = Fragments.back();
  uint64_t FragmentIndex = Fragments.size() - 1;

  for (auto ObjIndex : F) {
    uint64_t OldFragmentIndex = FragmentMap[ObjIndex];
    if (OldFragmentIndex == 0) {
      // We haven't seen this object index before, so just add it to the current
      // fragment.
      Fragment.push_back(ObjIndex);
    } else {
      // This index belongs to an existing fragment. Copy the elements of the
      // old fragment into this one and clear the old fragment. We don't update
      // the fragment map just yet, this ensures that any further references to
      // indices from the old fragment in this fragment do not insert any more
      // indices.
      std::vector<uint64_t> &OldFragment = Fragments[OldFragmentIndex];
      Fragment.insert(Fragment.end(), OldFragment.begin(), OldFragment.end());
      OldFragment.clear();
    }
  }

  // Update the fragment map to point our object indices to this fragment.
  for (uint64_t ObjIndex : Fragment)
    FragmentMap[ObjIndex] = FragmentIndex;
}

void ByteArrayBuilder::allocate(const std::set<uint64_t> &Bits,
                                uint64_t BitSize, uint64_t &AllocByteOffset,
                                uint8_t &AllocMask) {
  // Find the smallest current allocation.
  unsigned Bit = 0;
  for (unsigned I = 1; I != BitsPerByte; ++I)
    if (BitAllocs[I] < BitAllocs[Bit])
      Bit = I;

  AllocByteOffset = BitAllocs[Bit];

  // Add our size to it.
  unsigned ReqSize = AllocByteOffset + BitSize;
  BitAllocs[Bit] = ReqSize;
  if (Bytes.size() < ReqSize)
    Bytes.resize(ReqSize);

  // Set our bits.
  AllocMask = 1 << Bit;
  for (uint64_t B : Bits)
    Bytes[AllocByteOffset + B] |= AllocMask;
}

namespace {

struct ByteArrayInfo {
  std::set<uint64_t> Bits;
  uint64_t BitSize;
  GlobalVariable *ByteArray;
  Constant *Mask;
};

struct LowerBitSets : public ModulePass {
  static char ID;
  LowerBitSets() : ModulePass(ID) {
    initializeLowerBitSetsPass(*PassRegistry::getPassRegistry());
  }

  Module *M;

  bool LinkerSubsectionsViaSymbols;
  Triple::ArchType Arch;
  Triple::ObjectFormatType ObjectFormat;
  IntegerType *Int1Ty;
  IntegerType *Int8Ty;
  IntegerType *Int32Ty;
  Type *Int32PtrTy;
  IntegerType *Int64Ty;
  IntegerType *IntPtrTy;

  // The llvm.bitsets named metadata.
  NamedMDNode *BitSetNM;

  // Mapping from bitset identifiers to the call sites that test them.
  DenseMap<Metadata *, std::vector<CallInst *>> BitSetTestCallSites;

  std::vector<ByteArrayInfo> ByteArrayInfos;

  BitSetInfo
  buildBitSet(Metadata *BitSet,
              const DenseMap<GlobalObject *, uint64_t> &GlobalLayout);
  ByteArrayInfo *createByteArray(BitSetInfo &BSI);
  void allocateByteArrays();
  Value *createBitSetTest(IRBuilder<> &B, BitSetInfo &BSI, ByteArrayInfo *&BAI,
                          Value *BitOffset);
  void lowerBitSetCalls(ArrayRef<Metadata *> BitSets,
                        Constant *CombinedGlobalAddr,
                        const DenseMap<GlobalObject *, uint64_t> &GlobalLayout);
  Value *
  lowerBitSetCall(CallInst *CI, BitSetInfo &BSI, ByteArrayInfo *&BAI,
                  Constant *CombinedGlobal,
                  const DenseMap<GlobalObject *, uint64_t> &GlobalLayout);
  void buildBitSetsFromGlobalVariables(ArrayRef<Metadata *> BitSets,
                                       ArrayRef<GlobalVariable *> Globals);
  unsigned getJumpTableEntrySize();
  Type *getJumpTableEntryType();
  Constant *createJumpTableEntry(GlobalObject *Src, Function *Dest,
                                 unsigned Distance);
  void verifyBitSetMDNode(MDNode *Op);
  void buildBitSetsFromFunctions(ArrayRef<Metadata *> BitSets,
                                 ArrayRef<Function *> Functions);
  void buildBitSetsFromDisjointSet(ArrayRef<Metadata *> BitSets,
                                   ArrayRef<GlobalObject *> Globals);
  bool buildBitSets();
  bool eraseBitSetMetadata();

  bool doInitialization(Module &M) override;
  bool runOnModule(Module &M) override;
};

