//===-- X86InstrFMA.td - FMA Instruction Set ---------------*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes FMA (Fused Multiply-Add) instructions. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // FMA3 - Intel 3 operand Fused Multiply-Add instructions //===----------------------------------------------------------------------===// // For all FMA opcodes declared in fma3p_rm and fma3s_rm milticlasses defined // below, both the register and memory variants are commutable. // For the register form the commutable operands are 1, 2 and 3. // For the memory variant the folded operand must be in 3. Thus, // in that case, only the operands 1 and 2 can be swapped. // Commuting some of operands may require the opcode change. // FMA*213*: // operands 1 and 2 (memory & register forms): *213* --> *213*(no changes); // operands 1 and 3 (register forms only): *213* --> *231*; // operands 2 and 3 (register forms only): *213* --> *132*. // FMA*132*: // operands 1 and 2 (memory & register forms): *132* --> *231*; // operands 1 and 3 (register forms only): *132* --> *132*(no changes); // operands 2 and 3 (register forms only): *132* --> *213*. // FMA*231*: // operands 1 and 2 (memory & register forms): *231* --> *132*; // operands 1 and 3 (register forms only): *231* --> *213*; // operands 2 and 3 (register forms only): *231* --> *231*(no changes). let Constraints = "$src1 = $dst", hasSideEffects = 0, isCommutable = 1 in multiclass fma3p_rm<bits<8> opc, string OpcodeStr, PatFrag MemFrag128, PatFrag MemFrag256, ValueType OpVT128, ValueType OpVT256, SDPatternOperator Op = null_frag> { let usesCustomInserter = 1 in def r : FMA3<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, VR128:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), [(set VR128:$dst, (OpVT128 (Op VR128:$src2, VR128:$src1, VR128:$src3)))]>; let mayLoad = 1 in def m : FMA3<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, f128mem:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), [(set VR128:$dst, (OpVT128 (Op VR128:$src2, VR128:$src1, (MemFrag128 addr:$src3))))]>; let usesCustomInserter = 1 in def rY : FMA3<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src1, VR256:$src2, VR256:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), [(set VR256:$dst, (OpVT256 (Op VR256:$src2, VR256:$src1, VR256:$src3)))]>, VEX_L; let mayLoad = 1 in def mY : FMA3<opc, MRMSrcMem, (outs VR256:$dst), (ins VR256:$src1, VR256:$src2, f256mem:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), [(set VR256:$dst, (OpVT256 (Op VR256:$src2, VR256:$src1, (MemFrag256 addr:$src3))))]>, VEX_L; } multiclass fma3p_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231, string OpcodeStr, string PackTy, PatFrag MemFrag128, PatFrag MemFrag256, SDNode Op, ValueType OpTy128, ValueType OpTy256> { defm r213 : fma3p_rm<opc213, !strconcat(OpcodeStr, "213", PackTy), MemFrag128, MemFrag256, OpTy128, OpTy256, Op>; defm r132 : fma3p_rm<opc132, !strconcat(OpcodeStr, "132", PackTy), MemFrag128, MemFrag256, OpTy128, OpTy256>; defm r231 : fma3p_rm<opc231, !strconcat(OpcodeStr, "231", PackTy), MemFrag128, MemFrag256, OpTy128, OpTy256>; } // Fused Multiply-Add let ExeDomain = SSEPackedSingle in { defm VFMADDPS : fma3p_forms<0x98, 0xA8, 0xB8, "vfmadd", "ps", loadv4f32, loadv8f32, X86Fmadd, v4f32, v8f32>; defm VFMSUBPS : fma3p_forms<0x9A, 