//===-- X86OptimizeLEAs.cpp - optimize usage of LEA instructions ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the pass that performs some optimizations with LEA // instructions in order to improve code size. // Currently, it does one thing: // 1) Address calculations in load and store instructions are replaced by // existing LEA def registers where possible. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86InstrInfo.h" #include "X86Subtarget.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/IR/Function.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" using namespace llvm; #define DEBUG_TYPE "x86-optimize-LEAs" static cl::opt<bool> EnableX86LEAOpt("enable-x86-lea-opt", cl::Hidden, cl::desc("X86: Enable LEA optimizations."), cl::init(false)); STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions"); namespace { class OptimizeLEAPass : public MachineFunctionPass { public: OptimizeLEAPass() : MachineFunctionPass(ID) {} const char *getPassName() const override { return "X86 LEA Optimize"; } /// \brief Loop over all of the basic blocks, replacing address /// calculations in load and store instructions, if it's already /// been calculated by LEA. Also, remove redundant LEAs. bool runOnMachineFunction(MachineFunction &MF) override; private: /// \brief Returns a distance between two instructions inside one basic block. /// Negative result means, that instructions occur in reverse order. int calcInstrDist(const MachineInstr &First, const MachineInstr &Last); /// \brief Choose the best \p LEA instruction from the \p List to replace /// address calculation in \p MI instruction. Return the address displacement /// and the distance between \p MI and the choosen \p LEA in \p AddrDispShift /// and \p Dist. bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List, const MachineInstr &MI, MachineInstr *&LEA, int64_t &AddrDispShift, int &Dist); /// \brief Returns true if two machine operand are identical and they are not /// physical registers. bool isIdenticalOp(const MachineOperand &MO1, const MachineOperand &MO2); /// \brief Returns true if the instruction is LEA. bool isLEA(const MachineInstr &MI); /// \brief Returns true if two instructions have memory operands that only /// differ by displacement. The numbers of the first memory operands for both /// instructions are specified through \p N1 and \p N2. The address /// displacement is returned through AddrDispShift. bool isSimilarMemOp(const MachineInstr &MI1, unsigned N1, const MachineInstr &MI2, unsigned N2, int64_t &AddrDispShift); /// \brief Find all LEA instructions in the basic block. void findLEAs(const MachineBasicBlock &MBB, SmallVectorImpl<MachineInstr *> &List); /// \brief Removes redundant address calculations. bool removeRedundantAddrCalc(const SmallVectorImpl<MachineInstr *> &List); MachineRegisterInfo *MRI; const X86InstrInfo *TII; const X86RegisterInfo *TRI; static char ID; }; char OptimizeLEAPass::ID = 0; } FunctionPass *llvm::createX86OptimizeLEAs() { return new OptimizeLEAPass(); } int OptimizeLEAPass::calcInstrDist(const MachineInstr &First, const MachineInstr &Last) { const MachineBasicBlock *MBB = First.getParent(); // Both instructions must be in the same basic block. assert(Last.getParent() == MBB && "Instructions are in different basic blocks"); return std::distance(MBB->begin(), MachineBasicBlock::const_iterator(&Last)) - std::distance(MBB->begin(), MachineBasicBlock::const_iterator(&First)); } // Find the best LEA instruction in the List to replace address recalculation in // MI. Such LEA must meet these requirements: // 1) The address calculated by the LEA differs only by the displacement from // the address used in MI. // 2) The register class of the definition of the LEA is compatible with the // register class of the address base register of MI. // 3) Displacement of the new memory operand should fit in 1 byte if possible. // 4) The LEA should be as close to MI as possible, and prior to it if // possible. bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List, const MachineInstr &MI, MachineInstr *&LEA, int64_t &AddrDispShift, int &Dist) { const MachineFunction *MF = MI.getParent()->getParent(); const MCInstrDesc &Desc = MI.getDesc(); int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, MI.getOpcode()) + X86II::getOperandBias(Desc); LEA = nullptr; // Loop over all LEA instructions. for (auto DefMI : List) { int64_t AddrDispShiftTemp = 0; // Compare instructions memory operands. if (!isSimilarMemOp(MI, MemOpNo, *DefMI, 1, AddrDispShiftTemp)) continue; // Make sure address displacement fits 4 bytes. if (!isInt<32>(AddrDispShiftTemp)) continue; // Check that LEA def register can be used as MI address base. Some // instructions can use a limited set of registers as address base, for // example MOV8mr_NOREX. We could constrain the register class of the LEA // def to suit MI, however since this case is very rare and hard to // reproduce in a test it's just more reliable to skip the LEA. if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) != MRI->getRegClass(DefMI->getOperand(0).getReg())) continue; // Choose the closest LEA instruction from the list, prior to MI if // possible. Note that we took into account resulting address