} // anonymous namespace

INITIALIZE_PASS_BEGIN(LowerBitSets, "lowerbitsets",
                "Lower bitset metadata", false, false)
INITIALIZE_PASS_END(LowerBitSets, "lowerbitsets",
                "Lower bitset metadata", false, false)
char LowerBitSets::ID = 0;

ModulePass *llvm::createLowerBitSetsPass() { return new LowerBitSets; }

bool LowerBitSets::doInitialization(Module &Mod) {
  M = &Mod;
  const DataLayout &DL = Mod.getDataLayout();

  Triple TargetTriple(M->getTargetTriple());
  LinkerSubsectionsViaSymbols = TargetTriple.isMacOSX();
  Arch = TargetTriple.getArch();
  ObjectFormat = TargetTriple.getObjectFormat();

  Int1Ty = Type::getInt1Ty(M->getContext());
  Int8Ty = Type::getInt8Ty(M->getContext());
  Int32Ty = Type::getInt32Ty(M->getContext());
  Int32PtrTy = PointerType::getUnqual(Int32Ty);
  Int64Ty = Type::getInt64Ty(M->getContext());
  IntPtrTy = DL.getIntPtrType(M->getContext(), 0);

  BitSetNM = M->getNamedMetadata("llvm.bitsets");

  BitSetTestCallSites.clear();

  return false;
}

/// Build a bit set for BitSet using the object layouts in
/// GlobalLayout.
BitSetInfo LowerBitSets::buildBitSet(
    Metadata *BitSet,
    const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) {
  BitSetBuilder BSB;

  // Compute the byte offset of each element of this bitset.
  if (BitSetNM) {
    for (MDNode *Op : BitSetNM->operands()) {
      if (Op->getOperand(0) != BitSet || !Op->getOperand(1))
        continue;
      Constant *OpConst =
          cast<ConstantAsMetadata>(Op->getOperand(1))->getValue();
      if (auto GA = dyn_cast<GlobalAlias>(OpConst))
        OpConst = GA->getAliasee();
      auto OpGlobal = dyn_cast<GlobalObject>(OpConst);
      if (!OpGlobal)
        continue;
      uint64_t Offset =
          cast<ConstantInt>(cast<ConstantAsMetadata>(Op->getOperand(2))
                                ->getValue())->getZExtValue();

      Offset += GlobalLayout.find(OpGlobal)->second;

      BSB.addOffset(Offset);
    }
  }

  return BSB.build();
}

/// Build a test that bit BitOffset mod sizeof(Bits)*8 is set in
/// Bits. This pattern matches to the bt instruction on x86.
static Value *createMaskedBitTest(IRBuilder<> &B, Value *Bits,
                                  Value *BitOffset) {
  auto BitsType = cast<IntegerType>(Bits->getType());
  unsigned BitWidth = BitsType->getBitWidth();

  BitOffset = B.CreateZExtOrTrunc(BitOffset, BitsType);
  Value *BitIndex =
      B.CreateAnd(BitOffset, ConstantInt::get(BitsType, BitWidth - 1));
  Value *BitMask = B.CreateShl(ConstantInt::get(BitsType, 1), BitIndex);
  Value *MaskedBits = B.CreateAnd(Bits, BitMask);
  return B.CreateICmpNE(MaskedBits, ConstantInt::get(BitsType, 0));
}

ByteArrayInfo *LowerBitSets::createByteArray(BitSetInfo &BSI) {
  // Create globals to stand in for byte arrays and masks. These never actually
  // get initialized, we RAUW and erase them later in allocateByteArrays() once
  // we know the offset and mask to use.
  auto ByteArrayGlobal = new GlobalVariable(
      *M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
  auto MaskGlobal = new GlobalVariable(
      *M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);

  ByteArrayInfos.emplace_back();
  ByteArrayInfo *BAI = &ByteArrayInfos.back();

  BAI->Bits = BSI.Bits;
  BAI->BitSize = BSI.BitSize;
  BAI->ByteArray = ByteArrayGlobal;
  BAI->Mask = ConstantExpr::getPtrToInt(MaskGlobal, Int8Ty);
  return BAI;
}

void LowerBitSets::allocateByteArrays() {
  std::stable_sort(ByteArrayInfos.begin(), ByteArrayInfos.end(),
                   [](const ByteArrayInfo &BAI1, const ByteArrayInfo &BAI2) {
                     return BAI1.BitSize > BAI2.BitSize;
                   });

  std::vector<uint64_t> ByteArrayOffsets(ByteArrayInfos.size());

  ByteArrayBuilder BAB;
  for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
    ByteArrayInfo *BAI = &ByteArrayInfos[I];

    uint8_t Mask;
    BAB.allocate(BAI->Bits, BAI->BitSize, ByteArrayOffsets[I], Mask);

    BAI->Mask->replaceAllUsesWith(ConstantInt::get(Int8Ty, Mask));
    cast<GlobalVariable>(BAI->Mask->getOperand(0))->eraseFromParent();
  }