0xAA, 0xBA, "vfmsub", "ps", loadv4f32, loadv8f32, X86Fmsub, v4f32, v8f32>; defm VFMADDSUBPS : fma3p_forms<0x96, 0xA6, 0xB6, "vfmaddsub", "ps", loadv4f32, loadv8f32, X86Fmaddsub, v4f32, v8f32>; defm VFMSUBADDPS : fma3p_forms<0x97, 0xA7, 0xB7, "vfmsubadd", "ps", loadv4f32, loadv8f32, X86Fmsubadd, v4f32, v8f32>; } let ExeDomain = SSEPackedDouble in { defm VFMADDPD : fma3p_forms<0x98, 0xA8, 0xB8, "vfmadd", "pd", loadv2f64, loadv4f64, X86Fmadd, v2f64, v4f64>, VEX_W; defm VFMSUBPD : fma3p_forms<0x9A, 0xAA, 0xBA, "vfmsub", "pd", loadv2f64, loadv4f64, X86Fmsub, v2f64, v4f64>, VEX_W; defm VFMADDSUBPD : fma3p_forms<0x96, 0xA6, 0xB6, "vfmaddsub", "pd", loadv2f64, loadv4f64, X86Fmaddsub, v2f64, v4f64>, VEX_W; defm VFMSUBADDPD : fma3p_forms<0x97, 0xA7, 0xB7, "vfmsubadd", "pd", loadv2f64, loadv4f64, X86Fmsubadd, v2f64, v4f64>, VEX_W; } // Fused Negative Multiply-Add let ExeDomain = SSEPackedSingle in { defm VFNMADDPS : fma3p_forms<0x9C, 0xAC, 0xBC, "vfnmadd", "ps", loadv4f32, loadv8f32, X86Fnmadd, v4f32, v8f32>; defm VFNMSUBPS : fma3p_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "ps", loadv4f32, loadv8f32, X86Fnmsub, v4f32, v8f32>; } let ExeDomain = SSEPackedDouble in { defm VFNMADDPD : fma3p_forms<0x9C, 0xAC, 0xBC, "vfnmadd", "pd", loadv2f64, loadv4f64, X86Fnmadd, v2f64, v4f64>, VEX_W; defm VFNMSUBPD : fma3p_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "pd", loadv2f64, loadv4f64, X86Fnmsub, v2f64, v4f64>, VEX_W; } // All source register operands of FMA opcodes defined in fma3s_rm multiclass // can be commuted. In many cases such commute transformation requres an opcode // adjustment, for example, commuting the operands 1 and 2 in FMA*132 form // would require an opcode change to FMA*231: // FMA*132* reg1, reg2, reg3; // reg1 * reg3 + reg2; // --> // FMA*231* reg2, reg1, reg3; // reg1 * reg3 + reg2; // Please see more detailed comment at the very beginning of the section // defining FMA3 opcodes above. let Constraints = "$src1 = $dst", isCommutable = 1, hasSideEffects = 0 in multiclass fma3s_rm<bits<8> opc, string OpcodeStr, X86MemOperand x86memop, RegisterClass RC, SDPatternOperator OpNode = null_frag> { let usesCustomInserter = 1 in def r : FMA3<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, RC:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), [(set RC:$dst, (OpNode RC:$src2, RC:$src1, RC:$src3))]>; let mayLoad = 1 in def m : FMA3<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, RC:$src2, x86memop:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), [(set RC:$dst, (OpNode RC:$src2, RC:$src1, (load addr:$src3)))]>; } // These FMA*_Int instructions are defined specially for being used when // the scalar FMA intrinsics are lowered to machine instructions, and in that // sense, they are similar to existing ADD*_Int, SUB*_Int, MUL*_Int, etc. // instructions. // // All of the FMA*_Int opcodes are defined as commutable here. // Commuting the 2nd and 3rd source register operands of FMAs is quite trivial // and the corresponding optimizations have been developed. // Commuting the 1st operand of FMA*_Int requires some additional analysis, // the commute optimization is legal only if all users of FMA*_Int use only // the lowest element of the FMA*_Int instruction. Even though such analysis // may be not implemented yet we allow the routines doing