displacement // as well. Also note that the list is sorted by the order in which the LEAs // occur, so the break condition is pretty simple. int DistTemp = calcInstrDist(*DefMI, MI); assert(DistTemp != 0 && "The distance between two different instructions cannot be zero"); if (DistTemp > 0 || LEA == nullptr) { // Do not update return LEA, if the current one provides a displacement // which fits in 1 byte, while the new candidate does not. if (LEA != nullptr && !isInt<8>(AddrDispShiftTemp) && isInt<8>(AddrDispShift)) continue; LEA = DefMI; AddrDispShift = AddrDispShiftTemp; Dist = DistTemp; } // FIXME: Maybe we should not always stop at the first LEA after MI. if (DistTemp < 0) break; } return LEA != nullptr; } bool OptimizeLEAPass::isIdenticalOp(const MachineOperand &MO1, const MachineOperand &MO2) { return MO1.isIdenticalTo(MO2) && (!MO1.isReg() || !TargetRegisterInfo::isPhysicalRegister(MO1.getReg())); } bool OptimizeLEAPass::isLEA(const MachineInstr &MI) { unsigned Opcode = MI.getOpcode(); return Opcode == X86::LEA16r || Opcode == X86::LEA32r || Opcode == X86::LEA64r || Opcode == X86::LEA64_32r; } // Check if MI1 and MI2 have memory operands which represent addresses that // differ only by displacement. bool OptimizeLEAPass::isSimilarMemOp(const MachineInstr &MI1, unsigned N1, const MachineInstr &MI2, unsigned N2, int64_t &AddrDispShift) { // Address base, scale, index and segment operands must be identical. static const int IdenticalOpNums[] = {X86::AddrBaseReg, X86::AddrScaleAmt, X86::AddrIndexReg, X86::AddrSegmentReg}; for (auto &N : IdenticalOpNums) if (!isIdenticalOp(MI1.getOperand(N1 + N), MI2.getOperand(N2 + N))) return false; // Address displacement operands may differ by a constant. const MachineOperand *Op1 = &MI1.getOperand(N1 + X86::AddrDisp); const MachineOperand *Op2 = &MI2.getOperand(N2 + X86::AddrDisp); if (!isIdenticalOp(*Op1, *Op2)) { if (Op1->isImm() && Op2->isImm()) AddrDispShift = Op1->getImm() - Op2->getImm(); else if (Op1->isGlobal() && Op2->isGlobal() && Op1->getGlobal() == Op2->getGlobal()) AddrDispShift = Op1->getOffset() - Op2->getOffset(); else return false; } return true; } void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB, SmallVectorImpl<MachineInstr *> &List) { for (auto &MI : MBB) { if (isLEA(MI)) List.push_back(const_cast<MachineInstr *>(&MI)); } } // Try to find load and store instructions which recalculate addresses already // calculated by some LEA and replace their memory operands with its def // register. bool OptimizeLEAPass::removeRedundantAddrCalc( const SmallVectorImpl<MachineInstr *> &List) { bool Changed = false; assert(List.size() > 0); MachineBasicBlock *MBB = List[0]->getParent(); // Process all instructions in basic block. for (auto I = MBB->begin(), E = MBB->end(); I != E;) { MachineInstr &MI = *I++; unsigned Opcode = MI.getOpcode(); // Instruction must be load or store. if (!MI.mayLoadOrStore()) continue; // Get the number of the first memory operand. const MCInstrDesc &Desc = MI.getDesc(); int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, Opcode); // If instruction has no memory operand - skip it. if (MemOpNo < 0) continue; MemOpNo += X86II::getOperandBias(Desc); // Get the best LEA instruction to replace address calculation. MachineInstr *DefMI; int64_t AddrDispShift; int Dist; if (!chooseBestLEA(List, MI, DefMI, AddrDispShift, Dist)) continue; // If LEA occurs before current instruction, we can freely replace // the instruction. If LEA occurs after, we can lift LEA above the // instruction and this way to be able to replace it. Since LEA and the // instruction have similar memory operands (thus, the same def // instructions for these operands), we can always do that, without // worries of using registers before their defs. if (Dist < 0) { DefMI->removeFromParent(); MBB->insert(MachineBasicBlock::iterator(&MI), DefMI); } // Since we can possibly extend register lifetime, clear kill flags. MRI->clearKillFlags(DefMI->getOperand(0).getReg()); ++NumSubstLEAs; DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump();); // Change instruction operands. MI.getOperand(MemOpNo + X86::AddrBaseReg) .ChangeToRegister(DefMI->getOperand(0).getReg(), false); MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1); MI.getOperand(MemOpNo + X86::AddrIndexReg) .ChangeToRegister(X86::NoRegister, false); MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift); MI.getOperand(MemOpNo + X86::AddrSegmentReg) .ChangeToRegister(X86::NoRegister, false); DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump();); Changed = true; } return Changed; } bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) { bool Changed = false; // Perform this optimization only if we care about code size. if (!EnableX86LEAOpt || !MF.getFunction()->optForSize()) return false; MRI = &MF.getRegInfo(); TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo(); // Process all basic blocks. for (auto &MBB : MF) { SmallVector<MachineInstr *, 16> LEAs; // Find all LEA instructions in basic block. findLEAs(MBB, LEAs); // If current basic block has no LEAs, move on to the next one. if (LEAs.empty()) continue; // Remove redundant address calculations. Changed |= removeRedundantAddrCalc(LEAs); } return Changed; }