  Constant *ByteArrayConst = ConstantDataArray::get(M->getContext(), BAB.Bytes);
  auto ByteArray =
      new GlobalVariable(*M, ByteArrayConst->getType(), /*isConstant=*/true,
                         GlobalValue::PrivateLinkage, ByteArrayConst);

  for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
    ByteArrayInfo *BAI = &ByteArrayInfos[I];

    Constant *Idxs[] = {ConstantInt::get(IntPtrTy, 0),
                        ConstantInt::get(IntPtrTy, ByteArrayOffsets[I])};
    Constant *GEP = ConstantExpr::getInBoundsGetElementPtr(
        ByteArrayConst->getType(), ByteArray, Idxs);

    // Create an alias instead of RAUW'ing the gep directly. On x86 this ensures
    // that the pc-relative displacement is folded into the lea instead of the
    // test instruction getting another displacement.
    if (LinkerSubsectionsViaSymbols) {
      BAI->ByteArray->replaceAllUsesWith(GEP);
    } else {
      GlobalAlias *Alias = GlobalAlias::create(
          Int8Ty, 0, GlobalValue::PrivateLinkage, "bits", GEP, M);
      BAI->ByteArray->replaceAllUsesWith(Alias);
    }
    BAI->ByteArray->eraseFromParent();
  }

  ByteArraySizeBits = BAB.BitAllocs[0] + BAB.BitAllocs[1] + BAB.BitAllocs[2] +
                      BAB.BitAllocs[3] + BAB.BitAllocs[4] + BAB.BitAllocs[5] +
                      BAB.BitAllocs[6] + BAB.BitAllocs[7];
  ByteArraySizeBytes = BAB.Bytes.size();
}

/// Build a test that bit BitOffset is set in BSI, where
/// BitSetGlobal is a global containing the bits in BSI.
Value *LowerBitSets::createBitSetTest(IRBuilder<> &B, BitSetInfo &BSI,
                                      ByteArrayInfo *&BAI, Value *BitOffset) {
  if (BSI.BitSize <= 64) {
    // If the bit set is sufficiently small, we can avoid a load by bit testing
    // a constant.
    IntegerType *BitsTy;
    if (BSI.BitSize <= 32)
      BitsTy = Int32Ty;
    else
      BitsTy = Int64Ty;

    uint64_t Bits = 0;
    for (auto Bit : BSI.Bits)
      Bits |= uint64_t(1) << Bit;
    Constant *BitsConst = ConstantInt::get(BitsTy, Bits);
    return createMaskedBitTest(B, BitsConst, BitOffset);
  } else {
    if (!BAI) {
      ++NumByteArraysCreated;
      BAI = createByteArray(BSI);
    }

    Constant *ByteArray = BAI->ByteArray;
    Type *Ty = BAI->ByteArray->getValueType();
    if (!LinkerSubsectionsViaSymbols && AvoidReuse) {
      // Each use of the byte array uses a different alias. This makes the
      // backend less likely to reuse previously computed byte array addresses,
      // improving the security of the CFI mechanism based on this pass.
      ByteArray = GlobalAlias::create(BAI->ByteArray->getValueType(), 0,
                                      GlobalValue::PrivateLinkage, "bits_use",
                                      ByteArray, M);
    }

    Value *ByteAddr = B.CreateGEP(Ty, ByteArray, BitOffset);
    Value *Byte = B.CreateLoad(ByteAddr);

    Value *ByteAndMask = B.CreateAnd(Byte, BAI->Mask);
    return B.CreateICmpNE(ByteAndMask, ConstantInt::get(Int8Ty, 0));
  }
}

/// Lower a llvm.bitset.test call to its implementation. Returns the value to
/// replace the call with.
Value *LowerBitSets::lowerBitSetCall(
    CallInst *CI, BitSetInfo &BSI, ByteArrayInfo *&BAI,
    Constant *CombinedGlobalIntAddr,
    const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) {
  Value *Ptr = CI->getArgOperand(0);
  const DataLayout &DL = M->getDataLayout();

  if (BSI.containsValue(DL, GlobalLayout, Ptr))
    return ConstantInt::getTrue(M->getContext());

  Constant *OffsetedGlobalAsInt = ConstantExpr::getAdd(
      CombinedGlobalIntAddr, ConstantInt::get(IntPtrTy, BSI.ByteOffset));

  BasicBlock *InitialBB = CI->getParent();

  IRBuilder<> B(CI);

  Value *PtrAsInt = B.CreatePtrToInt(Ptr, IntPtrTy);

  if (BSI.isSingleOffset())
    return B.CreateICmpEQ(PtrAsInt, OffsetedGlobalAsInt);

  Value *PtrOffset = B.CreateSub(PtrAsInt, OffsetedGlobalAsInt);