the actual commute // transformation to decide if one or another instruction is commutable or not. let Constraints = "$src1 = $dst", isCommutable = 1, isCodeGenOnly = 1, hasSideEffects = 0 in multiclass fma3s_rm_int<bits<8> opc, string OpcodeStr, Operand memopr, RegisterClass RC> { def r_Int : FMA3<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, RC:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), []>; let mayLoad = 1 in def m_Int : FMA3<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, RC:$src2, memopr:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), []>; } multiclass fma3s_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231, string OpStr, string PackTy, SDNode OpNode, RegisterClass RC, X86MemOperand x86memop> { defm r132 : fma3s_rm<opc132, !strconcat(OpStr, "132", PackTy), x86memop, RC>; defm r213 : fma3s_rm<opc213, !strconcat(OpStr, "213", PackTy), x86memop, RC, OpNode>; defm r231 : fma3s_rm<opc231, !strconcat(OpStr, "231", PackTy), x86memop, RC>; } // The FMA 213 form is created for lowering of scalar FMA intrinscis // to machine instructions. // The FMA 132 form can trivially be get by commuting the 2nd and 3rd operands // of FMA 213 form. // The FMA 231 form can be get only by commuting the 1st operand of 213 or 132 // forms and is possible only after special analysis of all uses of the initial // instruction. Such analysis do not exist yet and thus introducing the 231 // form of FMA*_Int instructions is done using an optimistic assumption that // such analysis will be implemented eventually. multiclass fma3s_int_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231, string OpStr, string PackTy, RegisterClass RC, Operand memop> { defm r132 : fma3s_rm_int<opc132, !strconcat(OpStr, "132", PackTy), memop, RC>; defm r213 : fma3s_rm_int<opc213, !strconcat(OpStr, "213", PackTy), memop, RC>; defm r231 : fma3s_rm_int<opc231, !strconcat(OpStr, "231", PackTy), memop, RC>; } multiclass fma3s<bits<8> opc132, bits<8> opc213, bits<8> opc231, string OpStr, Intrinsic IntF32, Intrinsic IntF64, SDNode OpNode> { let ExeDomain = SSEPackedSingle in defm SS : fma3s_forms<opc132, opc213, opc231, OpStr, "ss", OpNode, FR32, f32mem>, fma3s_int_forms<opc132, opc213, opc231, OpStr, "ss", VR128, ssmem>; let ExeDomain = SSEPackedDouble in defm SD : fma3s_forms<opc132, opc213, opc231, OpStr, "sd", OpNode, FR64, f64mem>, fma3s_int_forms<opc132, opc213, opc231, OpStr, "sd", VR128, sdmem>, VEX_W; // These patterns use the 123 ordering, instead of 213, even though // they match the intrinsic to the 213 version of the instruction. // This is because src1 is tied to dest, and the scalar intrinsics // require the pass-through values to come from the first source // operand, not the second. def : Pat<(IntF32 VR128:$src1, VR128:$src2, VR128:$src3), (COPY_TO_REGCLASS(!cast<Instruction>(NAME#"SSr213r_Int") $src1, $src2, $src3), VR128)>; def : Pat<(IntF64 VR128:$src1, VR128:$src2, VR128:$src3), (COPY_TO_REGCLASS(!cast<Instruction>(NAME#"SDr213r_Int") $src1, $src2, $src3), VR128)>; } defm VFMADD : fma3s<0x99, 0xA9, 0xB9, "vfmadd", int_x86_fma_vfmadd_ss, int_x86_fma_vfmadd_sd, X86Fmadd>, VEX_LIG; defm VFMSUB : fma3s<0x9B, 0xAB, 0xBB, "vfmsub", int_x86_fma_vfmsub_ss, int_x86_fma_vfmsub_sd, X86Fmsub>, VEX_LIG; defm VFNMADD : fma3s<0x9D, 0xAD, 