//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that X86 uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #include "X86ISelLowering.h" #include "Utils/X86ShuffleDecode.h" #include "X86CallingConv.h" #include "X86FrameLowering.h" #include "X86InstrBuilder.h" #include "X86MachineFunctionInfo.h" #include "X86TargetMachine.h" #include "X86TargetObjectFile.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Analysis/EHPersonalities.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/WinEHFuncInfo.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetOptions.h" #include "X86IntrinsicsInfo.h" #include <bitset> #include <numeric> #include <cctype> using namespace llvm; #define DEBUG_TYPE "x86-isel" STATISTIC(NumTailCalls, "Number of tail calls"); static cl::opt<bool> ExperimentalVectorWideningLegalization( "x86-experimental-vector-widening-legalization", cl::init(false), cl::desc("Enable an experimental vector type legalization through widening " "rather than promotion."), cl::Hidden); X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM, const X86Subtarget &STI) : TargetLowering(TM), Subtarget(&STI) { X86ScalarSSEf64 = Subtarget->hasSSE2(); X86ScalarSSEf32 = Subtarget->hasSSE1(); MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize()); // Set up the TargetLowering object. // X86 is weird. It always uses i8 for shift amounts and setcc results. setBooleanContents(ZeroOrOneBooleanContent); // X86-SSE is even stranger. It uses -1 or 0 for vector masks. setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); // For 64-bit, since we have so many registers, use the ILP scheduler. // For 32-bit, use the register pressure specific scheduling. // For Atom, always use ILP scheduling. if (Subtarget->isAtom()) setSchedulingPreference(Sched::ILP); else if (Subtarget->is64Bit()) setSchedulingPreference(Sched::ILP); else setSchedulingPreference(Sched::RegPressure); const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister()); // Bypass expensive divides on Atom when compiling with O2. if (TM.getOptLevel() >= CodeGenOpt::Default) { if (Subtarget->hasSlowDivide32()) addBypassSlowDiv(32, 8); if (Subtarget->hasSlowDivide64() && Subtarget->is64Bit()) addBypassSlowDiv(64, 16); } if (Subtarget->isTargetKnownWindowsMSVC()) { // Setup Windows compiler runtime calls. setLibcallName(RTLIB::SDIV_I64, "_alldiv"); setLibcallName(RTLIB::UDIV_I64, "_aulldiv"); setLibcallName(RTLIB::SREM_I64, "_allrem"); setLibcallName(RTLIB::UREM_I64, "_aullrem"); setLibcallName(RTLIB::MUL_I64, "_allmul"); setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall); setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall); setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall); setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall); setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall); } if (Subtarget->isTargetDarwin()) { // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. setUseUnderscoreSetJmp(false); setUseUnderscoreLongJmp(false); } else if (Subtarget->isTargetWindowsGNU()) { // MS runtime is weird: it exports _setjmp, but longjmp! setUseUnderscoreSetJmp(true); setUseUnderscoreLongJmp(false); } else { setUseUnderscoreSetJmp(true); setUseUnderscoreLongJmp(true); } // Set up the register classes. addRegisterClass(MVT::i8, &X86::GR8RegClass); addRegisterClass(MVT::i16, &X86::GR16RegClass); addRegisterClass(MVT::i32, &X86::GR32RegClass); if (Subtarget->is64Bit()) addRegisterClass(MVT::i64, &X86::GR64RegClass); for (MVT VT : MVT::integer_valuetypes()) setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); // We don't accept any truncstore of integer registers. setTruncStoreAction(MVT::i64, MVT::i32, Expand); setTruncStoreAction(MVT::i64, MVT::i16, Expand); setTruncStoreAction(MVT::i64, MVT::i8 , Expand); setTruncStoreAction(MVT::i32, MVT::i16, Expand); setTruncStoreAction(MVT::i32, MVT::i8 , Expand); setTruncStoreAction(MVT::i16, MVT::i8, Expand); setTruncStoreAction(MVT::f64, MVT::f32, Expand); // SETOEQ and SETUNE require checking two conditions. setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand); setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand); setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand); setCondCodeAction(ISD::SETUNE, MVT::f32, Expand); setCondCodeAction(ISD::SETUNE, MVT::f64, Expand); setCondCodeAction(ISD::SETUNE, MVT::f80, Expand); // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this // operation. setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); if (Subtarget->is64Bit()) { if (!Subtarget->useSoftFloat() && Subtarget->hasAVX512()) // f32/f64 are legal, f80 is custom. setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom); else setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom); } else if (!Subtarget->useSoftFloat()) { // We have an algorithm for SSE2->double, and we turn this into a // 64-bit FILD followed by conditional FADD for other targets. setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom); // We have an algorithm for SSE2, and we turn this into a 64-bit // FILD or VCVTUSI2SS/SD for other targets. setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom); } // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have // this operation. setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); if (!Subtarget->useSoftFloat()) { // SSE has no i16 to fp conversion, only i32 if (X86ScalarSSEf32) { setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); // f32 and f64 cases are Legal, f80 case is not setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); } else { setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); } } else { setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote); } // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have // this operation. setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); if (!Subtarget->useSoftFloat()) { // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64 // are Legal, f80 is custom lowered. setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); if (X86ScalarSSEf32) { setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); // f32 and f64 cases are Legal, f80 case is not setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); } else { setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); } } else { setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Expand); setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Expand); } // Handle FP_TO_UINT by promoting the destination to a larger signed // conversion. setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); if (Subtarget->is64Bit()) { if (!Subtarget->useSoftFloat() && Subtarget->hasAVX512()) { // FP_TO_UINT-i32/i64 is legal for f32/f64, but custom for f80. setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom); setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom); } else { setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand); } } else if (!Subtarget->useSoftFloat()) { // Since AVX is a superset of SSE3, only check for SSE here. if (Subtarget->hasSSE1() && !Subtarget->hasSSE3()) // Expand FP_TO_UINT into a select. // FIXME: We would like to use a Custom expander here eventually to do // the optimal thing for SSE vs. the default expansion in the legalizer. setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); else // With AVX512 we can use vcvts[ds]2usi for f32/f64->i32, f80 is custom. // With SSE3 we can use fisttpll to convert to a signed i64; without // SSE, we're stuck with a fistpll. setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom); setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom); } // TODO: when we have SSE, these could be more efficient, by using movd/movq. if (!X86ScalarSSEf64) { setOperationAction(ISD::BITCAST , MVT::f32 , Expand); setOperationAction(ISD::BITCAST , MVT::i32 , Expand); if (Subtarget->is64Bit()) { setOperationAction(ISD::BITCAST , MVT::f64 , Expand); // Without SSE, i64->f64 goes through memory. setOperationAction(ISD::BITCAST , MVT::i64 , Expand); } } // Scalar integer divide and remainder are lowered to use operations that // produce two results, to match the available instructions. This exposes // the two-result form to trivial CSE, which is able to combine x/y and x%y // into a single instruction. // // Scalar integer multiply-high is also lowered to use two-result // operations, to match the available instructions. However, plain multiply // (low) operations are left as Legal, as there are single-result // instructions for this in x86. Using the two-result multiply instructions // when both high and low results are needed must be arranged by dagcombine. for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) { setOperationAction(ISD::MULHS, VT, Expand); setOperationAction(ISD::MULHU, VT, Expand); setOperationAction(ISD::SDIV, VT, Expand); setOperationAction(ISD::UDIV, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::UREM, VT, Expand); // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences. setOperationAction(ISD::ADDC, VT, Custom); setOperationAction(ISD::ADDE, VT, Custom); setOperationAction(ISD::SUBC, VT, Custom); setOperationAction(ISD::SUBE, VT, Custom); } setOperationAction(ISD::BR_JT , MVT::Other, Expand); setOperationAction(ISD::BRCOND , MVT::Other, Custom); setOperationAction(ISD::BR_CC , MVT::f32, Expand); setOperationAction(ISD::BR_CC , MVT::f64, Expand); setOperationAction(ISD::BR_CC , MVT::f80, Expand); setOperationAction(ISD::BR_CC , MVT::f128, Expand); setOperationAction(ISD::BR_CC , MVT::i8, Expand); setOperationAction(ISD::BR_CC , MVT::i16, Expand); setOperationAction(ISD::BR_CC , MVT::i32, Expand); setOperationAction(ISD::BR_CC , MVT::i64, Expand); setOperationAction(ISD::SELECT_CC , MVT::f32, Expand); setOperationAction(ISD::SELECT_CC , MVT::f64, Expand); setOperationAction(ISD::SELECT_CC , MVT::f80, Expand); setOperationAction(ISD::SELECT_CC , MVT::f128, Expand); setOperationAction(ISD::SELECT_CC , MVT::i8, Expand); setOperationAction(ISD::SELECT_CC , MVT::i16, Expand); setOperationAction(ISD::SELECT_CC , MVT::i32, Expand); setOperationAction(ISD::SELECT_CC , MVT::i64, Expand); if (Subtarget->is64Bit()) setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); if (Subtarget->is32Bit() && Subtarget->isTargetKnownWindowsMSVC()) { // On 32 bit MSVC, `fmodf(f32)` is not defined - only `fmod(f64)` // is. We should promote the value to 64-bits to solve this. // This is what the CRT headers do - `fmodf` is an inline header // function casting to f64 and calling `fmod`. setOperationAction(ISD::FREM , MVT::f32 , Promote); } else { setOperationAction(ISD::FREM , MVT::f32 , Expand); } setOperationAction(ISD::FREM , MVT::f64 , Expand); setOperationAction(ISD::FREM , MVT::f80 , Expand); setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom); // Promote the i8 variants and force them on up to i32 which has a shorter // encoding. setOperationAction(ISD::CTTZ , MVT::i8 , Promote); AddPromotedToType (ISD::CTTZ , MVT::i8 , MVT::i32); setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i8 , Promote); AddPromotedToType (ISD::CTTZ_ZERO_UNDEF , MVT::i8 , MVT::i32); if (Subtarget->hasBMI()) { setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16 , Expand); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32 , Expand); if (Subtarget->is64Bit()) setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); } else { setOperationAction(ISD::CTTZ , MVT::i16 , Custom); setOperationAction(ISD::CTTZ , MVT::i32 , Custom); if (Subtarget->is64Bit()) setOperationAction(ISD::CTTZ , MVT::i64 , Custom); } if (Subtarget->hasLZCNT()) { // When promoting the i8 variants, force them to i32 for a shorter // encoding. setOperationAction(ISD::CTLZ , MVT::i8 , Promote); AddPromotedToType (ISD::CTLZ , MVT::i8 , MVT::i32); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Promote); AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8 , MVT::i32); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Expand); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Expand); if (Subtarget->is64Bit()) setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); } else { setOperationAction(ISD::CTLZ , MVT::i8 , Custom); setOperationAction(ISD::CTLZ , MVT::i16 , Custom); setOperationAction(ISD::CTLZ , MVT::i32 , Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::CTLZ , MVT::i64 , Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); } } // Special handling for half-precision floating point conversions. // If we don't have F16C support, then lower half float conversions // into library calls. if (Subtarget->useSoftFloat() || !Subtarget->hasF16C()) { setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); } // There's never any support for operations beyond MVT::f32. setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); setOperationAction(ISD::FP16_TO_FP, MVT::f80, Expand); setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); setOperationAction(ISD::FP_TO_FP16, MVT::f80, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f80, MVT::f16, Expand); setTruncStoreAction(MVT::f32, MVT::f16, Expand); setTruncStoreAction(MVT::f64, MVT::f16, Expand); setTruncStoreAction(MVT::f80, MVT::f16, Expand); if (Subtarget->hasPOPCNT()) { setOperationAction(ISD::CTPOP , MVT::i8 , Promote); } else { setOperationAction(ISD::CTPOP , MVT::i8 , Expand); setOperationAction(ISD::CTPOP , MVT::i16 , Expand); setOperationAction(ISD::CTPOP , MVT::i32 , Expand); if (Subtarget->is64Bit()) setOperationAction(ISD::CTPOP , MVT::i64 , Expand); } setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); if (!Subtarget->hasMOVBE()) setOperationAction(ISD::BSWAP , MVT::i16 , Expand); // These should be promoted to a larger select which is supported. setOperationAction(ISD::SELECT , MVT::i1 , Promote); // X86 wants to expand cmov itself. setOperationAction(ISD::SELECT , MVT::i8 , Custom); setOperationAction(ISD::SELECT , MVT::i16 , Custom); setOperationAction(ISD::SELECT , MVT::i32 , Custom); setOperationAction(ISD::SELECT , MVT::f32 , Custom); setOperationAction(ISD::SELECT , MVT::f64 , Custom); setOperationAction(ISD::SELECT , MVT::f80 , Custom); setOperationAction(ISD::SELECT , MVT::f128 , Custom); setOperationAction(ISD::SETCC , MVT::i8 , Custom); setOperationAction(ISD::SETCC , MVT::i16 , Custom); setOperationAction(ISD::SETCC , MVT::i32 , Custom); setOperationAction(ISD::SETCC , MVT::f32 , Custom); setOperationAction(ISD::SETCC , MVT::f64 , Custom); setOperationAction(ISD::SETCC , MVT::f80 , Custom); setOperationAction(ISD::SETCC , MVT::f128 , Custom); setOperationAction(ISD::SETCCE , MVT::i8 , Custom); setOperationAction(ISD::SETCCE , MVT::i16 , Custom); setOperationAction(ISD::SETCCE , MVT::i32 , Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::SELECT , MVT::i64 , Custom); setOperationAction(ISD::SETCC , MVT::i64 , Custom); setOperationAction(ISD::SETCCE , MVT::i64 , Custom); } setOperationAction(ISD::EH_RETURN , MVT::Other, Custom); // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support // SjLj exception handling but a light-weight setjmp/longjmp replacement to // support continuation, user-level threading, and etc.. As a result, no // other SjLj exception interfaces are implemented and please don't build // your own exception handling based on them. // LLVM/Clang supports zero-cost DWARF exception handling. setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); // Darwin ABI issue. setOperationAction(ISD::ConstantPool , MVT::i32 , Custom); setOperationAction(ISD::JumpTable , MVT::i32 , Custom); setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom); if (Subtarget->is64Bit()) setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom); setOperationAction(ISD::BlockAddress , MVT::i32 , Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::ConstantPool , MVT::i64 , Custom); setOperationAction(ISD::JumpTable , MVT::i64 , Custom); setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom); setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom); setOperationAction(ISD::BlockAddress , MVT::i64 , Custom); } // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom); setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom); setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom); setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom); setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom); } if (Subtarget->hasSSE1()) setOperationAction(ISD::PREFETCH , MVT::Other, Legal); setOperationAction(ISD::ATOMIC_FENCE , MVT::Other, Custom); // Expand certain atomics for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) { setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom); setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); setOperationAction(ISD::ATOMIC_STORE, VT, Custom); } if (Subtarget->hasCmpxchg16b()) { setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); } // FIXME - use subtarget debug flags if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetELF() && !Subtarget->isTargetCygMing() && !Subtarget->isTargetWin64()) { setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); } setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom); setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); setOperationAction(ISD::TRAP, MVT::Other, Legal); setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); // VASTART needs to be custom lowered to use the VarArgsFrameIndex setOperationAction(ISD::VASTART , MVT::Other, Custom); setOperationAction(ISD::VAEND , MVT::Other, Expand); if (Subtarget->is64Bit()) { setOperationAction(ISD::VAARG , MVT::Other, Custom); setOperationAction(ISD::VACOPY , MVT::Other, Custom); } else { // TargetInfo::CharPtrBuiltinVaList setOperationAction(ISD::VAARG , MVT::Other, Expand); setOperationAction(ISD::VACOPY , MVT::Other, Expand); } setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); // GC_TRANSITION_START and GC_TRANSITION_END need custom lowering. setOperationAction(ISD::GC_TRANSITION_START, MVT::Other, Custom); setOperationAction(ISD::GC_TRANSITION_END, MVT::Other, Custom); if (!Subtarget->useSoftFloat() && X86ScalarSSEf64) { // f32 and f64 use SSE. // Set up the FP register classes. addRegisterClass(MVT::f32, &X86::FR32RegClass); addRegisterClass(MVT::f64, &X86::FR64RegClass); // Use ANDPD to simulate FABS. setOperationAction(ISD::FABS , MVT::f64, Custom); setOperationAction(ISD::FABS , MVT::f32, Custom); // Use XORP to simulate FNEG. setOperationAction(ISD::FNEG , MVT::f64, Custom); setOperationAction(ISD::FNEG , MVT::f32, Custom); // Use ANDPD and ORPD to simulate FCOPYSIGN. setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); // Lower this to FGETSIGNx86 plus an AND. setOperationAction(ISD::FGETSIGN, MVT::i64, Custom); setOperationAction(ISD::FGETSIGN, MVT::i32, Custom); // We don't support sin/cos/fmod setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FSINCOS, MVT::f64, Expand); setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FSINCOS, MVT::f32, Expand); // Expand FP immediates into loads from the stack, except for the special // cases we handle. addLegalFPImmediate(APFloat(+0.0)); // xorpd addLegalFPImmediate(APFloat(+0.0f)); // xorps } else if (!Subtarget->useSoftFloat() && X86ScalarSSEf32) { // Use SSE for f32, x87 for f64. // Set up the FP register classes. addRegisterClass(MVT::f32, &X86::FR32RegClass); addRegisterClass(MVT::f64, &X86::RFP64RegClass); // Use ANDPS to simulate FABS. setOperationAction(ISD::FABS , MVT::f32, Custom); // Use XORP to simulate FNEG. setOperationAction(ISD::FNEG , MVT::f32, Custom); setOperationAction(ISD::UNDEF, MVT::f64, Expand); // Use ANDPS and ORPS to simulate FCOPYSIGN. setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); // We don't support sin/cos/fmod setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FSINCOS, MVT::f32, Expand); // Special cases we handle for FP constants. addLegalFPImmediate(APFloat(+0.0f)); // xorps addLegalFPImmediate(APFloat(+0.0)); // FLD0 addLegalFPImmediate(APFloat(+1.0)); // FLD1 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS if (!TM.Options.UnsafeFPMath) { setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FSINCOS, MVT::f64, Expand); } } else if (!Subtarget->useSoftFloat()) { // f32 and f64 in x87. // Set up the FP register classes. addRegisterClass(MVT::f64, &X86::RFP64RegClass); addRegisterClass(MVT::f32, &X86::RFP32RegClass); setOperationAction(ISD::UNDEF, MVT::f64, Expand); setOperationAction(ISD::UNDEF, MVT::f32, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); if (!TM.Options.UnsafeFPMath) { setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FSINCOS, MVT::f64, Expand); setOperationAction(ISD::FSINCOS, MVT::f32, Expand); } addLegalFPImmediate(APFloat(+0.0)); // FLD0 addLegalFPImmediate(APFloat(+1.0)); // FLD1 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS addLegalFPImmediate(APFloat(+0.0f)); // FLD0 addLegalFPImmediate(APFloat(+1.0f)); // FLD1 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS } // We don't support FMA. setOperationAction(ISD::FMA, MVT::f64, Expand); setOperationAction(ISD::FMA, MVT::f32, Expand); // Long double always uses X87, except f128 in MMX. if (!Subtarget->useSoftFloat()) { if (Subtarget->is64Bit() && Subtarget->hasMMX()) { addRegisterClass(MVT::f128, &X86::FR128RegClass); ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); setOperationAction(ISD::FABS , MVT::f128, Custom); setOperationAction(ISD::FNEG , MVT::f128, Custom); setOperationAction(ISD::FCOPYSIGN, MVT::f128, Custom); } addRegisterClass(MVT::f80, &X86::RFP80RegClass); setOperationAction(ISD::UNDEF, MVT::f80, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand); { APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended); addLegalFPImmediate(TmpFlt); // FLD0 TmpFlt.changeSign(); addLegalFPImmediate(TmpFlt); // FLD0/FCHS bool ignored; APFloat TmpFlt2(+1.0); TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven, &ignored); addLegalFPImmediate(TmpFlt2); // FLD1 TmpFlt2.changeSign(); addLegalFPImmediate(TmpFlt2); // FLD1/FCHS } if (!TM.Options.UnsafeFPMath) { setOperationAction(ISD::FSIN , MVT::f80, Expand); setOperationAction(ISD::FCOS , MVT::f80, Expand); setOperationAction(ISD::FSINCOS, MVT::f80, Expand); } setOperationAction(ISD::FFLOOR, MVT::f80, Expand); setOperationAction(ISD::FCEIL, MVT::f80, Expand); setOperationAction(ISD::FTRUNC, MVT::f80, Expand); setOperationAction(ISD::FRINT, MVT::f80, Expand); setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand); setOperationAction(ISD::FMA, MVT::f80, Expand); } // Always use a library call for pow. setOperationAction(ISD::FPOW , MVT::f32 , Expand); setOperationAction(ISD::FPOW , MVT::f64 , Expand); setOperationAction(ISD::FPOW , MVT::f80 , Expand); setOperationAction(ISD::FLOG, MVT::f80, Expand); setOperationAction(ISD::FLOG2, MVT::f80, Expand); setOperationAction(ISD::FLOG10, MVT::f80, Expand); setOperationAction(ISD::FEXP, MVT::f80, Expand); setOperationAction(ISD::FEXP2, MVT::f80, Expand); setOperationAction(ISD::FMINNUM, MVT::f80, Expand); setOperationAction(ISD::FMAXNUM, MVT::f80, Expand); // First set operation action for all vector types to either promote // (for widening) or expand (for scalarization). Then we will selectively // turn on ones that can be effectively codegen'd. for (MVT VT : MVT::vector_valuetypes()) { setOperationAction(ISD::ADD , VT, Expand); setOperationAction(ISD::SUB , VT, Expand); setOperationAction(ISD::FADD, VT, Expand); setOperationAction(ISD::FNEG, VT, Expand); setOperationAction(ISD::FSUB, VT, Expand); setOperationAction(ISD::MUL , VT, Expand); setOperationAction(ISD::FMUL, VT, Expand); setOperationAction(ISD::SDIV, VT, Expand); setOperationAction(ISD::UDIV, VT, Expand); setOperationAction(ISD::FDIV, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::UREM, VT, Expand); setOperationAction(ISD::LOAD, VT, Expand); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand); setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand); setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand); setOperationAction(ISD::FABS, VT, Expand); setOperationAction(ISD::FSIN, VT, Expand); setOperationAction(ISD::FSINCOS, VT, Expand); setOperationAction(ISD::FCOS, VT, Expand); setOperationAction(ISD::FSINCOS, VT, Expand); setOperationAction(ISD::FREM, VT, Expand); setOperationAction(ISD::FMA, VT, Expand); setOperationAction(ISD::FPOWI, VT, Expand); setOperationAction(ISD::FSQRT, VT, Expand); setOperationAction(ISD::FCOPYSIGN, VT, Expand); setOperationAction(ISD::FFLOOR, VT, Expand); setOperationAction(ISD::FCEIL, VT, Expand); setOperationAction(ISD::FTRUNC, VT, Expand); setOperationAction(ISD::FRINT, VT, Expand); setOperationAction(ISD::FNEARBYINT, VT, Expand); setOperationAction(ISD::SMUL_LOHI, VT, Expand); setOperationAction(ISD::MULHS, VT, Expand); setOperationAction(ISD::UMUL_LOHI, VT, Expand); setOperationAction(ISD::MULHU, VT, Expand); setOperationAction(ISD::SDIVREM, VT, Expand); setOperationAction(ISD::UDIVREM, VT, Expand); setOperationAction(ISD::FPOW, VT, Expand); setOperationAction(ISD::CTPOP, VT, Expand); setOperationAction(ISD::CTTZ, VT, Expand); setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); setOperationAction(ISD::CTLZ, VT, Expand); setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); setOperationAction(ISD::SHL, VT, Expand); setOperationAction(ISD::SRA, VT, Expand); setOperationAction(ISD::SRL, VT, Expand); setOperationAction(ISD::ROTL, VT, Expand); setOperationAction(ISD::ROTR, VT, Expand); setOperationAction(ISD::BSWAP, VT, Expand); setOperationAction(ISD::SETCC, VT, Expand); setOperationAction(ISD::FLOG, VT, Expand); setOperationAction(ISD::FLOG2, VT, Expand); setOperationAction(ISD::FLOG10, VT, Expand); setOperationAction(ISD::FEXP, VT, Expand); setOperationAction(ISD::FEXP2, VT, Expand); setOperationAction(ISD::FP_TO_UINT, VT, Expand); setOperationAction(ISD::FP_TO_SINT, VT, Expand); setOperationAction(ISD::UINT_TO_FP, VT, Expand); setOperationAction(ISD::SINT_TO_FP, VT, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand); setOperationAction(ISD::TRUNCATE, VT, Expand); setOperationAction(ISD::SIGN_EXTEND, VT, Expand); setOperationAction(ISD::ZERO_EXTEND, VT, Expand); setOperationAction(ISD::ANY_EXTEND, VT, Expand); setOperationAction(ISD::VSELECT, VT, Expand); setOperationAction(ISD::SELECT_CC, VT, Expand); for (MVT InnerVT : MVT::vector_valuetypes()) { setTruncStoreAction(InnerVT, VT, Expand); setLoadExtAction(ISD::SEXTLOAD, InnerVT, VT, Expand); setLoadExtAction(ISD::ZEXTLOAD, InnerVT, VT, Expand); // N.b. ISD::EXTLOAD legality is basically ignored except for i1-like // types, we have to deal with them whether we ask for Expansion or not. // Setting Expand causes its own optimisation problems though, so leave // them legal. if (VT.getVectorElementType() == MVT::i1) setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand); // EXTLOAD for MVT::f16 vectors is not legal because f16 vectors are // split/scalarized right now. if (VT.getVectorElementType() == MVT::f16) setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand); } } // FIXME: In order to prevent SSE instructions being expanded to MMX ones // with -msoft-float, disable use of MMX as well. if (!Subtarget->useSoftFloat() && Subtarget->hasMMX()) { addRegisterClass(MVT::x86mmx, &X86::VR64RegClass); // No operations on x86mmx supported, everything uses intrinsics. } // MMX-sized vectors (other than x86mmx) are expected to be expanded // into smaller operations. for (MVT MMXTy : {MVT::v8i8, MVT::v4i16, MVT::v2i32, MVT::v1i64}) { setOperationAction(ISD::MULHS, MMXTy, Expand); setOperationAction(ISD::AND, MMXTy, Expand); setOperationAction(ISD::OR, MMXTy, Expand); setOperationAction(ISD::XOR, MMXTy, Expand); setOperationAction(ISD::SCALAR_TO_VECTOR, MMXTy, Expand); setOperationAction(ISD::SELECT, MMXTy, Expand); setOperationAction(ISD::BITCAST, MMXTy, Expand); } setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v1i64, Expand); if (!Subtarget->useSoftFloat() && Subtarget->hasSSE1()) { addRegisterClass(MVT::v4f32, &X86::VR128RegClass); setOperationAction(ISD::FADD, MVT::v4f32, Legal); setOperationAction(ISD::FSUB, MVT::v4f32, Legal); setOperationAction(ISD::FMUL, MVT::v4f32, Legal); setOperationAction(ISD::FDIV, MVT::v4f32, Legal); setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); setOperationAction(ISD::FNEG, MVT::v4f32, Custom); setOperationAction(ISD::FABS, MVT::v4f32, Custom); setOperationAction(ISD::LOAD, MVT::v4f32, Legal); setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom); setOperationAction(ISD::VSELECT, MVT::v4f32, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); setOperationAction(ISD::SELECT, MVT::v4f32, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom); } if (!Subtarget->useSoftFloat() && Subtarget->hasSSE2()) { addRegisterClass(MVT::v2f64, &X86::VR128RegClass); // FIXME: Unfortunately, -soft-float and -no-implicit-float mean XMM // registers cannot be used even for integer operations. addRegisterClass(MVT::v16i8, &X86::VR128RegClass); addRegisterClass(MVT::v8i16, &X86::VR128RegClass); addRegisterClass(MVT::v4i32, &X86::VR128RegClass); addRegisterClass(MVT::v2i64, &X86::VR128RegClass); setOperationAction(ISD::ADD, MVT::v16i8, Legal); setOperationAction(ISD::ADD, MVT::v8i16, Legal); setOperationAction(ISD::ADD, MVT::v4i32, Legal); setOperationAction(ISD::ADD, MVT::v2i64, Legal); setOperationAction(ISD::MUL, MVT::v16i8, Custom); setOperationAction(ISD::MUL, MVT::v4i32, Custom); setOperationAction(ISD::MUL, MVT::v2i64, Custom); setOperationAction(ISD::UMUL_LOHI, MVT::v4i32, Custom); setOperationAction(ISD::SMUL_LOHI, MVT::v4i32, Custom); setOperationAction(ISD::MULHU, MVT::v8i16, Legal); setOperationAction(ISD::MULHS, MVT::v8i16, Legal); setOperationAction(ISD::SUB, MVT::v16i8, Legal); setOperationAction(ISD::SUB, MVT::v8i16, Legal); setOperationAction(ISD::SUB, MVT::v4i32, Legal); setOperationAction(ISD::SUB, MVT::v2i64, Legal); setOperationAction(ISD::MUL, MVT::v8i16, Legal); setOperationAction(ISD::FADD, MVT::v2f64, Legal); setOperationAction(ISD::FSUB, MVT::v2f64, Legal); setOperationAction(ISD::FMUL, MVT::v2f64, Legal); setOperationAction(ISD::FDIV, MVT::v2f64, Legal); setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); setOperationAction(ISD::FNEG, MVT::v2f64, Custom); setOperationAction(ISD::FABS, MVT::v2f64, Custom); setOperationAction(ISD::SMAX, MVT::v8i16, Legal); setOperationAction(ISD::UMAX, MVT::v16i8, Legal); setOperationAction(ISD::SMIN, MVT::v8i16, Legal); setOperationAction(ISD::UMIN, MVT::v16i8, Legal); setOperationAction(ISD::SETCC, MVT::v2i64, Custom); setOperationAction(ISD::SETCC, MVT::v16i8, Custom); setOperationAction(ISD::SETCC, MVT::v8i16, Custom); setOperationAction(ISD::SETCC, MVT::v4i32, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); setOperationAction(ISD::CTPOP, MVT::v16i8, Custom); setOperationAction(ISD::CTPOP, MVT::v8i16, Custom); setOperationAction(ISD::CTPOP, MVT::v4i32, Custom); setOperationAction(ISD::CTPOP, MVT::v2i64, Custom); setOperationAction(ISD::CTTZ, MVT::v16i8, Custom); setOperationAction(ISD::CTTZ, MVT::v8i16, Custom); setOperationAction(ISD::CTTZ, MVT::v4i32, Custom); // ISD::CTTZ v2i64 - scalarization is faster. setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom); // ISD::CTTZ_ZERO_UNDEF v2i64 - scalarization is faster. // Custom lower build_vector, vector_shuffle, and extract_vector_elt. for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { setOperationAction(ISD::BUILD_VECTOR, VT, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); setOperationAction(ISD::VSELECT, VT, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); } // We support custom legalizing of sext and anyext loads for specific // memory vector types which we can load as a scalar (or sequence of // scalars) and extend in-register to a legal 128-bit vector type. For sext // loads these must work with a single scalar load. for (MVT VT : MVT::integer_vector_valuetypes()) { setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Custom); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Custom); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i8, Custom); setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Custom); setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Custom); setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Custom); setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Custom); setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Custom); setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8i8, Custom); } setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); setOperationAction(ISD::VSELECT, MVT::v2f64, Custom); setOperationAction(ISD::VSELECT, MVT::v2i64, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); } // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { setOperationAction(ISD::AND, VT, Promote); AddPromotedToType (ISD::AND, VT, MVT::v2i64); setOperationAction(ISD::OR, VT, Promote); AddPromotedToType (ISD::OR, VT, MVT::v2i64); setOperationAction(ISD::XOR, VT, Promote); AddPromotedToType (ISD::XOR, VT, MVT::v2i64); setOperationAction(ISD::LOAD, VT, Promote); AddPromotedToType (ISD::LOAD, VT, MVT::v2i64); setOperationAction(ISD::SELECT, VT, Promote); AddPromotedToType (ISD::SELECT, VT, MVT::v2i64); } // Custom lower v2i64 and v2f64 selects. setOperationAction(ISD::LOAD, MVT::v2f64, Legal); setOperationAction(ISD::LOAD, MVT::v2i64, Legal); setOperationAction(ISD::SELECT, MVT::v2f64, Custom); setOperationAction(ISD::SELECT, MVT::v2i64, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); // As there is no 64-bit GPR available, we need build a special custom // sequence to convert from v2i32 to v2f32. if (!Subtarget->is64Bit()) setOperationAction(ISD::UINT_TO_FP, MVT::v2f32, Custom); setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); setOperationAction(ISD::FP_ROUND, MVT::v2f32, Custom); for (MVT VT : MVT::fp_vector_valuetypes()) setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2f32, Legal); setOperationAction(ISD::BITCAST, MVT::v2i32, Custom); setOperationAction(ISD::BITCAST, MVT::v4i16, Custom); setOperationAction(ISD::BITCAST, MVT::v8i8, Custom); } if (!Subtarget->useSoftFloat() && Subtarget->hasSSE41()) { for (MVT RoundedTy : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { setOperationAction(ISD::FFLOOR, RoundedTy, Legal); setOperationAction(ISD::FCEIL, RoundedTy, Legal); setOperationAction(ISD::FTRUNC, RoundedTy, Legal); setOperationAction(ISD::FRINT, RoundedTy, Legal); setOperationAction(ISD::FNEARBYINT, RoundedTy, Legal); } setOperationAction(ISD::SMAX, MVT::v16i8, Legal); setOperationAction(ISD::SMAX, MVT::v4i32, Legal); setOperationAction(ISD::UMAX, MVT::v8i16, Legal); setOperationAction(ISD::UMAX, MVT::v4i32, Legal); setOperationAction(ISD::SMIN, MVT::v16i8, Legal); setOperationAction(ISD::SMIN, MVT::v4i32, Legal); setOperationAction(ISD::UMIN, MVT::v8i16, Legal); setOperationAction(ISD::UMIN, MVT::v4i32, Legal); // FIXME: Do we need to handle scalar-to-vector here? setOperationAction(ISD::MUL, MVT::v4i32, Legal); // We directly match byte blends in the backend as they match the VSELECT // condition form. setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); // SSE41 brings specific instructions for doing vector sign extend even in // cases where we don't have SRA. for (MVT VT : MVT::integer_vector_valuetypes()) { setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Custom); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Custom); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Custom); } // SSE41 also has vector sign/zero extending loads, PMOV[SZ]X setLoadExtAction(ISD::SEXTLOAD, MVT::v8i16, MVT::v8i8, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i8, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i8, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i16, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i16, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i32, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i16, MVT::v8i8, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i8, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i8, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i16, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i16, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i32, Legal); // i8 and i16 vectors are custom because the source register and source // source memory operand types are not the same width. f32 vectors are // custom since the immediate controlling the insert encodes additional // information. setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); // FIXME: these should be Legal, but that's only for the case where // the index is constant. For now custom expand to deal with that. if (Subtarget->is64Bit()) { setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); } } if (Subtarget->hasSSE2()) { setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v2i64, Custom); setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v4i32, Custom); setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i16, Custom); setOperationAction(ISD::SRL, MVT::v8i16, Custom); setOperationAction(ISD::SRL, MVT::v16i8, Custom); setOperationAction(ISD::SHL, MVT::v8i16, Custom); setOperationAction(ISD::SHL, MVT::v16i8, Custom); setOperationAction(ISD::SRA, MVT::v8i16, Custom); setOperationAction(ISD::SRA, MVT::v16i8, Custom); // In the customized shift lowering, the legal cases in AVX2 will be // recognized. setOperationAction(ISD::SRL, MVT::v2i64, Custom); setOperationAction(ISD::SRL, MVT::v4i32, Custom); setOperationAction(ISD::SHL, MVT::v2i64, Custom); setOperationAction(ISD::SHL, MVT::v4i32, Custom); setOperationAction(ISD::SRA, MVT::v2i64, Custom); setOperationAction(ISD::SRA, MVT::v4i32, Custom); } if (Subtarget->hasXOP()) { setOperationAction(ISD::ROTL, MVT::v16i8, Custom); setOperationAction(ISD::ROTL, MVT::v8i16, Custom); setOperationAction(ISD::ROTL, MVT::v4i32, Custom); setOperationAction(ISD::ROTL, MVT::v2i64, Custom); setOperationAction(ISD::ROTL, MVT::v32i8, Custom); setOperationAction(ISD::ROTL, MVT::v16i16, Custom); setOperationAction(ISD::ROTL, MVT::v8i32, Custom); setOperationAction(ISD::ROTL, MVT::v4i64, Custom); } if (!Subtarget->useSoftFloat() && Subtarget->hasFp256()) { addRegisterClass(MVT::v32i8, &X86::VR256RegClass); addRegisterClass(MVT::v16i16, &X86::VR256RegClass); addRegisterClass(MVT::v8i32, &X86::VR256RegClass); addRegisterClass(MVT::v8f32, &X86::VR256RegClass); addRegisterClass(MVT::v4i64, &X86::VR256RegClass); addRegisterClass(MVT::v4f64, &X86::VR256RegClass); setOperationAction(ISD::LOAD, MVT::v8f32, Legal); setOperationAction(ISD::LOAD, MVT::v4f64, Legal); setOperationAction(ISD::LOAD, MVT::v4i64, Legal); setOperationAction(ISD::FADD, MVT::v8f32, Legal); setOperationAction(ISD::FSUB, MVT::v8f32, Legal); setOperationAction(ISD::FMUL, MVT::v8f32, Legal); setOperationAction(ISD::FDIV, MVT::v8f32, Legal); setOperationAction(ISD::FSQRT, MVT::v8f32, Legal); setOperationAction(ISD::FFLOOR, MVT::v8f32, Legal); setOperationAction(ISD::FCEIL, MVT::v8f32, Legal); setOperationAction(ISD::FTRUNC, MVT::v8f32, Legal); setOperationAction(ISD::FRINT, MVT::v8f32, Legal); setOperationAction(ISD::FNEARBYINT, MVT::v8f32, Legal); setOperationAction(ISD::FNEG, MVT::v8f32, Custom); setOperationAction(ISD::FABS, MVT::v8f32, Custom); setOperationAction(ISD::FADD, MVT::v4f64, Legal); setOperationAction(ISD::FSUB, MVT::v4f64, Legal); setOperationAction(ISD::FMUL, MVT::v4f64, Legal); setOperationAction(ISD::FDIV, MVT::v4f64, Legal); setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); setOperationAction(ISD::FRINT, MVT::v4f64, Legal); setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Legal); setOperationAction(ISD::FNEG, MVT::v4f64, Custom); setOperationAction(ISD::FABS, MVT::v4f64, Custom); // (fp_to_int:v8i16 (v8f32 ..)) requires the result type to be promoted // even though v8i16 is a legal type. setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Promote); setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Promote); setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Promote); setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal); setOperationAction(ISD::FP_ROUND, MVT::v4f32, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom); for (MVT VT : MVT::fp_vector_valuetypes()) setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4f32, Legal); setOperationAction(ISD::SRL, MVT::v16i16, Custom); setOperationAction(ISD::SRL, MVT::v32i8, Custom); setOperationAction(ISD::SHL, MVT::v16i16, Custom); setOperationAction(ISD::SHL, MVT::v32i8, Custom); setOperationAction(ISD::SRA, MVT::v16i16, Custom); setOperationAction(ISD::SRA, MVT::v32i8, Custom); setOperationAction(ISD::SETCC, MVT::v32i8, Custom); setOperationAction(ISD::SETCC, MVT::v16i16, Custom); setOperationAction(ISD::SETCC, MVT::v8i32, Custom); setOperationAction(ISD::SETCC, MVT::v4i64, Custom); setOperationAction(ISD::SELECT, MVT::v4f64, Custom); setOperationAction(ISD::SELECT, MVT::v4i64, Custom); setOperationAction(ISD::SELECT, MVT::v8f32, Custom); setOperationAction(ISD::SIGN_EXTEND, MVT::v4i64, Custom); setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Custom); setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom); setOperationAction(ISD::ZERO_EXTEND, MVT::v4i64, Custom); setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom); setOperationAction(ISD::ZERO_EXTEND, MVT::v16i16, Custom); setOperationAction(ISD::ANY_EXTEND, MVT::v4i64, Custom); setOperationAction(ISD::ANY_EXTEND, MVT::v8i32, Custom); setOperationAction(ISD::ANY_EXTEND, MVT::v16i16, Custom); setOperationAction(ISD::TRUNCATE, MVT::v16i8, Custom); setOperationAction(ISD::TRUNCATE, MVT::v8i16, Custom); setOperationAction(ISD::TRUNCATE, MVT::v4i32, Custom); setOperationAction(ISD::CTPOP, MVT::v32i8, Custom); setOperationAction(ISD::CTPOP, MVT::v16i16, Custom); setOperationAction(ISD::CTPOP, MVT::v8i32, Custom); setOperationAction(ISD::CTPOP, MVT::v4i64, Custom); setOperationAction(ISD::CTTZ, MVT::v32i8, Custom); setOperationAction(ISD::CTTZ, MVT::v16i16, Custom); setOperationAction(ISD::CTTZ, MVT::v8i32, Custom); setOperationAction(ISD::CTTZ, MVT::v4i64, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v32i8, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i16, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i32, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i64, Custom); if (Subtarget->hasAnyFMA()) { setOperationAction(ISD::FMA, MVT::v8f32, Legal); setOperationAction(ISD::FMA, MVT::v4f64, Legal); setOperationAction(ISD::FMA, MVT::v4f32, Legal); setOperationAction(ISD::FMA, MVT::v2f64, Legal); setOperationAction(ISD::FMA, MVT::f32, Legal); setOperationAction(ISD::FMA, MVT::f64, Legal); } if (Subtarget->hasInt256()) { setOperationAction(ISD::ADD, MVT::v4i64, Legal); setOperationAction(ISD::ADD, MVT::v8i32, Legal); setOperationAction(ISD::ADD, MVT::v16i16, Legal); setOperationAction(ISD::ADD, MVT::v32i8, Legal); setOperationAction(ISD::SUB, MVT::v4i64, Legal); setOperationAction(ISD::SUB, MVT::v8i32, Legal); setOperationAction(ISD::SUB, MVT::v16i16, Legal); setOperationAction(ISD::SUB, MVT::v32i8, Legal); setOperationAction(ISD::MUL, MVT::v4i64, Custom); setOperationAction(ISD::MUL, MVT::v8i32, Legal); setOperationAction(ISD::MUL, MVT::v16i16, Legal); setOperationAction(ISD::MUL, MVT::v32i8, Custom); setOperationAction(ISD::UMUL_LOHI, MVT::v8i32, Custom); setOperationAction(ISD::SMUL_LOHI, MVT::v8i32, Custom); setOperationAction(ISD::MULHU, MVT::v16i16, Legal); setOperationAction(ISD::MULHS, MVT::v16i16, Legal); setOperationAction(ISD::SMAX, MVT::v32i8, Legal); setOperationAction(ISD::SMAX, MVT::v16i16, Legal); setOperationAction(ISD::SMAX, MVT::v8i32, Legal); setOperationAction(ISD::UMAX, MVT::v32i8, Legal); setOperationAction(ISD::UMAX, MVT::v16i16, Legal); setOperationAction(ISD::UMAX, MVT::v8i32, Legal); setOperationAction(ISD::SMIN, MVT::v32i8, Legal); setOperationAction(ISD::SMIN, MVT::v16i16, Legal); setOperationAction(ISD::SMIN, MVT::v8i32, Legal); setOperationAction(ISD::UMIN, MVT::v32i8, Legal); setOperationAction(ISD::UMIN, MVT::v16i16, Legal); setOperationAction(ISD::UMIN, MVT::v8i32, Legal); // The custom lowering for UINT_TO_FP for v8i32 becomes interesting // when we have a 256bit-wide blend with immediate. setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Custom); // AVX2 also has wider vector sign/zero extending loads, VPMOV[SZ]X setLoadExtAction(ISD::SEXTLOAD, MVT::v16i16, MVT::v16i8, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v8i32, MVT::v8i8, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64, MVT::v4i8, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v8i32, MVT::v8i16, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64, MVT::v4i16, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64, MVT::v4i32, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v16i16, MVT::v16i8, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i32, MVT::v8i8, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64, MVT::v4i8, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i32, MVT::v8i16, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64, MVT::v4i16, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64, MVT::v4i32, Legal); } else { setOperationAction(ISD::ADD, MVT::v4i64, Custom); setOperationAction(ISD::ADD, MVT::v8i32, Custom); setOperationAction(ISD::ADD, MVT::v16i16, Custom); setOperationAction(ISD::ADD, MVT::v32i8, Custom); setOperationAction(ISD::SUB, MVT::v4i64, Custom); setOperationAction(ISD::SUB, MVT::v8i32, Custom); setOperationAction(ISD::SUB, MVT::v16i16, Custom); setOperationAction(ISD::SUB, MVT::v32i8, Custom); setOperationAction(ISD::MUL, MVT::v4i64, Custom); setOperationAction(ISD::MUL, MVT::v8i32, Custom); setOperationAction(ISD::MUL, MVT::v16i16, Custom); setOperationAction(ISD::MUL, MVT::v32i8, Custom); setOperationAction(ISD::SMAX, MVT::v32i8, Custom); setOperationAction(ISD::SMAX, MVT::v16i16, Custom); setOperationAction(ISD::SMAX, MVT::v8i32, Custom); setOperationAction(ISD::UMAX, MVT::v32i8, Custom); setOperationAction(ISD::UMAX, MVT::v16i16, Custom); setOperationAction(ISD::UMAX, MVT::v8i32, Custom); setOperationAction(ISD::SMIN, MVT::v32i8, Custom); setOperationAction(ISD::SMIN, MVT::v16i16, Custom); setOperationAction(ISD::SMIN, MVT::v8i32, Custom); setOperationAction(ISD::UMIN, MVT::v32i8, Custom); setOperationAction(ISD::UMIN, MVT::v16i16, Custom); setOperationAction(ISD::UMIN, MVT::v8i32, Custom); } // In the customized shift lowering, the legal cases in AVX2 will be // recognized. setOperationAction(ISD::SRL, MVT::v4i64, Custom); setOperationAction(ISD::SRL, MVT::v8i32, Custom); setOperationAction(ISD::SHL, MVT::v4i64, Custom); setOperationAction(ISD::SHL, MVT::v8i32, Custom); setOperationAction(ISD::SRA, MVT::v4i64, Custom); setOperationAction(ISD::SRA, MVT::v8i32, Custom); // Custom lower several nodes for 256-bit types. for (MVT VT : MVT::vector_valuetypes()) { if (VT.getScalarSizeInBits() >= 32) { setOperationAction(ISD::MLOAD, VT, Legal); setOperationAction(ISD::MSTORE, VT, Legal); } // Extract subvector is special because the value type // (result) is 128-bit but the source is 256-bit wide. if (VT.is128BitVector()) { setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); } // Do not attempt to custom lower other non-256-bit vectors if (!VT.is256BitVector()) continue; setOperationAction(ISD::BUILD_VECTOR, VT, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); setOperationAction(ISD::VSELECT, VT, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); } if (Subtarget->hasInt256()) setOperationAction(ISD::VSELECT, MVT::v32i8, Legal); // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64. for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32 }) { setOperationAction(ISD::AND, VT, Promote); AddPromotedToType (ISD::AND, VT, MVT::v4i64); setOperationAction(ISD::OR, VT, Promote); AddPromotedToType (ISD::OR, VT, MVT::v4i64); setOperationAction(ISD::XOR, VT, Promote); AddPromotedToType (ISD::XOR, VT, MVT::v4i64); setOperationAction(ISD::LOAD, VT, Promote); AddPromotedToType (ISD::LOAD, VT, MVT::v4i64); setOperationAction(ISD::SELECT, VT, Promote); AddPromotedToType (ISD::SELECT, VT, MVT::v4i64); } } if (!Subtarget->useSoftFloat() && Subtarget->hasAVX512()) { addRegisterClass(MVT::v16i32, &X86::VR512RegClass); addRegisterClass(MVT::v16f32, &X86::VR512RegClass); addRegisterClass(MVT::v8i64, &X86::VR512RegClass); addRegisterClass(MVT::v8f64, &X86::VR512RegClass); addRegisterClass(MVT::i1, &X86::VK1RegClass); addRegisterClass(MVT::v8i1, &X86::VK8RegClass); addRegisterClass(MVT::v16i1, &X86::VK16RegClass); for (MVT VT : MVT::fp_vector_valuetypes()) setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8f32, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v16i32, MVT::v16i8, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v16i32, MVT::v16i8, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v16i32, MVT::v16i16, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v16i32, MVT::v16i16, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v32i16, MVT::v32i8, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v32i16, MVT::v32i8, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i64, MVT::v8i8, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v8i64, MVT::v8i8, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i64, MVT::v8i16, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v8i64, MVT::v8i16, Legal); setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i64, MVT::v8i32, Legal); setLoadExtAction(ISD::SEXTLOAD, MVT::v8i64, MVT::v8i32, Legal); setOperationAction(ISD::BR_CC, MVT::i1, Expand); setOperationAction(ISD::SETCC, MVT::i1, Custom); setOperationAction(ISD::SELECT_CC, MVT::i1, Expand); setOperationAction(ISD::XOR, MVT::i1, Legal); setOperationAction(ISD::OR, MVT::i1, Legal); setOperationAction(ISD::AND, MVT::i1, Legal); setOperationAction(ISD::SUB, MVT::i1, Custom); setOperationAction(ISD::ADD, MVT::i1, Custom); setOperationAction(ISD::MUL, MVT::i1, Custom); setOperationAction(ISD::LOAD, MVT::v16f32, Legal); setOperationAction(ISD::LOAD, MVT::v8f64, Legal); setOperationAction(ISD::LOAD, MVT::v8i64, Legal); setOperationAction(ISD::LOAD, MVT::v16i32, Legal); setOperationAction(ISD::LOAD, MVT::v16i1, Legal); setOperationAction(ISD::FADD, MVT::v16f32, Legal); setOperationAction(ISD::FSUB, MVT::v16f32, Legal); setOperationAction(ISD::FMUL, MVT::v16f32, Legal); setOperationAction(ISD::FDIV, MVT::v16f32, Legal); setOperationAction(ISD::FSQRT, MVT::v16f32, Legal); setOperationAction(ISD::FNEG, MVT::v16f32, Custom); setOperationAction(ISD::FABS, MVT::v16f32, Custom); setOperationAction(ISD::FADD, MVT::v8f64, Legal); setOperationAction(ISD::FSUB, MVT::v8f64, Legal); setOperationAction(ISD::FMUL, MVT::v8f64, Legal); setOperationAction(ISD::FDIV, MVT::v8f64, Legal); setOperationAction(ISD::FSQRT, MVT::v8f64, Legal); setOperationAction(ISD::FNEG, MVT::v8f64, Custom); setOperationAction(ISD::FABS, MVT::v8f64, Custom); setOperationAction(ISD::FMA, MVT::v8f64, Legal); setOperationAction(ISD::FMA, MVT::v16f32, Legal); setOperationAction(ISD::FP_TO_SINT, MVT::v16i32, Legal); setOperationAction(ISD::FP_TO_UINT, MVT::v16i32, Legal); setOperationAction(ISD::FP_TO_UINT, MVT::v8i32, Legal); setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::v16i32, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::v8i1, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::v16i1, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::v16i8, Promote); setOperationAction(ISD::SINT_TO_FP, MVT::v16i16, Promote); setOperationAction(ISD::UINT_TO_FP, MVT::v16i32, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::v16i8, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v16i16, Custom); setOperationAction(ISD::FP_ROUND, MVT::v8f32, Legal); setOperationAction(ISD::FP_EXTEND, MVT::v8f32, Legal); setTruncStoreAction(MVT::v8i64, MVT::v8i8, Legal); setTruncStoreAction(MVT::v8i64, MVT::v8i16, Legal); setTruncStoreAction(MVT::v8i64, MVT::v8i32, Legal); setTruncStoreAction(MVT::v16i32, MVT::v16i8, Legal); setTruncStoreAction(MVT::v16i32, MVT::v16i16, Legal); if (Subtarget->hasVLX()){ setTruncStoreAction(MVT::v4i64, MVT::v4i8, Legal); setTruncStoreAction(MVT::v4i64, MVT::v4i16, Legal); setTruncStoreAction(MVT::v4i64, MVT::v4i32, Legal); setTruncStoreAction(MVT::v8i32, MVT::v8i8, Legal); setTruncStoreAction(MVT::v8i32, MVT::v8i16, Legal); setTruncStoreAction(MVT::v2i64, MVT::v2i8, Legal); setTruncStoreAction(MVT::v2i64, MVT::v2i16, Legal); setTruncStoreAction(MVT::v2i64, MVT::v2i32, Legal); setTruncStoreAction(MVT::v4i32, MVT::v4i8, Legal); setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal); } else { setOperationAction(ISD::MLOAD, MVT::v8i32, Custom); setOperationAction(ISD::MLOAD, MVT::v8f32, Custom); setOperationAction(ISD::MSTORE, MVT::v8i32, Custom); setOperationAction(ISD::MSTORE, MVT::v8f32, Custom); } setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); setOperationAction(ISD::TRUNCATE, MVT::v16i8, Custom); setOperationAction(ISD::TRUNCATE, MVT::v8i32, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i1, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i1, Custom); if (Subtarget->hasDQI()) { setOperationAction(ISD::TRUNCATE, MVT::v2i1, Custom); setOperationAction(ISD::TRUNCATE, MVT::v4i1, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::v8i64, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::v8i64, Legal); setOperationAction(ISD::FP_TO_SINT, MVT::v8i64, Legal); setOperationAction(ISD::FP_TO_UINT, MVT::v8i64, Legal); if (Subtarget->hasVLX()) { setOperationAction(ISD::SINT_TO_FP, MVT::v4i64, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::v4i64, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); setOperationAction(ISD::FP_TO_SINT, MVT::v4i64, Legal); setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); setOperationAction(ISD::FP_TO_UINT, MVT::v4i64, Legal); setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); } } if (Subtarget->hasVLX()) { setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Legal); setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal); setOperationAction(ISD::FP_TO_UINT, MVT::v8i32, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); } setOperationAction(ISD::TRUNCATE, MVT::v8i1, Custom); setOperationAction(ISD::TRUNCATE, MVT::v16i1, Custom); setOperationAction(ISD::TRUNCATE, MVT::v16i16, Custom); setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom); setOperationAction(ISD::ZERO_EXTEND, MVT::v8i64, Custom); setOperationAction(ISD::ANY_EXTEND, MVT::v16i32, Custom); setOperationAction(ISD::ANY_EXTEND, MVT::v8i64, Custom); setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom); setOperationAction(ISD::SIGN_EXTEND, MVT::v8i64, Custom); setOperationAction(ISD::SIGN_EXTEND, MVT::v16i8, Custom); setOperationAction(ISD::SIGN_EXTEND, MVT::v8i16, Custom); setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom); if (Subtarget->hasDQI()) { setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Custom); setOperationAction(ISD::SIGN_EXTEND, MVT::v2i64, Custom); } setOperationAction(ISD::FFLOOR, MVT::v16f32, Legal); setOperationAction(ISD::FFLOOR, MVT::v8f64, Legal); setOperationAction(ISD::FCEIL, MVT::v16f32, Legal); setOperationAction(ISD::FCEIL, MVT::v8f64, Legal); setOperationAction(ISD::FTRUNC, MVT::v16f32, Legal); setOperationAction(ISD::FTRUNC, MVT::v8f64, Legal); setOperationAction(ISD::FRINT, MVT::v16f32, Legal); setOperationAction(ISD::FRINT, MVT::v8f64, Legal); setOperationAction(ISD::FNEARBYINT, MVT::v16f32, Legal); setOperationAction(ISD::FNEARBYINT, MVT::v8f64, Legal); setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f64, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i64, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v16f32, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i32, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i1, Custom); setOperationAction(ISD::SETCC, MVT::v16i1, Custom); setOperationAction(ISD::SETCC, MVT::v8i1, Custom); setOperationAction(ISD::MUL, MVT::v8i64, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i1, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i1, Custom); setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v16i1, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i1, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i1, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v8i1, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v16i1, Custom); setOperationAction(ISD::SELECT, MVT::v8f64, Custom); setOperationAction(ISD::SELECT, MVT::v8i64, Custom); setOperationAction(ISD::SELECT, MVT::v16f32, Custom); setOperationAction(ISD::SELECT, MVT::v16i1, Custom); setOperationAction(ISD::SELECT, MVT::v8i1, Custom); setOperationAction(ISD::SMAX, MVT::v16i32, Legal); setOperationAction(ISD::SMAX, MVT::v8i64, Legal); setOperationAction(ISD::UMAX, MVT::v16i32, Legal); setOperationAction(ISD::UMAX, MVT::v8i64, Legal); setOperationAction(ISD::SMIN, MVT::v16i32, Legal); setOperationAction(ISD::SMIN, MVT::v8i64, Legal); setOperationAction(ISD::UMIN, MVT::v16i32, Legal); setOperationAction(ISD::UMIN, MVT::v8i64, Legal); setOperationAction(ISD::ADD, MVT::v8i64, Legal); setOperationAction(ISD::ADD, MVT::v16i32, Legal); setOperationAction(ISD::SUB, MVT::v8i64, Legal); setOperationAction(ISD::SUB, MVT::v16i32, Legal); setOperationAction(ISD::MUL, MVT::v16i32, Legal); setOperationAction(ISD::SRL, MVT::v8i64, Custom); setOperationAction(ISD::SRL, MVT::v16i32, Custom); setOperationAction(ISD::SHL, MVT::v8i64, Custom); setOperationAction(ISD::SHL, MVT::v16i32, Custom); setOperationAction(ISD::SRA, MVT::v8i64, Custom); setOperationAction(ISD::SRA, MVT::v16i32, Custom); setOperationAction(ISD::AND, MVT::v8i64, Legal); setOperationAction(ISD::OR, MVT::v8i64, Legal); setOperationAction(ISD::XOR, MVT::v8i64, Legal); setOperationAction(ISD::AND, MVT::v16i32, Legal); setOperationAction(ISD::OR, MVT::v16i32, Legal); setOperationAction(ISD::XOR, MVT::v16i32, Legal); if (Subtarget->hasCDI()) { setOperationAction(ISD::CTLZ, MVT::v8i64, Legal); setOperationAction(ISD::CTLZ, MVT::v16i32, Legal); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v8i64, Legal); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v16i32, Legal); setOperationAction(ISD::CTLZ, MVT::v8i16, Custom); setOperationAction(ISD::CTLZ, MVT::v16i8, Custom); setOperationAction(ISD::CTLZ, MVT::v16i16, Custom); setOperationAction(ISD::CTLZ, MVT::v32i8, Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v8i16, Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v16i8, Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v16i16, Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v32i8, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i64, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i32, Custom); if (Subtarget->hasVLX()) { setOperationAction(ISD::CTLZ, MVT::v4i64, Legal); setOperationAction(ISD::CTLZ, MVT::v8i32, Legal); setOperationAction(ISD::CTLZ, MVT::v2i64, Legal); setOperationAction(ISD::CTLZ, MVT::v4i32, Legal); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v4i64, Legal); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v8i32, Legal); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v2i64, Legal); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v4i32, Legal); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i64, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i32, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom); } else { setOperationAction(ISD::CTLZ, MVT::v4i64, Custom); setOperationAction(ISD::CTLZ, MVT::v8i32, Custom); setOperationAction(ISD::CTLZ, MVT::v2i64, Custom); setOperationAction(ISD::CTLZ, MVT::v4i32, Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v4i64, Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v8i32, Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v2i64, Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v4i32, Custom); } } // Subtarget->hasCDI() if (Subtarget->hasDQI()) { setOperationAction(ISD::MUL, MVT::v2i64, Legal); setOperationAction(ISD::MUL, MVT::v4i64, Legal); setOperationAction(ISD::MUL, MVT::v8i64, Legal); } // Custom lower several nodes. for (MVT VT : MVT::vector_valuetypes()) { unsigned EltSize = VT.getVectorElementType().getSizeInBits(); if (EltSize == 1) { setOperationAction(ISD::AND, VT, Legal); setOperationAction(ISD::OR, VT, Legal); setOperationAction(ISD::XOR, VT, Legal); } if ((VT.is128BitVector() || VT.is256BitVector()) && EltSize >= 32) { setOperationAction(ISD::MGATHER, VT, Custom); setOperationAction(ISD::MSCATTER, VT, Custom); } // Extract subvector is special because the value type // (result) is 256/128-bit but the source is 512-bit wide. if (VT.is128BitVector() || VT.is256BitVector()) { setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); } if (VT.getVectorElementType() == MVT::i1) setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal); // Do not attempt to custom lower other non-512-bit vectors if (!VT.is512BitVector()) continue; if (EltSize >= 32) { setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::BUILD_VECTOR, VT, Custom); setOperationAction(ISD::VSELECT, VT, Legal); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); setOperationAction(ISD::MLOAD, VT, Legal); setOperationAction(ISD::MSTORE, VT, Legal); setOperationAction(ISD::MGATHER, VT, Legal); setOperationAction(ISD::MSCATTER, VT, Custom); } } for (auto VT : { MVT::v64i8, MVT::v32i16, MVT::v16i32 }) { setOperationAction(ISD::SELECT, VT, Promote); AddPromotedToType (ISD::SELECT, VT, MVT::v8i64); } }// has AVX-512 if (!Subtarget->useSoftFloat() && Subtarget->hasBWI()) { addRegisterClass(MVT::v32i16, &X86::VR512RegClass); addRegisterClass(MVT::v64i8, &X86::VR512RegClass); addRegisterClass(MVT::v32i1, &X86::VK32RegClass); addRegisterClass(MVT::v64i1, &X86::VK64RegClass); setOperationAction(ISD::LOAD, MVT::v32i16, Legal); setOperationAction(ISD::LOAD, MVT::v64i8, Legal); setOperationAction(ISD::SETCC, MVT::v32i1, Custom); setOperationAction(ISD::SETCC, MVT::v64i1, Custom); setOperationAction(ISD::ADD, MVT::v32i16, Legal); setOperationAction(ISD::ADD, MVT::v64i8, Legal); setOperationAction(ISD::SUB, MVT::v32i16, Legal); setOperationAction(ISD::SUB, MVT::v64i8, Legal); setOperationAction(ISD::MUL, MVT::v32i16, Legal); setOperationAction(ISD::MULHS, MVT::v32i16, Legal); setOperationAction(ISD::MULHU, MVT::v32i16, Legal); setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i1, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i1, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i16, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i8, Custom); setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v32i1, Custom); setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v64i1, Custom); setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v32i16, Custom); setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v64i8, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v32i16, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v64i8, Custom); setOperationAction(ISD::SELECT, MVT::v32i1, Custom); setOperationAction(ISD::SELECT, MVT::v64i1, Custom); setOperationAction(ISD::SIGN_EXTEND, MVT::v32i8, Custom); setOperationAction(ISD::ZERO_EXTEND, MVT::v32i8, Custom); setOperationAction(ISD::SIGN_EXTEND, MVT::v32i16, Custom); setOperationAction(ISD::ZERO_EXTEND, MVT::v32i16, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v32i16, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v64i8, Custom); setOperationAction(ISD::SIGN_EXTEND, MVT::v64i8, Custom); setOperationAction(ISD::ZERO_EXTEND, MVT::v64i8, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v32i1, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v64i1, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v32i16, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v64i8, Custom); setOperationAction(ISD::VSELECT, MVT::v32i16, Legal); setOperationAction(ISD::VSELECT, MVT::v64i8, Legal); setOperationAction(ISD::TRUNCATE, MVT::v32i1, Custom); setOperationAction(ISD::TRUNCATE, MVT::v64i1, Custom); setOperationAction(ISD::TRUNCATE, MVT::v32i8, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v32i1, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v64i1, Custom); setOperationAction(ISD::SMAX, MVT::v64i8, Legal); setOperationAction(ISD::SMAX, MVT::v32i16, Legal); setOperationAction(ISD::UMAX, MVT::v64i8, Legal); setOperationAction(ISD::UMAX, MVT::v32i16, Legal); setOperationAction(ISD::SMIN, MVT::v64i8, Legal); setOperationAction(ISD::SMIN, MVT::v32i16, Legal); setOperationAction(ISD::UMIN, MVT::v64i8, Legal); setOperationAction(ISD::UMIN, MVT::v32i16, Legal); setTruncStoreAction(MVT::v32i16, MVT::v32i8, Legal); setTruncStoreAction(MVT::v16i16, MVT::v16i8, Legal); if (Subtarget->hasVLX()) setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal); if (Subtarget->hasCDI()) { setOperationAction(ISD::CTLZ, MVT::v32i16, Custom); setOperationAction(ISD::CTLZ, MVT::v64i8, Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v32i16, Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v64i8, Custom); } for (auto VT : { MVT::v64i8, MVT::v32i16 }) { setOperationAction(ISD::BUILD_VECTOR, VT, Custom); setOperationAction(ISD::VSELECT, VT, Legal); setOperationAction(ISD::AND, VT, Promote); AddPromotedToType (ISD::AND, VT, MVT::v8i64); setOperationAction(ISD::OR, VT, Promote); AddPromotedToType (ISD::OR, VT, MVT::v8i64); setOperationAction(ISD::XOR, VT, Promote); AddPromotedToType (ISD::XOR, VT, MVT::v8i64); } } if (!Subtarget->useSoftFloat() && Subtarget->hasVLX()) { addRegisterClass(MVT::v4i1, &X86::VK4RegClass); addRegisterClass(MVT::v2i1, &X86::VK2RegClass); setOperationAction(ISD::SETCC, MVT::v4i1, Custom); setOperationAction(ISD::SETCC, MVT::v2i1, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i1, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i1, Custom); setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i1, Custom); setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i1, Custom); setOperationAction(ISD::SELECT, MVT::v4i1, Custom); setOperationAction(ISD::SELECT, MVT::v2i1, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v2i1, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i1, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i1, Custom); setOperationAction(ISD::AND, MVT::v8i32, Legal); setOperationAction(ISD::OR, MVT::v8i32, Legal); setOperationAction(ISD::XOR, MVT::v8i32, Legal); setOperationAction(ISD::AND, MVT::v4i32, Legal); setOperationAction(ISD::OR, MVT::v4i32, Legal); setOperationAction(ISD::XOR, MVT::v4i32, Legal); setOperationAction(ISD::SRA, MVT::v2i64, Custom); setOperationAction(ISD::SRA, MVT::v4i64, Custom); setOperationAction(ISD::SMAX, MVT::v2i64, Legal); setOperationAction(ISD::SMAX, MVT::v4i64, Legal); setOperationAction(ISD::UMAX, MVT::v2i64, Legal); setOperationAction(ISD::UMAX, MVT::v4i64, Legal); setOperationAction(ISD::SMIN, MVT::v2i64, Legal); setOperationAction(ISD::SMIN, MVT::v4i64, Legal); setOperationAction(ISD::UMIN, MVT::v2i64, Legal); setOperationAction(ISD::UMIN, MVT::v4i64, Legal); } // We want to custom lower some of our intrinsics. setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); if (!Subtarget->is64Bit()) { setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); } // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't // handle type legalization for these operations here. // // FIXME: We really should do custom legalization for addition and // subtraction on x86-32 once PR3203 is fixed. We really can't do much better // than generic legalization for 64-bit multiplication-with-overflow, though. for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) { if (VT == MVT::i64 && !Subtarget->is64Bit()) continue; // Add/Sub/Mul with overflow operations are custom lowered. setOperationAction(ISD::SADDO, VT, Custom); setOperationAction(ISD::UADDO, VT, Custom); setOperationAction(ISD::SSUBO, VT, Custom); setOperationAction(ISD::USUBO, VT, Custom); setOperationAction(ISD::SMULO, VT, Custom); setOperationAction(ISD::UMULO, VT, Custom); } if (!Subtarget->is64Bit()) { // These libcalls are not available in 32-bit. setLibcallName(RTLIB::SHL_I128, nullptr); setLibcallName(RTLIB::SRL_I128, nullptr); setLibcallName(RTLIB::SRA_I128, nullptr); } // Combine sin / cos into one node or libcall if possible. if (Subtarget->hasSinCos()) { setLibcallName(RTLIB::SINCOS_F32, "sincosf"); setLibcallName(RTLIB::SINCOS_F64, "sincos"); if (Subtarget->isTargetDarwin()) { // For MacOSX, we don't want the normal expansion of a libcall to sincos. // We want to issue a libcall to __sincos_stret to avoid memory traffic. setOperationAction(ISD::FSINCOS, MVT::f64, Custom); setOperationAction(ISD::FSINCOS, MVT::f32, Custom); } } if (Subtarget->isTargetWin64()) { setOperationAction(ISD::SDIV, MVT::i128, Custom); setOperationAction(ISD::UDIV, MVT::i128, Custom); setOperationAction(ISD::SREM, MVT::i128, Custom); setOperationAction(ISD::UREM, MVT::i128, Custom); setOperationAction(ISD::SDIVREM, MVT::i128, Custom); setOperationAction(ISD::UDIVREM, MVT::i128, Custom); } // We have target-specific dag combine patterns for the following nodes: setTargetDAGCombine(ISD::VECTOR_SHUFFLE); setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); setTargetDAGCombine(ISD::BITCAST); setTargetDAGCombine(ISD::VSELECT); setTargetDAGCombine(ISD::SELECT); setTargetDAGCombine(ISD::SHL); setTargetDAGCombine(ISD::SRA); setTargetDAGCombine(ISD::SRL); setTargetDAGCombine(ISD::OR); setTargetDAGCombine(ISD::AND); setTargetDAGCombine(ISD::ADD); setTargetDAGCombine(ISD::FADD); setTargetDAGCombine(ISD::FSUB); setTargetDAGCombine(ISD::FNEG); setTargetDAGCombine(ISD::FMA); setTargetDAGCombine(ISD::FMAXNUM); setTargetDAGCombine(ISD::SUB); setTargetDAGCombine(ISD::LOAD); setTargetDAGCombine(ISD::MLOAD); setTargetDAGCombine(ISD::STORE); setTargetDAGCombine(ISD::MSTORE); setTargetDAGCombine(ISD::TRUNCATE); setTargetDAGCombine(ISD::ZERO_EXTEND); setTargetDAGCombine(ISD::ANY_EXTEND); setTargetDAGCombine(ISD::SIGN_EXTEND); setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); setTargetDAGCombine(ISD::SINT_TO_FP); setTargetDAGCombine(ISD::UINT_TO_FP); setTargetDAGCombine(ISD::SETCC); setTargetDAGCombine(ISD::BUILD_VECTOR); setTargetDAGCombine(ISD::MUL); setTargetDAGCombine(ISD::XOR); setTargetDAGCombine(ISD::MSCATTER); setTargetDAGCombine(ISD::MGATHER); computeRegisterProperties(Subtarget->getRegisterInfo()); MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores MaxStoresPerMemsetOptSize = 8; MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores MaxStoresPerMemcpyOptSize = 4; MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores MaxStoresPerMemmoveOptSize = 4; setPrefLoopAlignment(4); // 2^4 bytes. // A predictable cmov does not hurt on an in-order CPU. // FIXME: Use a CPU attribute to trigger this, not a CPU model. PredictableSelectIsExpensive = !Subtarget->isAtom(); EnableExtLdPromotion = true; setPrefFunctionAlignment(4); // 2^4 bytes. verifyIntrinsicTables(); } // This has so far only been implemented for 64-bit MachO. bool X86TargetLowering::useLoadStackGuardNode() const { return Subtarget->isTargetMachO() && Subtarget->is64Bit(); } TargetLoweringBase::LegalizeTypeAction X86TargetLowering::getPreferredVectorAction(EVT VT) const { if (ExperimentalVectorWideningLegalization && VT.getVectorNumElements() != 1 && VT.getVectorElementType().getSimpleVT() != MVT::i1) return TypeWidenVector; return TargetLoweringBase::getPreferredVectorAction(VT); } EVT X86TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, EVT VT) const { if (!VT.isVector()) return Subtarget->hasAVX512() ? MVT::i1: MVT::i8; if (VT.isSimple()) { MVT VVT = VT.getSimpleVT(); const unsigned NumElts = VVT.getVectorNumElements(); const MVT EltVT = VVT.getVectorElementType(); if (VVT.is512BitVector()) { if (Subtarget->hasAVX512()) if (EltVT == MVT::i32 || EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64) switch(NumElts) { case 8: return MVT::v8i1; case 16: return MVT::v16i1; } if (Subtarget->hasBWI()) if (EltVT == MVT::i8 || EltVT == MVT::i16) switch(NumElts) { case 32: return MVT::v32i1; case 64: return MVT::v64i1; } } if (VVT.is256BitVector() || VVT.is128BitVector()) { if (Subtarget->hasVLX()) if (EltVT == MVT::i32 || EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64) switch(NumElts) { case 2: return MVT::v2i1; case 4: return MVT::v4i1; case 8: return MVT::v8i1; } if (Subtarget->hasBWI() && Subtarget->hasVLX()) if (EltVT == MVT::i8 || EltVT == MVT::i16) switch(NumElts) { case 8: return MVT::v8i1; case 16: return MVT::v16i1; case 32: return MVT::v32i1; } } } return VT.changeVectorElementTypeToInteger(); } /// Helper for getByValTypeAlignment to determine /// the desired ByVal argument alignment. static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) { if (MaxAlign == 16) return; if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { if (VTy->getBitWidth() == 128) MaxAlign = 16; } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { unsigned EltAlign = 0; getMaxByValAlign(ATy->getElementType(), EltAlign); if (EltAlign > MaxAlign) MaxAlign = EltAlign; } else if (StructType *STy = dyn_cast<StructType>(Ty)) { for (auto *EltTy : STy->elements()) { unsigned EltAlign = 0; getMaxByValAlign(EltTy, EltAlign); if (EltAlign > MaxAlign) MaxAlign = EltAlign; if (MaxAlign == 16) break; } } } /// Return the desired alignment for ByVal aggregate /// function arguments in the caller parameter area. For X86, aggregates /// that contain SSE vectors are placed at 16-byte boundaries while the rest /// are at 4-byte boundaries. unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty, const DataLayout &DL) const { if (Subtarget->is64Bit()) { // Max of 8 and alignment of type. unsigned TyAlign = DL.getABITypeAlignment(Ty); if (TyAlign > 8) return TyAlign; return 8; } unsigned Align = 4; if (Subtarget->hasSSE1()) getMaxByValAlign(Ty, Align); return Align; } /// Returns the target specific optimal type for load /// and store operations as a result of memset, memcpy, and memmove /// lowering. If DstAlign is zero that means it's safe to destination /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it /// means there isn't a need to check it against alignment requirement, /// probably because the source does not need to be loaded. If 'IsMemset' is /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy /// source is constant so it does not need to be loaded. /// It returns EVT::Other if the type should be determined using generic /// target-independent logic. EVT X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, MachineFunction &MF) const { const Function *F = MF.getFunction(); if ((!IsMemset || ZeroMemset) && !F->hasFnAttribute(Attribute::NoImplicitFloat)) { if (Size >= 16 && (!Subtarget->isUnalignedMem16Slow() || ((DstAlign == 0 || DstAlign >= 16) && (SrcAlign == 0 || SrcAlign >= 16)))) { if (Size >= 32) { // FIXME: Check if unaligned 32-byte accesses are slow. if (Subtarget->hasInt256()) return MVT::v8i32; if (Subtarget->hasFp256()) return MVT::v8f32; } if (Subtarget->hasSSE2()) return MVT::v4i32; if (Subtarget->hasSSE1()) return MVT::v4f32; } else if (!MemcpyStrSrc && Size >= 8 && !Subtarget->is64Bit() && Subtarget->hasSSE2()) { // Do not use f64 to lower memcpy if source is string constant. It's // better to use i32 to avoid the loads. return MVT::f64; } } // This is a compromise. If we reach here, unaligned accesses may be slow on // this target. However, creating smaller, aligned accesses could be even // slower and would certainly be a lot more code. if (Subtarget->is64Bit() && Size >= 8) return MVT::i64; return MVT::i32; } bool X86TargetLowering::isSafeMemOpType(MVT VT) const { if (VT == MVT::f32) return X86ScalarSSEf32; else if (VT == MVT::f64) return X86ScalarSSEf64; return true; } bool X86TargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, unsigned, bool *Fast) const { if (Fast) { switch (VT.getSizeInBits()) { default: // 8-byte and under are always assumed to be fast. *Fast = true; break; case 128: *Fast = !Subtarget->isUnalignedMem16Slow(); break; case 256: *Fast = !Subtarget->isUnalignedMem32Slow(); break; // TODO: What about AVX-512 (512-bit) accesses? } } // Misaligned accesses of any size are always allowed. return true; } /// Return the entry encoding for a jump table in the /// current function. The returned value is a member of the /// MachineJumpTableInfo::JTEntryKind enum. unsigned X86TargetLowering::getJumpTableEncoding() const { // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF // symbol. if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && Subtarget->isPICStyleGOT()) return MachineJumpTableInfo::EK_Custom32; // Otherwise, use the normal jump table encoding heuristics. return TargetLowering::getJumpTableEncoding(); } bool X86TargetLowering::useSoftFloat() const { return Subtarget->useSoftFloat(); } const MCExpr * X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, unsigned uid,MCContext &Ctx) const{ assert(MBB->getParent()->getTarget().getRelocationModel() == Reloc::PIC_ && Subtarget->isPICStyleGOT()); // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF // entries. return MCSymbolRefExpr::create(MBB->getSymbol(), MCSymbolRefExpr::VK_GOTOFF, Ctx); } /// Returns relocation base for the given PIC jumptable. SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const { if (!Subtarget->is64Bit()) // This doesn't have SDLoc associated with it, but is not really the // same as a Register. return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy(DAG.getDataLayout())); return Table; } /// This returns the relocation base for the given PIC jumptable, /// the same as getPICJumpTableRelocBase, but as an MCExpr. const MCExpr *X86TargetLowering:: getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const { // X86-64 uses RIP relative addressing based on the jump table label. if (Subtarget->isPICStyleRIPRel()) return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); // Otherwise, the reference is relative to the PIC base. return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); } std::pair<const TargetRegisterClass *, uint8_t> X86TargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const { const TargetRegisterClass *RRC = nullptr; uint8_t Cost = 1; switch (VT.SimpleTy) { default: return TargetLowering::findRepresentativeClass(TRI, VT); case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: RRC = Subtarget->is64Bit() ? &X86::GR64RegClass : &X86::GR32RegClass; break; case MVT::x86mmx: RRC = &X86::VR64RegClass; break; case MVT::f32: case MVT::f64: case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32: case MVT::v4f64: RRC = &X86::VR128RegClass; break; } return std::make_pair(RRC, Cost); } bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const { if (!Subtarget->isTargetLinux()) return false; if (Subtarget->is64Bit()) { // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs: Offset = 0x28; if (getTargetMachine().getCodeModel() == CodeModel::Kernel) AddressSpace = 256; else AddressSpace = 257; } else { // %gs:0x14 on i386 Offset = 0x14; AddressSpace = 256; } return true; } Value *X86TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const { if (!Subtarget->isTargetAndroid()) return TargetLowering::getSafeStackPointerLocation(IRB); // Android provides a fixed TLS slot for the SafeStack pointer. See the // definition of TLS_SLOT_SAFESTACK in // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h unsigned AddressSpace, Offset; if (Subtarget->is64Bit()) { // %fs:0x48, unless we're using a Kernel code model, in which case it's %gs: Offset = 0x48; if (getTargetMachine().getCodeModel() == CodeModel::Kernel) AddressSpace = 256; else AddressSpace = 257; } else { // %gs:0x24 on i386 Offset = 0x24; AddressSpace = 256; } return ConstantExpr::getIntToPtr( ConstantInt::get(Type::getInt32Ty(IRB.getContext()), Offset), Type::getInt8PtrTy(IRB.getContext())->getPointerTo(AddressSpace)); } bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const { assert(SrcAS != DestAS && "Expected different address spaces!"); return SrcAS < 256 && DestAS < 256; } //===----------------------------------------------------------------------===// // Return Value Calling Convention Implementation //===----------------------------------------------------------------------===// #include "X86GenCallingConv.inc" bool X86TargetLowering::CanLowerReturn( CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { SmallVector<CCValAssign, 16> RVLocs; CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); return CCInfo.CheckReturn(Outs, RetCC_X86); } const MCPhysReg *X86TargetLowering::getScratchRegisters(CallingConv::ID) const { static const MCPhysReg ScratchRegs[] = { X86::R11, 0 }; return ScratchRegs; } SDValue X86TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, SDLoc dl, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); if (CallConv == CallingConv::X86_INTR && !Outs.empty()) report_fatal_error("X86 interrupts may not return any value"); SmallVector<CCValAssign, 16> RVLocs; CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext()); CCInfo.AnalyzeReturn(Outs, RetCC_X86); SDValue Flag; SmallVector<SDValue, 6> RetOps; RetOps.push_back(Chain); // Operand #0 = Chain (updated below) // Operand #1 = Bytes To Pop RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(), dl, MVT::i16)); // Copy the result values into the output registers. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); SDValue ValToCopy = OutVals[i]; EVT ValVT = ValToCopy.getValueType(); // Promote values to the appropriate types. if (VA.getLocInfo() == CCValAssign::SExt) ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy); else if (VA.getLocInfo() == CCValAssign::ZExt) ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy); else if (VA.getLocInfo() == CCValAssign::AExt) { if (ValVT.isVector() && ValVT.getVectorElementType() == MVT::i1) ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy); else ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy); } else if (VA.getLocInfo() == CCValAssign::BCvt) ValToCopy = DAG.getBitcast(VA.getLocVT(), ValToCopy); assert(VA.getLocInfo() != CCValAssign::FPExt && "Unexpected FP-extend for return value."); // If this is x86-64, and we disabled SSE, we can't return FP values, // or SSE or MMX vectors. if ((ValVT == MVT::f32 || ValVT == MVT::f64 || VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) && (Subtarget->is64Bit() && !Subtarget->hasSSE1())) { report_fatal_error("SSE register return with SSE disabled"); } // Likewise we can't return F64 values with SSE1 only. gcc does so, but // llvm-gcc has never done it right and no one has noticed, so this // should be OK for now. if (ValVT == MVT::f64 && (Subtarget->is64Bit() && !Subtarget->hasSSE2())) report_fatal_error("SSE2 register return with SSE2 disabled"); // Returns in ST0/ST1 are handled specially: these are pushed as operands to // the RET instruction and handled by the FP Stackifier. if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) { // If this is a copy from an xmm register to ST(0), use an FPExtend to // change the value to the FP stack register class. if (isScalarFPTypeInSSEReg(VA.getValVT())) ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy); RetOps.push_back(ValToCopy); // Don't emit a copytoreg. continue; } // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64 // which is returned in RAX / RDX. if (Subtarget->is64Bit()) { if (ValVT == MVT::x86mmx) { if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) { ValToCopy = DAG.getBitcast(MVT::i64, ValToCopy); ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy); // If we don't have SSE2 available, convert to v4f32 so the generated // register is legal. if (!Subtarget->hasSSE2()) ValToCopy = DAG.getBitcast(MVT::v4f32, ValToCopy); } } } Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag); Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } // All x86 ABIs require that for returning structs by value we copy // the sret argument into %rax/%eax (depending on ABI) for the return. // We saved the argument into a virtual register in the entry block, // so now we copy the value out and into %rax/%eax. // // Checking Function.hasStructRetAttr() here is insufficient because the IR // may not have an explicit sret argument. If FuncInfo.CanLowerReturn is // false, then an sret argument may be implicitly inserted in the SelDAG. In // either case FuncInfo->setSRetReturnReg() will have been called. if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) { SDValue Val = DAG.getCopyFromReg(Chain, dl, SRetReg, getPointerTy(MF.getDataLayout())); unsigned RetValReg = (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ? X86::RAX : X86::EAX; Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag); Flag = Chain.getValue(1); // RAX/EAX now acts like a return value. RetOps.push_back( DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout()))); } RetOps[0] = Chain; // Update chain. // Add the flag if we have it. if (Flag.getNode()) RetOps.push_back(Flag); X86ISD::NodeType opcode = X86ISD::RET_FLAG; if (CallConv == CallingConv::X86_INTR) opcode = X86ISD::IRET; return DAG.getNode(opcode, dl, MVT::Other, RetOps); } bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { if (N->getNumValues() != 1) return false; if (!N->hasNUsesOfValue(1, 0)) return false; SDValue TCChain = Chain; SDNode *Copy = *N->use_begin(); if (Copy->getOpcode() == ISD::CopyToReg) { // If the copy has a glue operand, we conservatively assume it isn't safe to // perform a tail call. if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue) return false; TCChain = Copy->getOperand(0); } else if (Copy->getOpcode() != ISD::FP_EXTEND) return false; bool HasRet = false; for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end(); UI != UE; ++UI) { if (UI->getOpcode() != X86ISD::RET_FLAG) return false; // If we are returning more than one value, we can definitely // not make a tail call see PR19530 if (UI->getNumOperands() > 4) return false; if (UI->getNumOperands() == 4 && UI->getOperand(UI->getNumOperands()-1).getValueType() != MVT::Glue) return false; HasRet = true; } if (!HasRet) return false; Chain = TCChain; return true; } EVT X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT, ISD::NodeType ExtendKind) const { MVT ReturnMVT; // TODO: Is this also valid on 32-bit? if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND) ReturnMVT = MVT::i8; else ReturnMVT = MVT::i32; EVT MinVT = getRegisterType(Context, ReturnMVT); return VT.bitsLT(MinVT) ? MinVT : VT; } /// Lower the result values of a call into the /// appropriate copies out of appropriate physical registers. /// SDValue X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { // Assign locations to each value returned by this call. SmallVector<CCValAssign, 16> RVLocs; bool Is64Bit = Subtarget->is64Bit(); CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeCallResult(Ins, RetCC_X86); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { CCValAssign &VA = RVLocs[i]; EVT CopyVT = VA.getLocVT(); // If this is x86-64, and we disabled SSE, we can't return FP values if ((CopyVT == MVT::f32 || CopyVT == MVT::f64 || CopyVT == MVT::f128) && ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { report_fatal_error("SSE register return with SSE disabled"); } // If we prefer to use the value in xmm registers, copy it out as f80 and // use a truncate to move it from fp stack reg to xmm reg. bool RoundAfterCopy = false; if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) && isScalarFPTypeInSSEReg(VA.getValVT())) { CopyVT = MVT::f80; RoundAfterCopy = (CopyVT != VA.getLocVT()); } Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), CopyVT, InFlag).getValue(1); SDValue Val = Chain.getValue(0); if (RoundAfterCopy) Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val, // This truncation won't change the value. DAG.getIntPtrConstant(1, dl)); if (VA.isExtInLoc() && VA.getValVT().getScalarType() == MVT::i1) Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); InFlag = Chain.getValue(2); InVals.push_back(Val); } return Chain; } //===----------------------------------------------------------------------===// // C & StdCall & Fast Calling Convention implementation //===----------------------------------------------------------------------===// // StdCall calling convention seems to be standard for many Windows' API // routines and around. It differs from C calling convention just a little: // callee should clean up the stack, not caller. Symbols should be also // decorated in some fancy way :) It doesn't support any vector arguments. // For info on fast calling convention see Fast Calling Convention (tail call) // implementation LowerX86_32FastCCCallTo. /// CallIsStructReturn - Determines whether a call uses struct return /// semantics. enum StructReturnType { NotStructReturn, RegStructReturn, StackStructReturn }; static StructReturnType callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) { if (Outs.empty()) return NotStructReturn; const ISD::ArgFlagsTy &Flags = Outs[0].Flags; if (!Flags.isSRet()) return NotStructReturn; if (Flags.isInReg()) return RegStructReturn; return StackStructReturn; } /// Determines whether a function uses struct return semantics. static StructReturnType argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) { if (Ins.empty()) return NotStructReturn; const ISD::ArgFlagsTy &Flags = Ins[0].Flags; if (!Flags.isSRet()) return NotStructReturn; if (Flags.isInReg()) return RegStructReturn; return StackStructReturn; } /// Make a copy of an aggregate at address specified by "Src" to address /// "Dst" with size and alignment information specified by the specific /// parameter attribute. The copy will be passed as a byval function parameter. static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, ISD::ArgFlagsTy Flags, SelectionDAG &DAG, SDLoc dl) { SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), /*isVolatile*/false, /*AlwaysInline=*/true, /*isTailCall*/false, MachinePointerInfo(), MachinePointerInfo()); } /// Return true if the calling convention is one that we can guarantee TCO for. static bool canGuaranteeTCO(CallingConv::ID CC) { return (CC == CallingConv::Fast || CC == CallingConv::GHC || CC == CallingConv::HiPE || CC == CallingConv::HHVM); } /// Return true if we might ever do TCO for calls with this calling convention. static bool mayTailCallThisCC(CallingConv::ID CC) { switch (CC) { // C calling conventions: case CallingConv::C: case CallingConv::X86_64_Win64: case CallingConv::X86_64_SysV: // Callee pop conventions: case CallingConv::X86_ThisCall: case CallingConv::X86_StdCall: case CallingConv::X86_VectorCall: case CallingConv::X86_FastCall: return true; default: return canGuaranteeTCO(CC); } } /// Return true if the function is being made into a tailcall target by /// changing its ABI. static bool shouldGuaranteeTCO(CallingConv::ID CC, bool GuaranteedTailCallOpt) { return GuaranteedTailCallOpt && canGuaranteeTCO(CC); } bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { auto Attr = CI->getParent()->getParent()->getFnAttribute("disable-tail-calls"); if (!CI->isTailCall() || Attr.getValueAsString() == "true") return false; CallSite CS(CI); CallingConv::ID CalleeCC = CS.getCallingConv(); if (!mayTailCallThisCC(CalleeCC)) return false; return true; } SDValue X86TargetLowering::LowerMemArgument(SDValue Chain, CallingConv::ID CallConv, const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG, const CCValAssign &VA, MachineFrameInfo *MFI, unsigned i) const { // Create the nodes corresponding to a load from this parameter slot. ISD::ArgFlagsTy Flags = Ins[i].Flags; bool AlwaysUseMutable = shouldGuaranteeTCO( CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt); bool isImmutable = !AlwaysUseMutable && !Flags.isByVal(); EVT ValVT; // If value is passed by pointer we have address passed instead of the value // itself. bool ExtendedInMem = VA.isExtInLoc() && VA.getValVT().getScalarType() == MVT::i1; if (VA.getLocInfo() == CCValAssign::Indirect || ExtendedInMem) ValVT = VA.getLocVT(); else ValVT = VA.getValVT(); // Calculate SP offset of interrupt parameter, re-arrange the slot normally // taken by a return address. int Offset = 0; if (CallConv == CallingConv::X86_INTR) { const X86Subtarget& Subtarget = static_cast<const X86Subtarget&>(DAG.getSubtarget()); // X86 interrupts may take one or two arguments. // On the stack there will be no return address as in regular call. // Offset of last argument need to be set to -4/-8 bytes. // Where offset of the first argument out of two, should be set to 0 bytes. Offset = (Subtarget.is64Bit() ? 8 : 4) * ((i + 1) % Ins.size() - 1); } // FIXME: For now, all byval parameter objects are marked mutable. This can be // changed with more analysis. // In case of tail call optimization mark all arguments mutable. Since they // could be overwritten by lowering of arguments in case of a tail call. if (Flags.isByVal()) { unsigned Bytes = Flags.getByValSize(); if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects. int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable); // Adjust SP offset of interrupt parameter. if (CallConv == CallingConv::X86_INTR) { MFI->setObjectOffset(FI, Offset); } return DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); } else { int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8, VA.getLocMemOffset(), isImmutable); // Adjust SP offset of interrupt parameter. if (CallConv == CallingConv::X86_INTR) { MFI->setObjectOffset(FI, Offset); } SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); SDValue Val = DAG.getLoad( ValVT, dl, Chain, FIN, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false, false, false, 0); return ExtendedInMem ? DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val) : Val; } } // FIXME: Get this from tablegen. static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv, const X86Subtarget *Subtarget) { assert(Subtarget->is64Bit()); if (Subtarget->isCallingConvWin64(CallConv)) { static const MCPhysReg GPR64ArgRegsWin64[] = { X86::RCX, X86::RDX, X86::R8, X86::R9 }; return makeArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64)); } static const MCPhysReg GPR64ArgRegs64Bit[] = { X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 }; return makeArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit)); } // FIXME: Get this from tablegen. static ArrayRef<MCPhysReg> get64BitArgumentXMMs(MachineFunction &MF, CallingConv::ID CallConv, const X86Subtarget *Subtarget) { assert(Subtarget->is64Bit()); if (Subtarget->isCallingConvWin64(CallConv)) { // The XMM registers which might contain var arg parameters are shadowed // in their paired GPR. So we only need to save the GPR to their home // slots. // TODO: __vectorcall will change this. return None; } const Function *Fn = MF.getFunction(); bool NoImplicitFloatOps = Fn->hasFnAttribute(Attribute::NoImplicitFloat); bool isSoftFloat = Subtarget->useSoftFloat(); assert(!(isSoftFloat && NoImplicitFloatOps) && "SSE register cannot be used when SSE is disabled!"); if (isSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1()) // Kernel mode asks for SSE to be disabled, so there are no XMM argument // registers. return None; static const MCPhysReg XMMArgRegs64Bit[] = { X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 }; return makeArrayRef(std::begin(XMMArgRegs64Bit), std::end(XMMArgRegs64Bit)); } SDValue X86TargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); const Function* Fn = MF.getFunction(); if (Fn->hasExternalLinkage() && Subtarget->isTargetCygMing() && Fn->getName() == "main") FuncInfo->setForceFramePointer(true); MachineFrameInfo *MFI = MF.getFrameInfo(); bool Is64Bit = Subtarget->is64Bit(); bool IsWin64 = Subtarget->isCallingConvWin64(CallConv); assert(!(isVarArg && canGuaranteeTCO(CallConv)) && "Var args not supported with calling convention fastcc, ghc or hipe"); if (CallConv == CallingConv::X86_INTR) { bool isLegal = Ins.size() == 1 || (Ins.size() == 2 && ((Is64Bit && Ins[1].VT == MVT::i64) || (!Is64Bit && Ins[1].VT == MVT::i32))); if (!isLegal) report_fatal_error("X86 interrupts may take one or two arguments"); } // Assign locations to all of the incoming arguments. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); // Allocate shadow area for Win64 if (IsWin64) CCInfo.AllocateStack(32, 8); CCInfo.AnalyzeFormalArguments(Ins, CC_X86); unsigned LastVal = ~0U; SDValue ArgValue; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; // TODO: If an arg is passed in two places (e.g. reg and stack), skip later // places. assert(VA.getValNo() != LastVal && "Don't support value assigned to multiple locs yet"); (void)LastVal; LastVal = VA.getValNo(); if (VA.isRegLoc()) { EVT RegVT = VA.getLocVT(); const TargetRegisterClass *RC; if (RegVT == MVT::i32) RC = &X86::GR32RegClass; else if (Is64Bit && RegVT == MVT::i64) RC = &X86::GR64RegClass; else if (RegVT == MVT::f32) RC = &X86::FR32RegClass; else if (RegVT == MVT::f64) RC = &X86::FR64RegClass; else if (RegVT == MVT::f128) RC = &X86::FR128RegClass; else if (RegVT.is512BitVector()) RC = &X86::VR512RegClass; else if (RegVT.is256BitVector()) RC = &X86::VR256RegClass; else if (RegVT.is128BitVector()) RC = &X86::VR128RegClass; else if (RegVT == MVT::x86mmx) RC = &X86::VR64RegClass; else if (RegVT == MVT::i1) RC = &X86::VK1RegClass; else if (RegVT == MVT::v8i1) RC = &X86::VK8RegClass; else if (RegVT == MVT::v16i1) RC = &X86::VK16RegClass; else if (RegVT == MVT::v32i1) RC = &X86::VK32RegClass; else if (RegVT == MVT::v64i1) RC = &X86::VK64RegClass; else llvm_unreachable("Unknown argument type!"); unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); // If this is an 8 or 16-bit value, it is really passed promoted to 32 // bits. Insert an assert[sz]ext to capture this, then truncate to the // right size. if (VA.getLocInfo() == CCValAssign::SExt) ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); else if (VA.getLocInfo() == CCValAssign::ZExt) ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); else if (VA.getLocInfo() == CCValAssign::BCvt) ArgValue = DAG.getBitcast(VA.getValVT(), ArgValue); if (VA.isExtInLoc()) { // Handle MMX values passed in XMM regs. if (RegVT.isVector() && VA.getValVT().getScalarType() != MVT::i1) ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue); else ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); } } else { assert(VA.isMemLoc()); ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i); } // If value is passed via pointer - do a load. if (VA.getLocInfo() == CCValAssign::Indirect) ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, MachinePointerInfo(), false, false, false, 0); InVals.push_back(ArgValue); } for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { // All x86 ABIs require that for returning structs by value we copy the // sret argument into %rax/%eax (depending on ABI) for the return. Save // the argument into a virtual register so that we can access it from the // return points. if (Ins[i].Flags.isSRet()) { unsigned Reg = FuncInfo->getSRetReturnReg(); if (!Reg) { MVT PtrTy = getPointerTy(DAG.getDataLayout()); Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy)); FuncInfo->setSRetReturnReg(Reg); } SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]); Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); break; } } unsigned StackSize = CCInfo.getNextStackOffset(); // Align stack specially for tail calls. if (shouldGuaranteeTCO(CallConv, MF.getTarget().Options.GuaranteedTailCallOpt)) StackSize = GetAlignedArgumentStackSize(StackSize, DAG); // If the function takes variable number of arguments, make a frame index for // the start of the first vararg value... for expansion of llvm.va_start. We // can skip this if there are no va_start calls. if (MFI->hasVAStart() && (Is64Bit || (CallConv != CallingConv::X86_FastCall && CallConv != CallingConv::X86_ThisCall))) { FuncInfo->setVarArgsFrameIndex( MFI->CreateFixedObject(1, StackSize, true)); } // Figure out if XMM registers are in use. assert(!(Subtarget->useSoftFloat() && Fn->hasFnAttribute(Attribute::NoImplicitFloat)) && "SSE register cannot be used when SSE is disabled!"); // 64-bit calling conventions support varargs and register parameters, so we // have to do extra work to spill them in the prologue. if (Is64Bit && isVarArg && MFI->hasVAStart()) { // Find the first unallocated argument registers. ArrayRef<MCPhysReg> ArgGPRs = get64BitArgumentGPRs(CallConv, Subtarget); ArrayRef<MCPhysReg> ArgXMMs = get64BitArgumentXMMs(MF, CallConv, Subtarget); unsigned NumIntRegs = CCInfo.getFirstUnallocated(ArgGPRs); unsigned NumXMMRegs = CCInfo.getFirstUnallocated(ArgXMMs); assert(!(NumXMMRegs && !Subtarget->hasSSE1()) && "SSE register cannot be used when SSE is disabled!"); // Gather all the live in physical registers. SmallVector<SDValue, 6> LiveGPRs; SmallVector<SDValue, 8> LiveXMMRegs; SDValue ALVal; for (MCPhysReg Reg : ArgGPRs.slice(NumIntRegs)) { unsigned GPR = MF.addLiveIn(Reg, &X86::GR64RegClass); LiveGPRs.push_back( DAG.getCopyFromReg(Chain, dl, GPR, MVT::i64)); } if (!ArgXMMs.empty()) { unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass); ALVal = DAG.getCopyFromReg(Chain, dl, AL, MVT::i8); for (MCPhysReg Reg : ArgXMMs.slice(NumXMMRegs)) { unsigned XMMReg = MF.addLiveIn(Reg, &X86::VR128RegClass); LiveXMMRegs.push_back( DAG.getCopyFromReg(Chain, dl, XMMReg, MVT::v4f32)); } } if (IsWin64) { // Get to the caller-allocated home save location. Add 8 to account // for the return address. int HomeOffset = TFI.getOffsetOfLocalArea() + 8; FuncInfo->setRegSaveFrameIndex( MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false)); // Fixup to set vararg frame on shadow area (4 x i64). if (NumIntRegs < 4) FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex()); } else { // For X86-64, if there are vararg parameters that are passed via // registers, then we must store them to their spots on the stack so // they may be loaded by deferencing the result of va_next. FuncInfo->setVarArgsGPOffset(NumIntRegs * 8); FuncInfo->setVarArgsFPOffset(ArgGPRs.size() * 8 + NumXMMRegs * 16); FuncInfo->setRegSaveFrameIndex(MFI->CreateStackObject( ArgGPRs.size() * 8 + ArgXMMs.size() * 16, 16, false)); } // Store the integer parameter registers. SmallVector<SDValue, 8> MemOps; SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), getPointerTy(DAG.getDataLayout())); unsigned Offset = FuncInfo->getVarArgsGPOffset(); for (SDValue Val : LiveGPRs) { SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), RSFIN, DAG.getIntPtrConstant(Offset, dl)); SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo::getFixedStack( DAG.getMachineFunction(), FuncInfo->getRegSaveFrameIndex(), Offset), false, false, 0); MemOps.push_back(Store); Offset += 8; } if (!ArgXMMs.empty() && NumXMMRegs != ArgXMMs.size()) { // Now store the XMM (fp + vector) parameter registers. SmallVector<SDValue, 12> SaveXMMOps; SaveXMMOps.push_back(Chain); SaveXMMOps.push_back(ALVal); SaveXMMOps.push_back(DAG.getIntPtrConstant( FuncInfo->getRegSaveFrameIndex(), dl)); SaveXMMOps.push_back(DAG.getIntPtrConstant( FuncInfo->getVarArgsFPOffset(), dl)); SaveXMMOps.insert(SaveXMMOps.end(), LiveXMMRegs.begin(), LiveXMMRegs.end()); MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl, MVT::Other, SaveXMMOps)); } if (!MemOps.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); } if (isVarArg && MFI->hasMustTailInVarArgFunc()) { // Find the largest legal vector type. MVT VecVT = MVT::Other; // FIXME: Only some x86_32 calling conventions support AVX512. if (Subtarget->hasAVX512() && (Is64Bit || (CallConv == CallingConv::X86_VectorCall || CallConv == CallingConv::Intel_OCL_BI))) VecVT = MVT::v16f32; else if (Subtarget->hasAVX()) VecVT = MVT::v8f32; else if (Subtarget->hasSSE2()) VecVT = MVT::v4f32; // We forward some GPRs and some vector types. SmallVector<MVT, 2> RegParmTypes; MVT IntVT = Is64Bit ? MVT::i64 : MVT::i32; RegParmTypes.push_back(IntVT); if (VecVT != MVT::Other) RegParmTypes.push_back(VecVT); // Compute the set of forwarded registers. The rest are scratch. SmallVectorImpl<ForwardedRegister> &Forwards = FuncInfo->getForwardedMustTailRegParms(); CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_X86); // Conservatively forward AL on x86_64, since it might be used for varargs. if (Is64Bit && !CCInfo.isAllocated(X86::AL)) { unsigned ALVReg = MF.addLiveIn(X86::AL, &X86::GR8RegClass); Forwards.push_back(ForwardedRegister(ALVReg, X86::AL, MVT::i8)); } // Copy all forwards from physical to virtual registers. for (ForwardedRegister &F : Forwards) { // FIXME: Can we use a less constrained schedule? SDValue RegVal = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT); F.VReg = MF.getRegInfo().createVirtualRegister(getRegClassFor(F.VT)); Chain = DAG.getCopyToReg(Chain, dl, F.VReg, RegVal); } } // Some CCs need callee pop. if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, MF.getTarget().Options.GuaranteedTailCallOpt)) { FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything. } else if (CallConv == CallingConv::X86_INTR && Ins.size() == 2) { // X86 interrupts must pop the error code if present FuncInfo->setBytesToPopOnReturn(Is64Bit ? 