  Value *BitOffset;
  if (BSI.AlignLog2 == 0) {
    BitOffset = PtrOffset;
  } else {
    // We need to check that the offset both falls within our range and is
    // suitably aligned. We can check both properties at the same time by
    // performing a right rotate by log2(alignment) followed by an integer
    // comparison against the bitset size. The rotate will move the lower
    // order bits that need to be zero into the higher order bits of the
    // result, causing the comparison to fail if they are nonzero. The rotate
    // also conveniently gives us a bit offset to use during the load from
    // the bitset.
    Value *OffsetSHR =
        B.CreateLShr(PtrOffset, ConstantInt::get(IntPtrTy, BSI.AlignLog2));
    Value *OffsetSHL = B.CreateShl(
        PtrOffset,
        ConstantInt::get(IntPtrTy, DL.getPointerSizeInBits(0) - BSI.AlignLog2));
    BitOffset = B.CreateOr(OffsetSHR, OffsetSHL);
  }

  Constant *BitSizeConst = ConstantInt::get(IntPtrTy, BSI.BitSize);
  Value *OffsetInRange = B.CreateICmpULT(BitOffset, BitSizeConst);

  // If the bit set is all ones, testing against it is unnecessary.
  if (BSI.isAllOnes())
    return OffsetInRange;

  TerminatorInst *Term = SplitBlockAndInsertIfThen(OffsetInRange, CI, false);
  IRBuilder<> ThenB(Term);

  // Now that we know that the offset is in range and aligned, load the
  // appropriate bit from the bitset.
  Value *Bit = createBitSetTest(ThenB, BSI, BAI, BitOffset);

  // The value we want is 0 if we came directly from the initial block
  // (having failed the range or alignment checks), or the loaded bit if
  // we came from the block in which we loaded it.
  B.SetInsertPoint(CI);
  PHINode *P = B.CreatePHI(Int1Ty, 2);
  P->addIncoming(ConstantInt::get(Int1Ty, 0), InitialBB);
  P->addIncoming(Bit, ThenB.GetInsertBlock());
  return P;
}

/// Given a disjoint set of bitsets and globals, layout the globals, build the
/// bit sets and lower the llvm.bitset.test calls.
void LowerBitSets::buildBitSetsFromGlobalVariables(
    ArrayRef<Metadata *> BitSets, ArrayRef<GlobalVariable *> Globals) {
  // Build a new global with the combined contents of the referenced globals.
  // This global is a struct whose even-indexed elements contain the original
  // contents of the referenced globals and whose odd-indexed elements contain
  // any padding required to align the next element to the next power of 2.
  std::vector<Constant *> GlobalInits;
  const DataLayout &DL = M->getDataLayout();
  for (GlobalVariable *G : Globals) {
    GlobalInits.push_back(G->getInitializer());
    uint64_t InitSize = DL.getTypeAllocSize(G->getValueType());

    // Compute the amount of padding required.
    uint64_t Padding = NextPowerOf2(InitSize - 1) - InitSize;

    // Cap at 128 was found experimentally to have a good data/instruction
    // overhead tradeoff.
    if (Padding > 128)
      Padding = RoundUpToAlignment(InitSize, 128) - InitSize;

    GlobalInits.push_back(
        ConstantAggregateZero::get(ArrayType::get(Int8Ty, Padding)));
  }
  if (!GlobalInits.empty())
    GlobalInits.pop_back();
  Constant *NewInit = ConstantStruct::getAnon(M->getContext(), GlobalInits);
  auto *CombinedGlobal =
      new GlobalVariable(*M, NewInit->getType(), /*isConstant=*/true,
                         GlobalValue::PrivateLinkage, NewInit);

  StructType *NewTy = cast<StructType>(NewInit->getType());
  const StructLayout *CombinedGlobalLayout = DL.getStructLayout(NewTy);

  // Compute the offsets of the original globals within the new global.
  DenseMap<GlobalObject *, uint64_t> GlobalLayout;
  for (unsigned I = 0; I != Globals.size(); ++I)
    // Multiply by 2 to account for padding elements.
    GlobalLayout[Globals[I]] = CombinedGlobalLayout->getElementOffset(I * 2);

  lowerBitSetCalls(BitSets, CombinedGlobal, GlobalLayout);