0xBD, "vfnmadd", int_x86_fma_vfnmadd_ss, int_x86_fma_vfnmadd_sd, X86Fnmadd>, VEX_LIG; defm VFNMSUB : fma3s<0x9F, 0xAF, 0xBF, "vfnmsub", int_x86_fma_vfnmsub_ss, int_x86_fma_vfnmsub_sd, X86Fnmsub>, VEX_LIG; //===----------------------------------------------------------------------===// // FMA4 - AMD 4 operand Fused Multiply-Add instructions //===----------------------------------------------------------------------===// multiclass fma4s<bits<8> opc, string OpcodeStr, RegisterClass RC, X86MemOperand x86memop, ValueType OpVT, SDNode OpNode, PatFrag mem_frag> { let isCommutable = 1 in def rr : FMA4<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, RC:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2, RC:$src3)))]>, VEX_W, VEX_LIG, MemOp4; def rm : FMA4<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, RC:$src2, x86memop:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set RC:$dst, (OpNode RC:$src1, RC:$src2, (mem_frag addr:$src3)))]>, VEX_W, VEX_LIG, MemOp4; def mr : FMA4<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2, RC:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set RC:$dst, (OpNode RC:$src1, (mem_frag addr:$src2), RC:$src3))]>, VEX_LIG; // For disassembler let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in def rr_REV : FMA4<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, RC:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>, VEX_LIG; } multiclass fma4s_int<bits<8> opc, string OpcodeStr, Operand memop, ComplexPattern mem_cpat, Intrinsic Int> { let isCodeGenOnly = 1 in { let isCommutable = 1 in def rr_Int : FMA4<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, VR128:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR128:$dst, (Int VR128:$src1, VR128:$src2, VR128:$src3))]>, VEX_W, VEX_LIG, MemOp4; def rm_Int : FMA4<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, memop:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR128:$dst, (Int VR128:$src1, VR128:$src2, mem_cpat:$src3))]>, VEX_W, VEX_LIG, MemOp4; def mr_Int : FMA4<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, memop:$src2, VR128:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR128:$dst, (Int VR128:$src1, mem_cpat:$src2, VR128:$src3))]>, VEX_LIG; } // isCodeGenOnly = 1 } multiclass fma4p<bits<8> opc, string OpcodeStr, SDNode OpNode, ValueType OpVT128, ValueType OpVT256, PatFrag ld_frag128, PatFrag ld_frag256> { let isCommutable = 1 in def rr : FMA4<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, VR128:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR128:$dst, (OpVT128 (OpNode VR128:$src1, VR128:$src2, VR128:$src3)))]>, VEX_W, MemOp4; def rm : FMA4<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, f128mem:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR128:$dst, (OpNode VR128:$src1, VR128:$src2, (ld_frag128 addr:$src3)))]>, VEX_W, MemOp4; def mr : FMA4<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2, VR128:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR128:$dst, (OpNode VR128:$src1, (ld_frag128 addr:$src2), VR128:$src3))]>; let isCommutable = 1 in def rrY : FMA4<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src1, VR256:$src2, VR256:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR256:$dst, (OpVT256 (OpNode VR256:$src1, VR256:$src2, VR256:$src3)))]>, VEX_W, MemOp4, VEX_L; def rmY : FMA4<opc, MRMSrcMem, (outs VR256:$dst), (ins