  // Build aliases pointing to offsets into the combined global for each
  // global from which we built the combined global, and replace references
  // to the original globals with references to the aliases.
  for (unsigned I = 0; I != Globals.size(); ++I) {
    // Multiply by 2 to account for padding elements.
    Constant *CombinedGlobalIdxs[] = {ConstantInt::get(Int32Ty, 0),
                                      ConstantInt::get(Int32Ty, I * 2)};
    Constant *CombinedGlobalElemPtr = ConstantExpr::getGetElementPtr(
        NewInit->getType(), CombinedGlobal, CombinedGlobalIdxs);
    if (LinkerSubsectionsViaSymbols) {
      Globals[I]->replaceAllUsesWith(CombinedGlobalElemPtr);
    } else {
      assert(Globals[I]->getType()->getAddressSpace() == 0);
      GlobalAlias *GAlias = GlobalAlias::create(NewTy->getElementType(I * 2), 0,
                                                Globals[I]->getLinkage(), "",
                                                CombinedGlobalElemPtr, M);
      GAlias->setVisibility(Globals[I]->getVisibility());
      GAlias->takeName(Globals[I]);
      Globals[I]->replaceAllUsesWith(GAlias);
    }
    Globals[I]->eraseFromParent();
  }
}

void LowerBitSets::lowerBitSetCalls(
    ArrayRef<Metadata *> BitSets, Constant *CombinedGlobalAddr,
    const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) {
  Constant *CombinedGlobalIntAddr =
      ConstantExpr::getPtrToInt(CombinedGlobalAddr, IntPtrTy);

  // For each bitset in this disjoint set...
  for (Metadata *BS : BitSets) {
    // Build the bitset.
    BitSetInfo BSI = buildBitSet(BS, GlobalLayout);
    DEBUG({
      if (auto BSS = dyn_cast<MDString>(BS))
        dbgs() << BSS->getString() << ": ";
      else
        dbgs() << "<unnamed>: ";
      BSI.print(dbgs());
    });

    ByteArrayInfo *BAI = nullptr;

    // Lower each call to llvm.bitset.test for this bitset.
    for (CallInst *CI : BitSetTestCallSites[BS]) {
      ++NumBitSetCallsLowered;
      Value *Lowered =
          lowerBitSetCall(CI, BSI, BAI, CombinedGlobalIntAddr, GlobalLayout);
      CI->replaceAllUsesWith(Lowered);
      CI->eraseFromParent();
    }
  }
}

void LowerBitSets::verifyBitSetMDNode(MDNode *Op) {
  if (Op->getNumOperands() != 3)
    report_fatal_error(
        "All operands of llvm.bitsets metadata must have 3 elements");
  if (!Op->getOperand(1))
    return;

  auto OpConstMD = dyn_cast<ConstantAsMetadata>(Op->getOperand(1));
  if (!OpConstMD)
    report_fatal_error("Bit set element must be a constant");
  auto OpGlobal = dyn_cast<GlobalObject>(OpConstMD->getValue());
  if (!OpGlobal)
    return;

  if (OpGlobal->isThreadLocal())
    report_fatal_error("Bit set element may not be thread-local");
  if (OpGlobal->hasSection())
    report_fatal_error("Bit set element may not have an explicit section");

  if (isa<GlobalVariable>(OpGlobal) && OpGlobal->isDeclarationForLinker())
    report_fatal_error("Bit set global var element must be a definition");

  auto OffsetConstMD = dyn_cast<ConstantAsMetadata>(Op->getOperand(2));
  if (!OffsetConstMD)
    report_fatal_error("Bit set element offset must be a constant");
  auto OffsetInt = dyn_cast<ConstantInt>(OffsetConstMD->getValue());
  if (!OffsetInt)
    report_fatal_error("Bit set element offset must be an integer constant");
}

static const unsigned kX86JumpTableEntrySize = 8;

unsigned LowerBitSets::getJumpTableEntrySize() {
  if (Arch != Triple::x86 && Arch != Triple::x86_64)
    report_fatal_error("Unsupported architecture for jump tables");

  return kX86JumpTableEntrySize;
}

// Create a constant representing a jump table entry for the target. This
// consists of an instruction sequence containing a relative branch to Dest. The
// constant will be laid out at address Src+(Len*Distance) where Len is the
// target-specific jump table entry size.
Constant *LowerBitSets::createJumpTableEntry(GlobalObject *Src, Function *Dest,
                                             unsigned Distance) {
  if (Arch != Triple::x86 && Arch != Triple::x86_64)
    report_fatal_error("Unsupported architecture for jump tables");

  const unsigned kJmpPCRel32Code = 0xe9;
  const unsigned kInt3Code = 0xcc;

  ConstantInt *Jmp = ConstantInt::get(Int8Ty, kJmpPCRel32Code);

  // Build a constant representing the displacement between the constant's
  // address and Dest. This will resolve to a PC32 relocation referring to Dest.
  Constant *DestInt = ConstantExpr::getPtrToInt(Dest, IntPtrTy);
  Constant *SrcInt = ConstantExpr::getPtrToInt(Src, IntPtrTy);
  Constant *Disp = ConstantExpr::getSub(DestInt, SrcInt);
  ConstantInt *DispOffset =
      ConstantInt::get(IntPtrTy, Distance * kX86JumpTableEntrySize + 5);
  Constant *OffsetedDisp = ConstantExpr::getSub(Disp, DispOffset);
  OffsetedDisp = ConstantExpr::getTruncOrBitCast(OffsetedDisp, Int32Ty);

  ConstantInt *Int3 = ConstantInt::get(Int8Ty, kInt3Code);

  Constant *Fields[] = {
      Jmp, OffsetedDisp, Int3, Int3, Int3,
  };
  return ConstantStruct::getAnon(Fields, /*Packed=*/true);
}

Type *LowerBitSets::getJumpTableEntryType() {
  if (Arch != Triple::x86 && Arch != Triple::x86_64)
    report_fatal_error("Unsupported architecture for jump tables");

  return StructType::get(M->getContext(),
                         {Int8Ty, Int32Ty, Int8Ty, Int8Ty, Int8Ty},
                         /*Packed=*/true);
}

/// Given a disjoint set of bitsets and functions, build a jump table for the
/// functions, build the bit sets and lower the llvm.bitset.test calls.
void LowerBitSets::buildBitSetsFromFunctions(ArrayRef<Metadata *> BitSets,
                                             ArrayRef<Function *> Functions) {
  // Unlike the global bitset builder, the function bitset builder cannot
  // re-arrange functions in a particular order and base its calculations on the
  // layout of the functions' entry points, as we have no idea how large a
  // particular function will end up being (the size could even depend on what
  // this pass does!) Instead, we build a jump table, which is a block of code
  // consisting of one branch instruction for each of the functions in the bit
  // set that branches to the target function, and redirect any taken function
  // addresses to the corresponding jump table entry. In the object file's
  // symbol table, the symbols for the target functions also refer to the jump
  // table entries, so that addresses taken outside the module will pass any
  // verification done inside the module.
  //
  // In more concrete terms, suppose we have three functions f, g, h which are
  // members of a single bitset, and a function foo that returns their
  // addresses:
  //
  // f:
  // mov 0, %eax
  // ret
  //
  // g:
  // mov 1, %eax
  // ret
  //
  // h:
  // mov 2, %eax
  // ret
  //
  // foo:
  // mov f, %eax
  // mov g, %edx
  // mov h, %ecx
  // ret
  //
  // To create a jump table for these functions, we instruct the LLVM code
  // generator to output a jump table in the .text section. This is done by
  // representing the instructions in the jump table as an LLVM constant and
  // placing them in a global variable in the .text section. The end result will
  // (conceptually) look like this:
  //
  // f:
  // jmp .Ltmp0 ; 5 bytes
  // int3       ; 1 byte
  // int3       ; 1 byte
  // int3       ; 1 byte
  //
  // g:
  // jmp .Ltmp1 ; 5 bytes
  // int3       ; 1 byte
  // int3       ; 1 byte
  // int3       ; 1 byte
  //
  // h:
  // jmp .Ltmp2 ; 5 bytes
  // int3       ; 1 byte
  // int3       ; 1 byte
  // int3       ; 1 byte
  //
  // .Ltmp0:
  // mov 0, %eax
  // ret
  //
  // .Ltmp1:
  // mov 1, %eax
  // ret
  //
  // .Ltmp2:
  // mov 2, %eax
  // ret
  //
  // foo:
  // mov f, %eax
  // mov g, %edx
  // mov h, %ecx
  // ret
  //
  // Because the addresses of f, g, h are evenly spaced at a power of 2, in the
  // normal case the check can be carried out using the same kind of simple
  // arithmetic that we normally use for globals.

  assert(!Functions.empty());

  // Build a simple layout based on the regular layout of jump tables.
  DenseMap<GlobalObject *, uint64_t> GlobalLayout;
  unsigned EntrySize = getJumpTableEntrySize();
  for (unsigned I = 0; I != Functions.size(); ++I)
    GlobalLayout[Functions[I]] = I * EntrySize;

  // Create a constant to hold the jump table.
  ArrayType *JumpTableType =
      ArrayType::get(getJumpTableEntryType(), Functions.size());
  auto JumpTable = new GlobalVariable(*M, JumpTableType,
                                      /*isConstant=*/true,
                                      GlobalValue::PrivateLinkage, nullptr);
  JumpTable->setSection(ObjectFormat == Triple::MachO
                            ? "__TEXT,__text,regular,pure_instructions"
                            : ".text");
  lowerBitSetCalls(BitSets, JumpTable, GlobalLayout);