VR256:$src1, VR256:$src2, f256mem:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR256:$dst, (OpNode VR256:$src1, VR256:$src2, (ld_frag256 addr:$src3)))]>, VEX_W, MemOp4, VEX_L; def mrY : FMA4<opc, MRMSrcMem, (outs VR256:$dst), (ins VR256:$src1, f256mem:$src2, VR256:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR256:$dst, (OpNode VR256:$src1, (ld_frag256 addr:$src2), VR256:$src3))]>, VEX_L; // For disassembler let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in { def rr_REV : FMA4<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, VR128:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>; def rrY_REV : FMA4<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src1, VR256:$src2, VR256:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>, VEX_L; } // isCodeGenOnly = 1 } let ExeDomain = SSEPackedSingle in { // Scalar Instructions defm VFMADDSS4 : fma4s<0x6A, "vfmaddss", FR32, f32mem, f32, X86Fmadd, loadf32>, fma4s_int<0x6A, "vfmaddss", ssmem, sse_load_f32, int_x86_fma_vfmadd_ss>; defm VFMSUBSS4 : fma4s<0x6E, "vfmsubss", FR32, f32mem, f32, X86Fmsub, loadf32>, fma4s_int<0x6E, "vfmsubss", ssmem, sse_load_f32, int_x86_fma_vfmsub_ss>; defm VFNMADDSS4 : fma4s<0x7A, "vfnmaddss", FR32, f32mem, f32, X86Fnmadd, loadf32>, fma4s_int<0x7A, "vfnmaddss", ssmem, sse_load_f32, int_x86_fma_vfnmadd_ss>; defm VFNMSUBSS4 : fma4s<0x7E, "vfnmsubss", FR32, f32mem, f32, X86Fnmsub, loadf32>, fma4s_int<0x7E, "vfnmsubss", ssmem, sse_load_f32, int_x86_fma_vfnmsub_ss>; // Packed Instructions defm VFMADDPS4 : fma4p<0x68, "vfmaddps", X86Fmadd, v4f32, v8f32, loadv4f32, loadv8f32>; defm VFMSUBPS4 : fma4p<0x6C, "vfmsubps", X86Fmsub, v4f32, v8f32, loadv4f32, loadv8f32>; defm VFNMADDPS4 : fma4p<0x78, "vfnmaddps", X86Fnmadd, v4f32, v8f32, loadv4f32, loadv8f32>; defm VFNMSUBPS4 : fma4p<0x7C, "vfnmsubps", X86Fnmsub, v4f32, v8f32, loadv4f32, loadv8f32>; defm VFMADDSUBPS4 : fma4p<0x5C, "vfmaddsubps", X86Fmaddsub, v4f32, v8f32, loadv4f32, loadv8f32>; defm VFMSUBADDPS4 : fma4p<0x5E, "vfmsubaddps", X86Fmsubadd, v4f32, v8f32, loadv4f32, loadv8f32>; } let ExeDomain = SSEPackedDouble in { // Scalar Instructions defm VFMADDSD4 : fma4s<0x6B, "vfmaddsd", FR64, f64mem, f64, X86Fmadd, loadf64>, fma4s_int<0x6B, "vfmaddsd", sdmem, sse_load_f64, int_x86_fma_vfmadd_sd>; defm VFMSUBSD4 : fma4s<0x6F, "vfmsubsd", FR64, f64mem, f64, X86Fmsub, loadf64>, fma4s_int<0x6F, "vfmsubsd", sdmem, sse_load_f64, int_x86_fma_vfmsub_sd>; defm VFNMADDSD4 : fma4s<0x7B, "vfnmaddsd", FR64, f64mem, f64, X86Fnmadd, loadf64>, fma4s_int<0x7B, "vfnmaddsd", sdmem, sse_load_f64, int_x86_fma_vfnmadd_sd>; defm VFNMSUBSD4 : fma4s<0x7F, "vfnmsubsd", FR64, f64mem, f64, X86Fnmsub, loadf64>, fma4s_int<0x7F, "vfnmsubsd", sdmem, sse_load_f64, int_x86_fma_vfnmsub_sd>; // Packed Instructions defm VFMADDPD4 : fma4p<0x69, "vfmaddpd", X86Fmadd, v2f64, v4f64, loadv2f64, loadv4f64>; defm VFMSUBPD4 : fma4p<0x6D, "vfmsubpd", X86Fmsub, v2f64, v4f64, loadv2f64, loadv4f64>; defm VFNMADDPD4 : fma4p<0x79, "vfnmaddpd", X86Fnmadd, v2f64, v4f64, loadv2f64, loadv4f64>; defm VFNMSUBPD4 : fma4p<0x7D, "vfnmsubpd", X86Fnmsub, v2f64, v4f64, loadv2f64, loadv4f64>; defm VFMADDSUBPD4 : fma4p<0x5D, "vfmaddsubpd", X86Fmaddsub, v2f64, v4f64, loadv2f64, loadv4f64>; defm VFMSUBADDPD4 : fma4p<0x5F, "vfmsubaddpd", X86Fmsubadd, v2f64, v4f64, loadv2f64, loadv4f64>; }