  // Build aliases pointing to offsets into the jump table, and replace
  // references to the original functions with references to the aliases.
  for (unsigned I = 0; I != Functions.size(); ++I) {
    Constant *CombinedGlobalElemPtr = ConstantExpr::getBitCast(
        ConstantExpr::getGetElementPtr(
            JumpTableType, JumpTable,
            ArrayRef<Constant *>{ConstantInt::get(IntPtrTy, 0),
                                 ConstantInt::get(IntPtrTy, I)}),
        Functions[I]->getType());
    if (LinkerSubsectionsViaSymbols || Functions[I]->isDeclarationForLinker()) {
      Functions[I]->replaceAllUsesWith(CombinedGlobalElemPtr);
    } else {
      assert(Functions[I]->getType()->getAddressSpace() == 0);
      GlobalAlias *GAlias = GlobalAlias::create(Functions[I]->getValueType(), 0,
                                                Functions[I]->getLinkage(), "",
                                                CombinedGlobalElemPtr, M);
      GAlias->setVisibility(Functions[I]->getVisibility());
      GAlias->takeName(Functions[I]);
      Functions[I]->replaceAllUsesWith(GAlias);
    }
    if (!Functions[I]->isDeclarationForLinker())
      Functions[I]->setLinkage(GlobalValue::PrivateLinkage);
  }

  // Build and set the jump table's initializer.
  std::vector<Constant *> JumpTableEntries;
  for (unsigned I = 0; I != Functions.size(); ++I)
    JumpTableEntries.push_back(
        createJumpTableEntry(JumpTable, Functions[I], I));
  JumpTable->setInitializer(
      ConstantArray::get(JumpTableType, JumpTableEntries));
}

void LowerBitSets::buildBitSetsFromDisjointSet(
    ArrayRef<Metadata *> BitSets, ArrayRef<GlobalObject *> Globals) {
  llvm::DenseMap<Metadata *, uint64_t> BitSetIndices;
  llvm::DenseMap<GlobalObject *, uint64_t> GlobalIndices;
  for (unsigned I = 0; I != BitSets.size(); ++I)
    BitSetIndices[BitSets[I]] = I;
  for (unsigned I = 0; I != Globals.size(); ++I)
    GlobalIndices[Globals[I]] = I;

  // For each bitset, build a set of indices that refer to globals referenced by
  // the bitset.
  std::vector<std::set<uint64_t>> BitSetMembers(BitSets.size());
  if (BitSetNM) {
    for (MDNode *Op : BitSetNM->operands()) {
      // Op = { bitset name, global, offset }
      if (!Op->getOperand(1))
        continue;
      auto I = BitSetIndices.find(Op->getOperand(0));
      if (I == BitSetIndices.end())
        continue;

      auto OpGlobal = dyn_cast<GlobalObject>(
          cast<ConstantAsMetadata>(Op->getOperand(1))->getValue());
      if (!OpGlobal)
        continue;
      BitSetMembers[I->second].insert(GlobalIndices[OpGlobal]);
    }
  }

  // Order the sets of indices by size. The GlobalLayoutBuilder works best
  // when given small index sets first.
  std::stable_sort(
      BitSetMembers.begin(), BitSetMembers.end(),
      [](const std::set<uint64_t> &O1, const std::set<uint64_t> &O2) {
        return O1.size() < O2.size();
      });

  // Create a GlobalLayoutBuilder and provide it with index sets as layout
  // fragments. The GlobalLayoutBuilder tries to lay out members of fragments as
  // close together as possible.
  GlobalLayoutBuilder GLB(Globals.size());
  for (auto &&MemSet : BitSetMembers)
    GLB.addFragment(MemSet);

  // Build the bitsets from this disjoint set.
  if (Globals.empty() || isa<GlobalVariable>(Globals[0])) {
    // Build a vector of global variables with the computed layout.
    std::vector<GlobalVariable *> OrderedGVs(Globals.size());
    auto OGI = OrderedGVs.begin();
    for (auto &&F : GLB.Fragments) {
      for (auto &&Offset : F) {
        auto GV = dyn_cast<GlobalVariable>(Globals[Offset]);
        if (!GV)
          report_fatal_error(
              "Bit set may not contain both global variables and functions");
        *OGI++ = GV;
      }
    }

    buildBitSetsFromGlobalVariables(BitSets, OrderedGVs);
  } else {
    // Build a vector of functions with the computed layout.
    std::vector<Function *> OrderedFns(Globals.size());
    auto OFI = OrderedFns.begin();
    for (auto &&F : GLB.Fragments) {
      for (auto &&Offset : F) {
        auto Fn = dyn_cast<Function>(Globals[Offset]);
        if (!Fn)
          report_fatal_error(
              "Bit set may not contain both global variables and functions");
        *OFI++ = Fn;
      }
    }

    buildBitSetsFromFunctions(BitSets, OrderedFns);
  }
}

/// Lower all bit sets in this module.
bool LowerBitSets::buildBitSets() {
  Function *BitSetTestFunc =
      M->getFunction(Intrinsic::getName(Intrinsic::bitset_test));
  if (!BitSetTestFunc)
    return false;

  // Equivalence class set containing bitsets and the globals they reference.
  // This is used to partition the set of bitsets in the module into disjoint
  // sets.
  typedef EquivalenceClasses<PointerUnion<GlobalObject *, Metadata *>>
      GlobalClassesTy;
  GlobalClassesTy GlobalClasses;

  // Verify the bitset metadata and build a mapping from bitset identifiers to
  // their last observed index in BitSetNM. This will used later to
  // deterministically order the list of bitset identifiers.
  llvm::DenseMap<Metadata *, unsigned> BitSetIdIndices;
  if (BitSetNM) {
    for (unsigned I = 0, E = BitSetNM->getNumOperands(); I != E; ++I) {
      MDNode *Op = BitSetNM->getOperand(I);
      verifyBitSetMDNode(Op);
      BitSetIdIndices[Op->getOperand(0)] = I;
    }
  }

  for (const Use &U : BitSetTestFunc->uses()) {
    auto CI = cast<CallInst>(U.getUser());

    auto BitSetMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
    if (!BitSetMDVal)
      report_fatal_error(
          "Second argument of llvm.bitset.test must be metadata");
    auto BitSet = BitSetMDVal->getMetadata();

    // Add the call site to the list of call sites for this bit set. We also use
    // BitSetTestCallSites to keep track of whether we have seen this bit set
    // before. If we have, we don't need to re-add the referenced globals to the
    // equivalence class.
    std::pair<DenseMap<Metadata *, std::vector<CallInst *>>::iterator,
              bool> Ins =
        BitSetTestCallSites.insert(
            std::make_pair(BitSet, std::vector<CallInst *>()));
    Ins.first->second.push_back(CI);
    if (!Ins.second)
      continue;

    // Add the bitset to the equivalence class.
    GlobalClassesTy::iterator GCI = GlobalClasses.insert(BitSet);
    GlobalClassesTy::member_iterator CurSet = GlobalClasses.findLeader(GCI);

    if (!BitSetNM)
      continue;

    // Add the referenced globals to the bitset's equivalence class.
    for (MDNode *Op : BitSetNM->operands()) {
      if (Op->getOperand(0) != BitSet || !Op->getOperand(1))
        continue;

      auto OpGlobal = dyn_cast<GlobalObject>(
          cast<ConstantAsMetadata>(Op->getOperand(1))->getValue());
      if (!OpGlobal)
        continue;

      CurSet = GlobalClasses.unionSets(
          CurSet, GlobalClasses.findLeader(GlobalClasses.insert(OpGlobal)));
    }
  }

  if (GlobalClasses.empty())
    return false;

  // Build a list of disjoint sets ordered by their maximum BitSetNM index
  // for determinism.
  std::vector<std::pair<GlobalClassesTy::iterator, unsigned>> Sets;
  for (GlobalClassesTy::iterator I = GlobalClasses.begin(),
                                 E = GlobalClasses.end();
       I != E; ++I) {
    if (!I->isLeader()) continue;
    ++NumBitSetDisjointSets;

    unsigned MaxIndex = 0;
    for (GlobalClassesTy::member_iterator MI = GlobalClasses.member_begin(I);
         MI != GlobalClasses.member_end(); ++MI) {
      if ((*MI).is<Metadata *>())
        MaxIndex = std::max(MaxIndex, BitSetIdIndices[MI->get<Metadata *>()]);
    }
    Sets.emplace_back(I, MaxIndex);
  }
  std::sort(Sets.begin(), Sets.end(),
            [](const std::pair<GlobalClassesTy::iterator, unsigned> &S1,
               const std::pair<GlobalClassesTy::iterator, unsigned> &S2) {
              return S1.second < S2.second;
            });

  // For each disjoint set we found...
  for (const auto &S : Sets) {
    // Build the list of bitsets in this disjoint set.
    std::vector<Metadata *> BitSets;
    std::vector<GlobalObject *> Globals;
    for (GlobalClassesTy::member_iterator MI =
             GlobalClasses.member_begin(S.first);
         MI != GlobalClasses.member_end(); ++MI) {
      if ((*MI).is<Metadata *>())
        BitSets.push_back(MI->get<Metadata *>());
      else
        Globals.push_back(MI->get<GlobalObject *>());
    }

    // Order bitsets by BitSetNM index for determinism. This ordering is stable
    // as there is a one-to-one mapping between metadata and indices.
    std::sort(BitSets.begin(), BitSets.end(), [&](Metadata *M1, Metadata *M2) {
      return BitSetIdIndices[M1] < BitSetIdIndices[M2];
    });

    // Lower the bitsets in this disjoint set.
    buildBitSetsFromDisjointSet(BitSets, Globals);
  }

  allocateByteArrays();

  return true;
}

bool LowerBitSets::eraseBitSetMetadata() {
  if (!BitSetNM)
    return false;

  M->eraseNamedMetadata(BitSetNM);
  return true;
}

bool LowerBitSets::runOnModule(Module &M) {
  bool Changed = buildBitSets();
  Changed |= eraseBitSetMetadata();
  return Changed;
}