8 : 4); } else { FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing. // If this is an sret function, the return should pop the hidden pointer. if (!Is64Bit && !canGuaranteeTCO(CallConv) && !Subtarget->getTargetTriple().isOSMSVCRT() && argsAreStructReturn(Ins) == StackStructReturn) FuncInfo->setBytesToPopOnReturn(4); } if (!Is64Bit) { // RegSaveFrameIndex is X86-64 only. FuncInfo->setRegSaveFrameIndex(0xAAAAAAA); if (CallConv == CallingConv::X86_FastCall || CallConv == CallingConv::X86_ThisCall) // fastcc functions can't have varargs. FuncInfo->setVarArgsFrameIndex(0xAAAAAAA); } FuncInfo->setArgumentStackSize(StackSize); if (WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo()) { EHPersonality Personality = classifyEHPersonality(Fn->getPersonalityFn()); if (Personality == EHPersonality::CoreCLR) { assert(Is64Bit); // TODO: Add a mechanism to frame lowering that will allow us to indicate // that we'd prefer this slot be allocated towards the bottom of the frame // (i.e. near the stack pointer after allocating the frame). Every // funclet needs a copy of this slot in its (mostly empty) frame, and the // offset from the bottom of this and each funclet's frame must be the // same, so the size of funclets' (mostly empty) frames is dictated by // how far this slot is from the bottom (since they allocate just enough // space to accomodate holding this slot at the correct offset). int PSPSymFI = MFI->CreateStackObject(8, 8, /*isSS=*/false); EHInfo->PSPSymFrameIdx = PSPSymFI; } } return Chain; } SDValue X86TargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg, SDLoc dl, SelectionDAG &DAG, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { unsigned LocMemOffset = VA.getLocMemOffset(); SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), StackPtr, PtrOff); if (Flags.isByVal()) return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl); return DAG.getStore( Chain, dl, Arg, PtrOff, MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset), false, false, 0); } /// Emit a load of return address if tail call /// optimization is performed and it is required. SDValue X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr, SDValue Chain, bool IsTailCall, bool Is64Bit, int FPDiff, SDLoc dl) const { // Adjust the Return address stack slot. EVT VT = getPointerTy(DAG.getDataLayout()); OutRetAddr = getReturnAddressFrameIndex(DAG); // Load the "old" Return address. OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(), false, false, false, 0); return SDValue(OutRetAddr.getNode(), 1); } /// Emit a store of the return address if tail call /// optimization is performed and it is required (FPDiff!=0). static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT, unsigned SlotSize, int FPDiff, SDLoc dl) { // Store the return address to the appropriate stack slot. if (!FPDiff) return Chain; // Calculate the new stack slot for the return address. int NewReturnAddrFI = MF.getFrameInfo()->CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize, false); SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT); Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx, MachinePointerInfo::getFixedStack( DAG.getMachineFunction(), NewReturnAddrFI), false, false, 0); return Chain; } /// Returns a vector_shuffle mask for an movs{s|d}, movd /// operation of specified width. static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1, SDValue V2) { unsigned NumElems = VT.getVectorNumElements(); SmallVector<int, 8> Mask; Mask.push_back(NumElems); for (unsigned i = 1; i != NumElems; ++i) Mask.push_back(i); return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); } SDValue X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl<SDValue> &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc &dl = CLI.DL; SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; CallingConv::ID CallConv = CLI.CallConv; bool &isTailCall = CLI.IsTailCall; bool isVarArg = CLI.IsVarArg; MachineFunction &MF = DAG.getMachineFunction(); bool Is64Bit = Subtarget->is64Bit(); bool IsWin64 = Subtarget->isCallingConvWin64(CallConv); StructReturnType SR = callIsStructReturn(Outs); bool IsSibcall = false; X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>(); auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls"); if (CallConv == CallingConv::X86_INTR) report_fatal_error("X86 interrupts may not be called directly"); if (Attr.getValueAsString() == "true") isTailCall = false; if (Subtarget->isPICStyleGOT() && !MF.getTarget().Options.GuaranteedTailCallOpt) { // If we are using a GOT, disable tail calls to external symbols with // default visibility. Tail calling such a symbol requires using a GOT // relocation, which forces early binding of the symbol. This breaks code // that require lazy function symbol resolution. Using musttail or // GuaranteedTailCallOpt will override this. GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); if (!G || (!G->getGlobal()->hasLocalLinkage() && G->getGlobal()->hasDefaultVisibility())) isTailCall = false; } bool IsMustTail = CLI.CS && CLI.CS->isMustTailCall(); if (IsMustTail) { // Force this to be a tail call. The verifier rules are enough to ensure // that we can lower this successfully without moving the return address // around. isTailCall = true; } else if (isTailCall) { // Check if it's really possible to do a tail call. isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, SR != NotStructReturn, MF.getFunction()->hasStructRetAttr(), CLI.RetTy, Outs, OutVals, Ins, DAG); // Sibcalls are automatically detected tailcalls which do not require // ABI changes. if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall) IsSibcall = true; if (isTailCall) ++NumTailCalls; } assert(!(isVarArg && canGuaranteeTCO(CallConv)) && "Var args not supported with calling convention fastcc, ghc or hipe"); // Analyze operands of the call, assigning locations to each operand. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); // Allocate shadow area for Win64 if (IsWin64) CCInfo.AllocateStack(32, 8); CCInfo.AnalyzeCallOperands(Outs, CC_X86); // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); if (IsSibcall) // This is a sibcall. The memory operands are available in caller's // own caller's stack. NumBytes = 0; else if (MF.getTarget().Options.GuaranteedTailCallOpt && canGuaranteeTCO(CallConv)) NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG); int FPDiff = 0; if (isTailCall && !IsSibcall && !IsMustTail) { // Lower arguments at fp - stackoffset + fpdiff. unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn(); FPDiff = NumBytesCallerPushed - NumBytes; // Set the delta of movement of the returnaddr stackslot. // But only set if delta is greater than previous delta. if (FPDiff < X86Info->getTCReturnAddrDelta()) X86Info->setTCReturnAddrDelta(FPDiff); } unsigned NumBytesToPush = NumBytes; unsigned NumBytesToPop = NumBytes; // If we have an inalloca argument, all stack space has already been allocated // for us and be right at the top of the stack. We don't support multiple // arguments passed in memory when using inalloca. if (!Outs.empty() && Outs.back().Flags.isInAlloca()) { NumBytesToPush = 0; if (!ArgLocs.back().isMemLoc()) report_fatal_error("cannot use inalloca attribute on a register " "parameter"); if (ArgLocs.back().getLocMemOffset() != 0) report_fatal_error("any parameter with the inalloca attribute must be " "the only memory argument"); } if (!IsSibcall) Chain = DAG.getCALLSEQ_START( Chain, DAG.getIntPtrConstant(NumBytesToPush, dl, true), dl); SDValue RetAddrFrIdx; // Load return address for tail calls. if (isTailCall && FPDiff) Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, Is64Bit, FPDiff, dl); SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; SmallVector<SDValue, 8> MemOpChains; SDValue StackPtr; // Walk the register/memloc assignments, inserting copies/loads. In the case // of tail call optimization arguments are handle later. const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { // Skip inalloca arguments, they have already been written. ISD::ArgFlagsTy Flags = Outs[i].Flags; if (Flags.isInAlloca()) continue; CCValAssign &VA = ArgLocs[i]; EVT RegVT = VA.getLocVT(); SDValue Arg = OutVals[i]; bool isByVal = Flags.isByVal(); // Promote the value if needed. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg); break; case CCValAssign::AExt: if (Arg.getValueType().isVector() && Arg.getValueType().getVectorElementType() == MVT::i1) Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg); else if (RegVT.is128BitVector()) { // Special case: passing MMX values in XMM registers. Arg = DAG.getBitcast(MVT::i64, Arg); Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg); Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg); } else Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg); break; case CCValAssign::BCvt: Arg = DAG.getBitcast(RegVT, Arg); break; case CCValAssign::Indirect: { // Store the argument. SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); Chain = DAG.getStore( Chain, dl, Arg, SpillSlot, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false, false, 0); Arg = SpillSlot; break; } } if (VA.isRegLoc()) { RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); if (isVarArg && IsWin64) { // Win64 ABI requires argument XMM reg to be copied to the corresponding // shadow reg if callee is a varargs function. unsigned ShadowReg = 0; switch (VA.getLocReg()) { case X86::XMM0: ShadowReg = X86::RCX; break; case X86::XMM1: ShadowReg = X86::RDX; break; case X86::XMM2: ShadowReg = X86::R8; break; case X86::XMM3: ShadowReg = X86::R9; break; } if (ShadowReg) RegsToPass.push_back(std::make_pair(ShadowReg, Arg)); } } else if (!IsSibcall && (!isTailCall || isByVal)) { assert(VA.isMemLoc()); if (!StackPtr.getNode()) StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(), getPointerTy(DAG.getDataLayout())); MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, dl, DAG, VA, Flags)); } } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); if (Subtarget->isPICStyleGOT()) { // ELF / PIC requires GOT in the EBX register before function calls via PLT // GOT pointer. if (!isTailCall) { RegsToPass.push_back(std::make_pair( unsigned(X86::EBX), DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy(DAG.getDataLayout())))); } else { // If we are tail calling and generating PIC/GOT style code load the // address of the callee into ECX. The value in ecx is used as target of // the tail jump. This is done to circumvent the ebx/callee-saved problem // for tail calls on PIC/GOT architectures. Normally we would just put the // address of GOT into ebx and then call target@PLT. But for tail calls // ebx would be restored (since ebx is callee saved) before jumping to the // target@PLT. // Note: The actual moving to ECX is done further down. GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); if (G && !G->getGlobal()->hasLocalLinkage() && G->getGlobal()->hasDefaultVisibility()) Callee = LowerGlobalAddress(Callee, DAG); else if (isa<ExternalSymbolSDNode>(Callee)) Callee = LowerExternalSymbol(Callee, DAG); } } if (Is64Bit && isVarArg && !IsWin64 && !IsMustTail) { // From AMD64 ABI document: // For calls that may call functions that use varargs or stdargs // (prototype-less calls or calls to functions containing ellipsis (...) in // the declaration) %al is used as hidden argument to specify the number // of SSE registers used. The contents of %al do not need to match exactly // the number of registers, but must be an ubound on the number of SSE // registers used and is in the range 0 - 8 inclusive. // Count the number of XMM registers allocated. static const MCPhysReg XMMArgRegs[] = { X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 }; unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs); assert((Subtarget->hasSSE1() || !NumXMMRegs) && "SSE registers cannot be used when SSE is disabled"); RegsToPass.push_back(std::make_pair(unsigned(X86::AL), DAG.getConstant(NumXMMRegs, dl, MVT::i8))); } if (isVarArg && IsMustTail) { const auto &Forwards = X86Info->getForwardedMustTailRegParms(); for (const auto &F : Forwards) { SDValue Val = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT); RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val)); } } // For tail calls lower the arguments to the 'real' stack slots. Sibcalls // don't need this because the eligibility check rejects calls that require // shuffling arguments passed in memory. if (!IsSibcall && isTailCall) { // Force all the incoming stack arguments to be loaded from the stack // before any new outgoing arguments are stored to the stack, because the // outgoing stack slots may alias the incoming argument stack slots, and // the alias isn't otherwise explicit. This is slightly more conservative // than necessary, because it means that each store effectively depends // on every argument instead of just those arguments it would clobber. SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain); SmallVector<SDValue, 8> MemOpChains2; SDValue FIN; int FI = 0; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; if (VA.isRegLoc()) continue; assert(VA.isMemLoc()); SDValue Arg = OutVals[i]; ISD::ArgFlagsTy Flags = Outs[i].Flags; // Skip inalloca arguments. They don't require any work. if (Flags.isInAlloca()) continue; // Create frame index. int32_t Offset = VA.getLocMemOffset()+FPDiff; uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8; FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); if (Flags.isByVal()) { // Copy relative to framepointer. SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset(), dl); if (!StackPtr.getNode()) StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(), getPointerTy(DAG.getDataLayout())); Source = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), StackPtr, Source); MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, ArgChain, Flags, DAG, dl)); } else { // Store relative to framepointer. MemOpChains2.push_back(DAG.getStore( ArgChain, dl, Arg, FIN, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false, false, 0)); } } if (!MemOpChains2.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); // Store the return address to the appropriate stack slot. Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, getPointerTy(DAG.getDataLayout()), RegInfo->getSlotSize(), FPDiff, dl); } // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into registers. SDValue InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } if (DAG.getTarget().getCodeModel() == CodeModel::Large) { assert(Is64Bit && "Large code model is only legal in 64-bit mode."); // In the 64-bit large code model, we have to make all calls // through a register, since the call instruction's 32-bit // pc-relative offset may not be large enough to hold the whole // address. } else if (Callee->getOpcode() == ISD::GlobalAddress) { // If the callee is a GlobalAddress node (quite common, every direct call // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack // it. GlobalAddressSDNode* G = cast<GlobalAddressSDNode>(Callee); // We should use extra load for direct calls to dllimported functions in // non-JIT mode. const GlobalValue *GV = G->getGlobal(); if (!GV->hasDLLImportStorageClass()) { unsigned char OpFlags = 0; bool ExtraLoad = false; unsigned WrapperKind = ISD::DELETED_NODE; // On ELF targets, in both X86-64 and X86-32 mode, direct calls to // external symbols most go through the PLT in PIC mode. If the symbol // has hidden or protected visibility, or if it is static or local, then // we don't need to use the PLT - we can directly call it. if (Subtarget->isTargetELF() && DAG.getTarget().getRelocationModel() == Reloc::PIC_ && GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) { OpFlags = X86II::MO_PLT; } else if (Subtarget->isPICStyleStubAny() && !GV->isStrongDefinitionForLinker() && (!Subtarget->getTargetTriple().isMacOSX() || Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) { // PC-relative references to external symbols should go through $stub, // unless we're building with the leopard linker or later, which // automatically synthesizes these stubs. OpFlags = X86II::MO_DARWIN_STUB; } else if (Subtarget->isPICStyleRIPRel() && isa<Function>(GV) && cast<Function>(GV)->hasFnAttribute(Attribute::NonLazyBind)) { // If the function is marked as non-lazy, generate an indirect call // which loads from the GOT directly. This avoids runtime overhead // at the cost of eager binding (and one extra byte of encoding). OpFlags = X86II::MO_GOTPCREL; WrapperKind = X86ISD::WrapperRIP; ExtraLoad = true; } Callee = DAG.getTargetGlobalAddress( GV, dl, getPointerTy(DAG.getDataLayout()), G->getOffset(), OpFlags); // Add a wrapper if needed. if (WrapperKind != ISD::DELETED_NODE) Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(DAG.getDataLayout()), Callee); // Add extra indirection if needed. if (ExtraLoad) Callee = DAG.getLoad( getPointerTy(DAG.getDataLayout()), dl, DAG.getEntryNode(), Callee, MachinePointerInfo::getGOT(DAG.getMachineFunction()), false, false, false, 0); } } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { unsigned char OpFlags = 0; // On ELF targets, in either X86-64 or X86-32 mode, direct calls to // external symbols should go through the PLT. if (Subtarget->isTargetELF() && DAG.getTarget().getRelocationModel() == Reloc::PIC_) { OpFlags = X86II::MO_PLT; } else if (Subtarget->isPICStyleStubAny() && (!Subtarget->getTargetTriple().isMacOSX() || Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) { // PC-relative references to external symbols should go through $stub, // unless we're building with the leopard linker or later, which // automatically synthesizes these stubs. OpFlags = X86II::MO_DARWIN_STUB; } Callee = DAG.getTargetExternalSymbol( S->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlags); } else if (Subtarget->isTarget64BitILP32() && Callee->getValueType(0) == MVT::i32) { // Zero-extend the 32-bit Callee address into a 64-bit according to x32 ABI Callee = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Callee); } // Returns a chain & a flag for retval copy to use. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SmallVector<SDValue, 8> Ops; if (!IsSibcall && isTailCall) { Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytesToPop, dl, true), DAG.getIntPtrConstant(0, dl, true), InFlag, dl); InFlag = Chain.getValue(1); } Ops.push_back(Chain); Ops.push_back(Callee); if (isTailCall) Ops.push_back(DAG.getConstant(FPDiff, dl, MVT::i32)); // Add argument registers to the end of the list so that they are known live // into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); // Add a register mask operand representing the call-preserved registers. const uint32_t *Mask = RegInfo->getCallPreservedMask(MF, CallConv); assert(Mask && "Missing call preserved mask for calling convention"); // If this is an invoke in a 32-bit function using a funclet-based // personality, assume the function clobbers all registers. If an exception // is thrown, the runtime will not restore CSRs. // FIXME: Model this more precisely so that we can register allocate across // the normal edge and spill and fill across the exceptional edge. if (!Is64Bit && CLI.CS && CLI.CS->isInvoke()) { const Function *CallerFn = MF.getFunction(); EHPersonality Pers = CallerFn->hasPersonalityFn() ? classifyEHPersonality(CallerFn->getPersonalityFn()) : EHPersonality::Unknown; if (isFuncletEHPersonality(Pers)) Mask = RegInfo->getNoPreservedMask(); } Ops.push_back(DAG.getRegisterMask(Mask)); if (InFlag.getNode()) Ops.push_back(InFlag); if (isTailCall) { // We used to do: //// If this is the first return lowered for this function, add the regs //// to the liveout set for the function. // This isn't right, although it's probably harmless on x86; liveouts // should be computed from returns not tail calls. Consider a void // function making a tail call to a function returning int. MF.getFrameInfo()->setHasTailCall(); return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, Ops); } Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops); InFlag = Chain.getValue(1); // Create the CALLSEQ_END node. unsigned NumBytesForCalleeToPop; if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, DAG.getTarget().Options.GuaranteedTailCallOpt)) NumBytesForCalleeToPop = NumBytes; // Callee pops everything else if (!Is64Bit && !canGuaranteeTCO(CallConv) && !Subtarget->getTargetTriple().isOSMSVCRT() && SR == StackStructReturn) // If this is a call to a struct-return function, the callee // pops the hidden struct pointer, so we have to push it back. // This is common for Darwin/X86, Linux & Mingw32 targets. // For MSVC Win32 targets, the caller pops the hidden struct pointer. NumBytesForCalleeToPop = 4; else NumBytesForCalleeToPop = 0; // Callee pops nothing. // Returns a flag for retval copy to use. if (!IsSibcall) { Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytesToPop, dl, true), DAG.getIntPtrConstant(NumBytesForCalleeToPop, dl, true), InFlag, dl); InFlag = Chain.getValue(1); } // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, InVals); } //===----------------------------------------------------------------------===// // Fast Calling Convention (tail call) implementation //===----------------------------------------------------------------------===// // Like std call, callee cleans arguments, convention except that ECX is // reserved for storing the tail called function address. Only 2 registers are // free for argument passing (inreg). Tail call optimization is performed // provided: // * tailcallopt is enabled // * caller/callee are fastcc // On X86_64 architecture with GOT-style position independent code only local // (within module) calls are supported at the moment. // To keep the stack aligned according to platform abi the function // GetAlignedArgumentStackSize ensures that argument delta is always multiples // of stack alignment. (Dynamic linkers need this - darwin's dyld for example) // If a tail called function callee has more arguments than the caller the // caller needs to make sure that there is room to move the RETADDR to. This is // achieved by reserving an area the size of the argument delta right after the // original RETADDR, but before the saved framepointer or the spilled registers // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4) // stack layout: // arg1 // arg2 // RETADDR // [ new RETADDR // move area ] // (possible EBP) // ESI // EDI // local1 .. /// Make the stack size align e.g 16n + 12 aligned for a 16-byte align /// requirement. unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG& DAG) const { const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); unsigned StackAlignment = TFI.getStackAlignment(); uint64_t AlignMask = StackAlignment - 1; int64_t Offset = StackSize; unsigned SlotSize = RegInfo->getSlotSize(); if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) { // Number smaller than 12 so just add the difference. Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask)); } else { // Mask out lower bits, add stackalignment once plus the 12 bytes. Offset = ((~AlignMask) & Offset) + StackAlignment + (StackAlignment-SlotSize); } return Offset; } /// Return true if the given stack call argument is already available in the /// same position (relatively) of the caller's incoming argument stack. static bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, MachineFrameInfo *MFI, const MachineRegisterInfo *MRI, const X86InstrInfo *TII) { unsigned Bytes = Arg.getValueType().getSizeInBits() / 8; int FI = INT_MAX; if (Arg.getOpcode() == ISD::CopyFromReg) { unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg(); if (!TargetRegisterInfo::isVirtualRegister(VR)) return false; MachineInstr *Def = MRI->getVRegDef(VR); if (!Def) return false; if (!Flags.isByVal()) { if (!TII->isLoadFromStackSlot(Def, FI)) return false; } else { unsigned Opcode = Def->getOpcode(); if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r || Opcode == X86::LEA64_32r) && Def->getOperand(1).isFI()) { FI = Def->getOperand(1).getIndex(); Bytes = Flags.getByValSize(); } else return false; } } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) { if (Flags.isByVal()) // ByVal argument is passed in as a pointer but it's now being // dereferenced. e.g. // define @foo(%struct.X* %A) { // tail call @bar(%struct.X* byval %A) // } return false; SDValue Ptr = Ld->getBasePtr(); FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr); if (!FINode) return false; FI = FINode->getIndex(); } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) { FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg); FI = FINode->getIndex(); Bytes = Flags.getByValSize(); } else return false; assert(FI != INT_MAX); if (!MFI->isFixedObjectIndex(FI)) return false; return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI); } /// Check whether the call is eligible for tail call optimization. Targets /// that want to do tail call optimization should implement this function. bool X86TargetLowering::IsEligibleForTailCallOptimization( SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, bool isCalleeStructRet, bool isCallerStructRet, Type *RetTy, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { if (!mayTailCallThisCC(CalleeCC)) return false; // If -tailcallopt is specified, make fastcc functions tail-callable. MachineFunction &MF = DAG.getMachineFunction(); const Function *CallerF = MF.getFunction(); // If the function return type is x86_fp80 and the callee return type is not, // then the FP_EXTEND of the call result is not a nop. It's not safe to // perform a tailcall optimization here. if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty()) return false; CallingConv::ID CallerCC = CallerF->getCallingConv(); bool CCMatch = CallerCC == CalleeCC; bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC); bool IsCallerWin64 = Subtarget->isCallingConvWin64(CallerCC); // Win64 functions have extra shadow space for argument homing. Don't do the // sibcall if the caller and callee have mismatched expectations for this // space. if (IsCalleeWin64 != IsCallerWin64) return false; if (DAG.getTarget().Options.GuaranteedTailCallOpt) { if (canGuaranteeTCO(CalleeCC) && CCMatch) return true; return false; } // Look for obvious safe cases to perform tail call optimization that do not // require ABI changes. This is what gcc calls sibcall. // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to // emit a special epilogue. const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); if (RegInfo->needsStackRealignment(MF)) return false; // Also avoid sibcall optimization if either caller or callee uses struct // return semantics. if (isCalleeStructRet || isCallerStructRet) return false; // Do not sibcall optimize vararg calls unless all arguments are passed via // registers. if (isVarArg && !Outs.empty()) { // Optimizing for varargs on Win64 is unlikely to be safe without // additional testing. if (IsCalleeWin64 || IsCallerWin64) return false; SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeCallOperands(Outs, CC_X86); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) if (!ArgLocs[i].isRegLoc()) return false; } // If the call result is in ST0 / ST1, it needs to be popped off the x87 // stack. Therefore, if it's not used by the call it is not safe to optimize // this into a sibcall. bool Unused = false; for (unsigned i = 0, e = Ins.size(); i != e; ++i) { if (!Ins[i].Used) { Unused = true; break; } } if (Unused) { SmallVector<CCValAssign, 16> RVLocs; CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeCallResult(Ins, RetCC_X86); for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { CCValAssign &VA = RVLocs[i]; if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) return false; } } // If the calling conventions do not match, then we'd better make sure the // results are returned in the same way as what the caller expects. if (!CCMatch) { SmallVector<CCValAssign, 16> RVLocs1; CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1, *DAG.getContext()); CCInfo1.AnalyzeCallResult(Ins, RetCC_X86); SmallVector<CCValAssign, 16> RVLocs2; CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2, *DAG.getContext()); CCInfo2.AnalyzeCallResult(Ins, RetCC_X86); if (RVLocs1.size() != RVLocs2.size()) return false; for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) return false; if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) return false; if (RVLocs1[i].isRegLoc()) { if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) return false; } else { if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) return false; } } } unsigned StackArgsSize = 0; // If the callee takes no arguments then go on to check the results of the // call. if (!Outs.empty()) { // Check if stack adjustment is needed. For now, do not do this if any // argument is passed on the stack. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); // Allocate shadow area for Win64 if (IsCalleeWin64) CCInfo.AllocateStack(32, 8); CCInfo.AnalyzeCallOperands(Outs, CC_X86); StackArgsSize = CCInfo.getNextStackOffset(); if (CCInfo.getNextStackOffset()) { // Check if the arguments are already laid out in the right way as // the caller's fixed stack objects. MachineFrameInfo *MFI = MF.getFrameInfo(); const MachineRegisterInfo *MRI = &MF.getRegInfo(); const X86InstrInfo *TII = Subtarget->getInstrInfo(); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; SDValue Arg = OutVals[i]; ISD::ArgFlagsTy Flags = Outs[i].Flags; if (VA.getLocInfo() == CCValAssign::Indirect) return false; if (!VA.isRegLoc()) { if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, MFI, MRI, TII)) return false; } } } // If the tailcall address may be in a register, then make sure it's // possible to register allocate for it. In 32-bit, the call address can // only target EAX, EDX, or ECX since the tail call must be scheduled after // callee-saved registers are restored. These happen to be the same // registers used to pass 'inreg' arguments so watch out for those. if (!Subtarget->is64Bit() && ((!isa<GlobalAddressSDNode>(Callee) && !isa<ExternalSymbolSDNode>(Callee)) || DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { unsigned NumInRegs = 0; // In PIC we need an extra register to formulate the address computation // for the callee. unsigned MaxInRegs = (DAG.getTarget().getRelocationModel() == Reloc::PIC_) ? 2 : 3; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; if (!VA.isRegLoc()) continue; unsigned Reg = VA.getLocReg(); switch (Reg) { default: break; case X86::EAX: case X86::EDX: case X86::ECX: if (++NumInRegs == MaxInRegs) return false; break; } } } } bool CalleeWillPop = X86::isCalleePop(CalleeCC, Subtarget->is64Bit(), isVarArg, MF.getTarget().Options.GuaranteedTailCallOpt); if (unsigned BytesToPop = MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn()) { // If we have bytes to pop, the callee must pop them. bool CalleePopMatches = CalleeWillPop && BytesToPop == StackArgsSize; if (!CalleePopMatches) return false; } else if (CalleeWillPop && StackArgsSize > 0) { // If we don't have bytes to pop, make sure the callee doesn't pop any. return false; } return true; } FastISel * X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) const { return X86::createFastISel(funcInfo, libInfo); } //===----------------------------------------------------------------------===// // Other Lowering Hooks //===----------------------------------------------------------------------===// static bool MayFoldLoad(SDValue Op) { return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode()); } static bool MayFoldIntoStore(SDValue Op) { return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin()); } static bool isTargetShuffle(unsigned Opcode) { switch(Opcode) { default: return false; case X86ISD::BLENDI: case X86ISD::PSHUFB: case X86ISD::PSHUFD: case X86ISD::PSHUFHW: case X86ISD::PSHUFLW: case X86ISD::SHUFP: case X86ISD::PALIGNR: case X86ISD::MOVLHPS: case X86ISD::MOVLHPD: case X86ISD::MOVHLPS: case X86ISD::MOVLPS: case X86ISD::MOVLPD: case X86ISD::MOVSHDUP: case X86ISD::MOVSLDUP: case X86ISD::MOVDDUP: case X86ISD::MOVSS: case X86ISD::MOVSD: case X86ISD::UNPCKL: case X86ISD::UNPCKH: case X86ISD::VPERMILPI: case X86ISD::VPERM2X128: case X86ISD::VPERMI: case X86ISD::VPERMV: case X86ISD::VPERMV3: return true; } } static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, MVT VT, SDValue V1, unsigned TargetMask, SelectionDAG &DAG) { switch(Opc) { default: llvm_unreachable("Unknown x86 shuffle node"); case X86ISD::PSHUFD: case X86ISD::PSHUFHW: case X86ISD::PSHUFLW: case X86ISD::VPERMILPI: case X86ISD::VPERMI: return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, dl, MVT::i8)); } } static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG) { switch(Opc) { default: llvm_unreachable("Unknown x86 shuffle node"); case X86ISD::MOVLHPS: case X86ISD::MOVLHPD: case X86ISD::MOVHLPS: case X86ISD::MOVLPS: case X86ISD::MOVLPD: case X86ISD::MOVSS: case X86ISD::MOVSD: case X86ISD::UNPCKL: case X86ISD::UNPCKH: return DAG.getNode(Opc, dl, VT, V1, V2); } } SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); int ReturnAddrIndex = FuncInfo->getRAIndex(); if (ReturnAddrIndex == 0) { // Set up a frame object for the return address. unsigned SlotSize = RegInfo->getSlotSize(); ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -(int64_t)SlotSize, false); FuncInfo->setRAIndex(ReturnAddrIndex); } return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy(DAG.getDataLayout())); } bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, bool hasSymbolicDisplacement) { // Offset should fit into 32 bit immediate field. if (!isInt<32>(Offset)) return false; // If we don't have a symbolic displacement - we don't have any extra // restrictions. if (!hasSymbolicDisplacement) return true; // FIXME: Some tweaks might be needed for medium code model. if (M != CodeModel::Small && M != CodeModel::Kernel) return false; // For small code model we assume that latest object is 16MB before end of 31 // bits boundary. We may also accept pretty large negative constants knowing // that all objects are in the positive half of address space. if (M == CodeModel::Small && Offset < 16*1024*1024) return true; // For kernel code model we know that all object resist in the negative half // of 32bits address space. We may not accept negative offsets, since they may // be just off and we may accept pretty large positive ones. if (M == CodeModel::Kernel && Offset >= 0) return true; return false; } /// Determines whether the callee is required to pop its own arguments. /// Callee pop is necessary to support tail calls. bool X86::isCalleePop(CallingConv::ID CallingConv, bool is64Bit, bool IsVarArg, bool GuaranteeTCO) { // If GuaranteeTCO is true, we force some calls to be callee pop so that we // can guarantee TCO. if (!IsVarArg && shouldGuaranteeTCO(CallingConv, GuaranteeTCO)) return true; switch (CallingConv) { default: return false; case CallingConv::X86_StdCall: case CallingConv::X86_FastCall: case CallingConv::X86_ThisCall: case CallingConv::X86_VectorCall: return !is64Bit; } } /// \brief Return true if the condition is an unsigned comparison operation. static bool isX86CCUnsigned(unsigned X86CC) { switch (X86CC) { default: llvm_unreachable("Invalid integer condition!"); case X86::COND_E: return true; case X86::COND_G: return false; case X86::COND_GE: return false; case X86::COND_L: return false; case X86::COND_LE: return false; case X86::COND_NE: return true; case X86::COND_B: return true; case X86::COND_A: return true; case X86::COND_BE: return true; case X86::COND_AE: return true; } } static X86::CondCode TranslateIntegerX86CC(ISD::CondCode SetCCOpcode) { switch (SetCCOpcode) { default: llvm_unreachable("Invalid integer condition!"); case ISD::SETEQ: return X86::COND_E; case ISD::SETGT: return X86::COND_G; case ISD::SETGE: return X86::COND_GE; case ISD::SETLT: return X86::COND_L; case ISD::SETLE: return X86::COND_LE; case ISD::SETNE: return X86::COND_NE; case ISD::SETULT: return X86::COND_B; case ISD::SETUGT: return X86::COND_A; case ISD::SETULE: return X86::COND_BE; case ISD::SETUGE: return X86::COND_AE; } } /// Do a one-to-one translation of a ISD::CondCode to the X86-specific /// condition code, returning the condition code and the LHS/RHS of the /// comparison to make. static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, SDLoc DL, bool isFP, SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) { if (!isFP) { if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) { // X > -1 -> X == 0, jump !sign. RHS = DAG.getConstant(0, DL, RHS.getValueType()); return X86::COND_NS; } if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) { // X < 0 -> X == 0, jump on sign. return X86::COND_S; } if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) { // X < 1 -> X <= 0 RHS = DAG.getConstant(0, DL, RHS.getValueType()); return X86::COND_LE; } } return TranslateIntegerX86CC(SetCCOpcode); } // First determine if it is required or is profitable to flip the operands. // If LHS is a foldable load, but RHS is not, flip the condition. if (ISD::isNON_EXTLoad(LHS.getNode()) && !ISD::isNON_EXTLoad(RHS.getNode())) { SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode); std::swap(LHS, RHS); } switch (SetCCOpcode) { default: break; case ISD::SETOLT: case ISD::SETOLE: case ISD::SETUGT: case ISD::SETUGE: std::swap(LHS, RHS); break; } // On a floating point condition, the flags are set as follows: // ZF PF CF op // 0 | 0 | 0 | X > Y // 0 | 0 | 1 | X < Y // 1 | 0 | 0 | X == Y // 1 | 1 | 1 | unordered switch (SetCCOpcode) { default: llvm_unreachable("Condcode should be pre-legalized away"); case ISD::SETUEQ: case ISD::SETEQ: return X86::COND_E; case ISD::SETOLT: // flipped case ISD::SETOGT: case ISD::SETGT: return X86::COND_A; case ISD::SETOLE: // flipped case ISD::SETOGE: case ISD::SETGE: return X86::COND_AE; case ISD::SETUGT: // flipped case ISD::SETULT: case ISD::SETLT: return X86::COND_B; case ISD::SETUGE: // flipped case ISD::SETULE: case ISD::SETLE: return X86::COND_BE; case ISD::SETONE: case ISD::SETNE: return X86::COND_NE; case ISD::SETUO: return X86::COND_P; case ISD::SETO: return X86::COND_NP; case ISD::SETOEQ: case ISD::SETUNE: return X86::COND_INVALID; } } /// Is there a floating point cmov for the specific X86 condition code? /// Current x86 isa includes the following FP cmov instructions: /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. static bool hasFPCMov(unsigned X86CC) { switch (X86CC) { default: return false; case X86::COND_B: case X86::COND_BE: case X86::COND_E: case X86::COND_P: case X86::COND_A: case X86::COND_AE: case X86::COND_NE: case X86::COND_NP: return true; } } /// Returns true if the target can instruction select the /// specified FP immediate natively. If false, the legalizer will /// materialize the FP immediate as a load from a constant pool. bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) { if (Imm.bitwiseIsEqual(LegalFPImmediates[i])) return true; } return false; } bool X86TargetLowering::shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT) const { // "ELF Handling for Thread-Local Storage" specifies that R_X86_64_GOTTPOFF // relocation target a movq or addq instruction: don't let the load shrink. SDValue BasePtr = cast<LoadSDNode>(Load)->getBasePtr(); if (BasePtr.getOpcode() == X86ISD::WrapperRIP) if (const auto *GA = dyn_cast<GlobalAddressSDNode>(BasePtr.getOperand(0))) return GA->getTargetFlags() != X86II::MO_GOTTPOFF; return true; } /// \brief Returns true if it is beneficial to convert a load of a constant /// to just the constant itself. bool X86TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const { assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); if (BitSize == 0 || BitSize > 64) return false; return true; } bool X86TargetLowering::isExtractSubvectorCheap(EVT ResVT, unsigned Index) const { if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) return false; return (Index == 0 || Index == ResVT.getVectorNumElements()); } bool X86TargetLowering::isCheapToSpeculateCttz() const { // Speculate cttz only if we can directly use TZCNT. return Subtarget->hasBMI(); } bool X86TargetLowering::isCheapToSpeculateCtlz() const { // Speculate ctlz only if we can directly use LZCNT. return Subtarget->hasLZCNT(); } /// Return true if every element in Mask, beginning /// from position Pos and ending in Pos+Size is undef. static bool isUndefInRange(ArrayRef<int> Mask, unsigned Pos, unsigned Size) { for (unsigned i = Pos, e = Pos + Size; i != e; ++i) if (0 <= Mask[i]) return false; return true; } /// Return true if Val is undef or if its value falls within the /// specified range (L, H]. static bool isUndefOrInRange(int Val, int Low, int Hi) { return (Val < 0) || (Val >= Low && Val < Hi); } /// Val is either less than zero (undef) or equal to the specified value. static bool isUndefOrEqual(int Val, int CmpVal) { return (Val < 0 || Val == CmpVal); } /// Return true if every element in Mask, beginning /// from position Pos and ending in Pos+Size, falls within the specified /// sequential range (Low, Low+Size]. or is undef. static bool isSequentialOrUndefInRange(ArrayRef<int> Mask, unsigned Pos, unsigned Size, int Low) { for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) if (!isUndefOrEqual(Mask[i], Low)) return false; return true; } /// Return true if the specified EXTRACT_SUBVECTOR operand specifies a vector /// extract that is suitable for instruction that extract 128 or 256 bit vectors static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) { assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width"); if (!isa<ConstantSDNode>(N->getOperand(1).getNode())) return false; // The index should be aligned on a vecWidth-bit boundary. uint64_t Index = cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue(); MVT VT = N->getSimpleValueType(0); unsigned ElSize = VT.getVectorElementType().getSizeInBits(); bool Result = (Index * ElSize) % vecWidth == 0; return Result; } /// Return true if the specified INSERT_SUBVECTOR /// operand specifies a subvector insert that is suitable for input to /// insertion of 128 or 256-bit subvectors static bool isVINSERTIndex(SDNode *N, unsigned vecWidth) { assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width"); if (!isa<ConstantSDNode>(N->getOperand(2).getNode())) return false; // The index should be aligned on a vecWidth-bit boundary. uint64_t Index = cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue(); MVT VT = N->getSimpleValueType(0); unsigned ElSize = VT.getVectorElementType().getSizeInBits(); bool Result = (Index * ElSize) % vecWidth == 0; return Result; } bool X86::isVINSERT128Index(SDNode *N) { return isVINSERTIndex(N, 128); } bool X86::isVINSERT256Index(SDNode *N) { return isVINSERTIndex(N, 256); } bool X86::isVEXTRACT128Index(SDNode *N) { return isVEXTRACTIndex(N, 128); } bool X86::isVEXTRACT256Index(SDNode *N) { return isVEXTRACTIndex(N, 256); } static unsigned getExtractVEXTRACTImmediate(SDNode *N, unsigned vecWidth) { assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width"); assert(isa<ConstantSDNode>(N->getOperand(1).getNode()) && "Illegal extract subvector for VEXTRACT"); uint64_t Index = cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue(); MVT VecVT = N->getOperand(0).getSimpleValueType(); MVT ElVT = VecVT.getVectorElementType(); unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits(); return Index / NumElemsPerChunk; } static unsigned getInsertVINSERTImmediate(SDNode *N, unsigned vecWidth) { assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width"); assert(isa<ConstantSDNode>(N->getOperand(2).getNode()) && "Illegal insert subvector for VINSERT"); uint64_t Index = cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue(); MVT VecVT = N->getSimpleValueType(0); MVT ElVT = VecVT.getVectorElementType(); unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits(); return Index / NumElemsPerChunk; } /// Return the appropriate immediate to extract the specified /// EXTRACT_SUBVECTOR index with VEXTRACTF128 and VINSERTI128 instructions. unsigned X86::getExtractVEXTRACT128Immediate(SDNode *N) { return getExtractVEXTRACTImmediate(N, 128); } /// Return the appropriate immediate to extract the specified /// EXTRACT_SUBVECTOR index with VEXTRACTF64x4 and VINSERTI64x4 instructions. unsigned X86::getExtractVEXTRACT256Immediate(SDNode *N) { return getExtractVEXTRACTImmediate(N, 256); } /// Return the appropriate immediate to insert at the specified /// INSERT_SUBVECTOR index with VINSERTF128 and VINSERTI128 instructions. unsigned X86::getInsertVINSERT128Immediate(SDNode *N) { return getInsertVINSERTImmediate(N, 128); } /// Return the appropriate immediate to insert at the specified /// INSERT_SUBVECTOR index with VINSERTF46x4 and VINSERTI64x4 instructions. unsigned X86::getInsertVINSERT256Immediate(SDNode *N) { return getInsertVINSERTImmediate(N, 256); } /// Returns true if Elt is a constant zero or a floating point constant +0.0. bool X86::isZeroNode(SDValue Elt) { return isNullConstant(Elt) || isNullFPConstant(Elt); } // Build a vector of constants // Use an UNDEF node if MaskElt == -1. // Spilt 64-bit constants in the 32-bit mode. static SDValue getConstVector(ArrayRef<int> Values, MVT VT, SelectionDAG &DAG, SDLoc dl, bool IsMask = false) { SmallVector<SDValue, 32> Ops; bool Split = false; MVT ConstVecVT = VT; unsigned NumElts = VT.getVectorNumElements(); bool In64BitMode = DAG.getTargetLoweringInfo().isTypeLegal(MVT::i64); if (!In64BitMode && VT.getVectorElementType() == MVT::i64) { ConstVecVT = MVT::getVectorVT(MVT::i32, NumElts * 2); Split = true; } MVT EltVT = ConstVecVT.getVectorElementType(); for (unsigned i = 0; i < NumElts; ++i) { bool IsUndef = Values[i] < 0 && IsMask; SDValue OpNode = IsUndef ? DAG.getUNDEF(EltVT) : DAG.getConstant(Values[i], dl, EltVT); Ops.push_back(OpNode); if (Split) Ops.push_back(IsUndef ? DAG.getUNDEF(EltVT) : DAG.getConstant(0, dl, EltVT)); } SDValue ConstsNode = DAG.getNode(ISD::BUILD_VECTOR, dl, ConstVecVT, Ops); if (Split) ConstsNode = DAG.getBitcast(VT, ConstsNode); return ConstsNode; } /// Returns a vector of specified type with all zero elements. static SDValue getZeroVector(MVT VT, const X86Subtarget *Subtarget, SelectionDAG &DAG, SDLoc dl) { assert(VT.isVector() && "Expected a vector type"); // Always build SSE zero vectors as <4 x i32> bitcasted // to their dest type. This ensures they get CSE'd. SDValue Vec; if (VT.is128BitVector()) { // SSE if (Subtarget->hasSSE2()) { // SSE2 SDValue Cst = DAG.getConstant(0, dl, MVT::i32); Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); } else { // SSE1 SDValue Cst = DAG.getConstantFP(+0.0, dl, MVT::f32); Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst); } } else if (VT.is256BitVector()) { // AVX if (Subtarget->hasInt256()) { // AVX2 SDValue Cst = DAG.getConstant(0, dl, MVT::i32); SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops); } else { // 256-bit logic and arithmetic instructions in AVX are all // floating-point, no support for integer ops. Emit fp zeroed vectors. SDValue Cst = DAG.getConstantFP(+0.0, dl, MVT::f32); SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops); } } else if (VT.is512BitVector()) { // AVX-512 SDValue Cst = DAG.getConstant(0, dl, MVT::i32); SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops); } else if (VT.getVectorElementType() == MVT::i1) { assert((Subtarget->hasBWI() || VT.getVectorNumElements() <= 16) && "Unexpected vector type"); assert((Subtarget->hasVLX() || VT.getVectorNumElements() >= 8) && "Unexpected vector type"); SDValue Cst = DAG.getConstant(0, dl, MVT::i1); SmallVector<SDValue, 64> Ops(VT.getVectorNumElements(), Cst); return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); } else llvm_unreachable("Unexpected vector type"); return DAG.getBitcast(VT, Vec); } static SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, SDLoc dl, unsigned vectorWidth) { assert((vectorWidth == 128 || vectorWidth == 256) && "Unsupported vector width"); EVT VT = Vec.getValueType(); EVT ElVT = VT.getVectorElementType(); unsigned Factor = VT.getSizeInBits()/vectorWidth; EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT, VT.getVectorNumElements()/Factor); // Extract from UNDEF is UNDEF. if (Vec.getOpcode() == ISD::UNDEF) return DAG.getUNDEF(ResultVT); // Extract the relevant vectorWidth bits. Generate an EXTRACT_SUBVECTOR unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits(); assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2"); // This is the index of the first element of the vectorWidth-bit chunk // we want. Since ElemsPerChunk is a power of 2 just need to clear bits. IdxVal &= ~(ElemsPerChunk - 1); // If the input is a buildvector just emit a smaller one. if (Vec.getOpcode() == ISD::BUILD_VECTOR) return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT, makeArrayRef(Vec->op_begin() + IdxVal, ElemsPerChunk)); SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, dl); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, VecIdx); } /// Generate a DAG to grab 128-bits from a vector > 128 bits. This /// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128 /// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4 /// instructions or a simple subregister reference. Idx is an index in the /// 128 bits we want. It need not be aligned to a 128-bit boundary. That makes /// lowering EXTRACT_VECTOR_ELT operations easier. static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, SDLoc dl) { assert((Vec.getValueType().is256BitVector() || Vec.getValueType().is512BitVector()) && "Unexpected vector size!"); return ExtractSubVector(Vec, IdxVal, DAG, dl, 128); } /// Generate a DAG to grab 256-bits from a 512-bit vector. static SDValue Extract256BitVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, SDLoc dl) { assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!"); return ExtractSubVector(Vec, IdxVal, DAG, dl, 256); } static SDValue InsertSubVector(SDValue Result, SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, SDLoc dl, unsigned vectorWidth) { assert((vectorWidth == 128 || vectorWidth == 256) && "Unsupported vector width"); // Inserting UNDEF is Result if (Vec.getOpcode() == ISD::UNDEF) return Result; EVT VT = Vec.getValueType(); EVT ElVT = VT.getVectorElementType(); EVT ResultVT = Result.getValueType(); // Insert the relevant vectorWidth bits. unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits(); assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2"); // This is the index of the first element of the vectorWidth-bit chunk // we want. Since ElemsPerChunk is a power of 2 just need to clear bits. IdxVal &= ~(ElemsPerChunk - 1); SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, dl); return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec, VecIdx); } /// Generate a DAG to put 128-bits into a vector > 128 bits. This /// sets things up to match to an AVX VINSERTF128/VINSERTI128 or /// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a /// simple superregister reference. Idx is an index in the 128 bits /// we want. It need not be aligned to a 128-bit boundary. That makes /// lowering INSERT_VECTOR_ELT operations easier. static SDValue Insert128BitVector(SDValue Result, SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, SDLoc dl) { assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!"); // For insertion into the zero index (low half) of a 256-bit vector, it is // more efficient to generate a blend with immediate instead of an insert*128. // We are still creating an INSERT_SUBVECTOR below with an undef node to // extend the subvector to the size of the result vector. Make sure that // we are not recursing on that node by checking for undef here. if (IdxVal == 0 && Result.getValueType().is256BitVector() && Result.getOpcode() != ISD::UNDEF) { EVT ResultVT = Result.getValueType(); SDValue ZeroIndex = DAG.getIntPtrConstant(0, dl); SDValue Undef = DAG.getUNDEF(ResultVT); SDValue Vec256 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Undef, Vec, ZeroIndex); // The blend instruction, and therefore its mask, depend on the data type. MVT ScalarType = ResultVT.getVectorElementType().getSimpleVT(); if (ScalarType.isFloatingPoint()) { // Choose either vblendps (float) or vblendpd (double). unsigned ScalarSize = ScalarType.getSizeInBits(); assert((ScalarSize == 64 || ScalarSize == 32) && "Unknown float type"); unsigned MaskVal = (ScalarSize == 64) ? 0x03 : 0x0f; SDValue Mask = DAG.getConstant(MaskVal, dl, MVT::i8); return DAG.getNode(X86ISD::BLENDI, dl, ResultVT, Result, Vec256, Mask); } const X86Subtarget &Subtarget = static_cast<const X86Subtarget &>(DAG.getSubtarget()); // AVX2 is needed for 256-bit integer blend support. // Integers must be cast to 32-bit because there is only vpblendd; // vpblendw can't be used for this because it has a handicapped mask. // If we don't have AVX2, then cast to float. Using a wrong domain blend // is still more efficient than using the wrong domain vinsertf128 that // will be created by InsertSubVector(). MVT CastVT = Subtarget.hasAVX2() ? MVT::v8i32 : MVT::v8f32; SDValue Mask = DAG.getConstant(0x0f, dl, MVT::i8); Vec256 = DAG.getBitcast(CastVT, Vec256); Vec256 = DAG.getNode(X86ISD::BLENDI, dl, CastVT, Result, Vec256, Mask); return DAG.getBitcast(ResultVT, Vec256); } return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128); } static SDValue Insert256BitVector(SDValue Result, SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, SDLoc dl) { assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!"); return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 256); } /// Insert i1-subvector to i1-vector. static SDValue Insert1BitVector(SDValue Op, SelectionDAG &DAG) { SDLoc dl(Op); SDValue Vec = Op.getOperand(0); SDValue SubVec = Op.getOperand(1); SDValue Idx = Op.getOperand(2); if (!isa<ConstantSDNode>(Idx)) return SDValue(); unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); if (IdxVal == 0 && Vec.isUndef()) // the operation is legal return Op; MVT OpVT = Op.getSimpleValueType(); MVT SubVecVT = SubVec.getSimpleValueType(); unsigned NumElems = OpVT.getVectorNumElements(); unsigned SubVecNumElems = SubVecVT.getVectorNumElements(); assert(IdxVal + SubVecNumElems <= NumElems && IdxVal % SubVecVT.getSizeInBits() == 0 && "Unexpected index value in INSERT_SUBVECTOR"); // There are 3 possible cases: // 1. Subvector should be inserted in the lower part (IdxVal == 0) // 2. Subvector should be inserted in the upper part // (IdxVal + SubVecNumElems == NumElems) // 3. Subvector should be inserted in the middle (for example v2i1 // to v16i1, index 2) SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl); SDValue Undef = DAG.getUNDEF(OpVT); SDValue WideSubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, Undef, SubVec, ZeroIdx); if (Vec.isUndef()) return DAG.getNode(X86ISD::VSHLI, dl, OpVT, WideSubVec, DAG.getConstant(IdxVal, dl, MVT::i8)); if (ISD::isBuildVectorAllZeros(Vec.getNode())) { unsigned ShiftLeft = NumElems - SubVecNumElems; unsigned ShiftRight = NumElems - SubVecNumElems - IdxVal; WideSubVec = DAG.getNode(X86ISD::VSHLI, dl, OpVT, WideSubVec, DAG.getConstant(ShiftLeft, dl, MVT::i8)); return ShiftRight ? DAG.getNode(X86ISD::VSRLI, dl, OpVT, WideSubVec, DAG.getConstant(ShiftRight, dl, MVT::i8)) : WideSubVec; } if (IdxVal == 0) { // Zero lower bits of the Vec SDValue ShiftBits = DAG.getConstant(SubVecNumElems, dl, MVT::i8); Vec = DAG.getNode(X86ISD::VSRLI, dl, OpVT, Vec, ShiftBits); Vec = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec, ShiftBits); // Merge them together return DAG.getNode(ISD::OR, dl, OpVT, Vec, WideSubVec); } // Simple case when we put subvector in the upper part if (IdxVal + SubVecNumElems == NumElems) { // Zero upper bits of the Vec WideSubVec = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec, DAG.getConstant(IdxVal, dl, MVT::i8)); SDValue ShiftBits = DAG.getConstant(SubVecNumElems, dl, MVT::i8); Vec = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec, ShiftBits); Vec = DAG.getNode(X86ISD::VSRLI, dl, OpVT, Vec, ShiftBits); return DAG.getNode(ISD::OR, dl, OpVT, Vec, WideSubVec); } // Subvector should be inserted in the middle - use shuffle SmallVector<int, 64> Mask; for (unsigned i = 0; i < NumElems; ++i) Mask.push_back(i >= IdxVal && i < IdxVal + SubVecNumElems ? i : i + NumElems); return DAG.getVectorShuffle(OpVT, dl, WideSubVec, Vec, Mask); } /// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128 /// instructions. This is used because creating CONCAT_VECTOR nodes of /// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower /// large BUILD_VECTORS. static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT, unsigned NumElems, SelectionDAG &DAG, SDLoc dl) { SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl); return Insert128BitVector(V, V2, NumElems/2, DAG, dl); } static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT, unsigned NumElems, SelectionDAG &DAG, SDLoc dl) { SDValue V = Insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl); return Insert256BitVector(V, V2, NumElems/2, DAG, dl); } /// Returns a vector of specified type with all bits set. /// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with /// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately. /// Then bitcast to their original type, ensuring they get CSE'd. static SDValue getOnesVector(EVT VT, const X86Subtarget *Subtarget, SelectionDAG &DAG, SDLoc dl) { assert(VT.isVector() && "Expected a vector type"); SDValue Cst = DAG.getConstant(~0U, dl, MVT::i32); SDValue Vec; if (VT.is512BitVector()) { SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops); } else if (VT.is256BitVector()) { if (Subtarget->hasInt256()) { // AVX2 SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops); } else { // AVX Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl); } } else if (VT.is128BitVector()) { Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); } else llvm_unreachable("Unexpected vector type"); return DAG.getBitcast(VT, Vec); } /// Returns a vector_shuffle node for an unpackl operation. static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1, SDValue V2) { unsigned NumElems = VT.getVectorNumElements(); SmallVector<int, 8> Mask; for (unsigned i = 0, e = NumElems/2; i != e; ++i) { Mask.push_back(i); Mask.push_back(i + NumElems); } return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); } /// Returns a vector_shuffle node for an unpackh operation. static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1, SDValue V2) { unsigned NumElems = VT.getVectorNumElements(); SmallVector<int, 8> Mask; for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) { Mask.push_back(i + Half); Mask.push_back(i + NumElems + Half); } return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); } /// Return a vector_shuffle of the specified vector of zero or undef vector. /// This produces a shuffle where the low element of V2 is swizzled into the /// zero/undef vector, landing at element Idx. /// This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3). static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx, bool IsZero, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT VT = V2.getSimpleValueType(); SDValue V1 = IsZero ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT); unsigned NumElems = VT.getVectorNumElements(); SmallVector<int, 16> MaskVec; for (unsigned i = 0; i != NumElems; ++i) // If this is the insertion idx, put the low elt of V2 here. MaskVec.push_back(i == Idx ? NumElems : i); return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]); } /// Calculates the shuffle mask corresponding to the target-specific opcode. /// Returns true if the Mask could be calculated. Sets IsUnary to true if only /// uses one source. Note that this will set IsUnary for shuffles which use a /// single input multiple times, and in those cases it will /// adjust the mask to only have indices within that single input. /// FIXME: Add support for Decode*Mask functions that return SM_SentinelZero. static bool getTargetShuffleMask(SDNode *N, MVT VT, SmallVectorImpl<int> &Mask, bool &IsUnary) { unsigned NumElems = VT.getVectorNumElements(); SDValue ImmN; IsUnary = false; bool IsFakeUnary = false; switch(N->getOpcode()) { case X86ISD::BLENDI: ImmN = N->getOperand(N->getNumOperands()-1); DecodeBLENDMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); break; case X86ISD::SHUFP: ImmN = N->getOperand(N->getNumOperands()-1); DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); break; case X86ISD::UNPCKH: DecodeUNPCKHMask(VT, Mask); IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); break; case X86ISD::UNPCKL: DecodeUNPCKLMask(VT, Mask); IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); break; case X86ISD::MOVHLPS: DecodeMOVHLPSMask(NumElems, Mask); IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); break; case X86ISD::MOVLHPS: DecodeMOVLHPSMask(NumElems, Mask); IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); break; case X86ISD::PALIGNR: ImmN = N->getOperand(N->getNumOperands()-1); DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); break; case X86ISD::PSHUFD: case X86ISD::VPERMILPI: ImmN = N->getOperand(N->getNumOperands()-1); DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); IsUnary = true; break; case X86ISD::PSHUFHW: ImmN = N->getOperand(N->getNumOperands()-1); DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); IsUnary = true; break; case X86ISD::PSHUFLW: ImmN = N->getOperand(N->getNumOperands()-1); DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); IsUnary = true; break; case X86ISD::PSHUFB: { IsUnary = true; SDValue MaskNode = N->getOperand(1); while (MaskNode->getOpcode() == ISD::BITCAST) MaskNode = MaskNode->getOperand(0); if (MaskNode->getOpcode() == ISD::BUILD_VECTOR) { // If we have a build-vector, then things are easy. MVT VT = MaskNode.getSimpleValueType(); assert(VT.isVector() && "Can't produce a non-vector with a build_vector!"); if (!VT.isInteger()) return false; int NumBytesPerElement = VT.getVectorElementType().getSizeInBits() / 8; SmallVector<uint64_t, 32> RawMask; for (int i = 0, e = MaskNode->getNumOperands(); i < e; ++i) { SDValue Op = MaskNode->getOperand(i); if (Op->getOpcode() == ISD::UNDEF) { RawMask.push_back((uint64_t)SM_SentinelUndef); continue; } auto *CN = dyn_cast<ConstantSDNode>(Op.getNode()); if (!CN) return false; APInt MaskElement = CN->getAPIntValue(); // We now have to decode the element which could be any integer size and // extract each byte of it. for (int j = 0; j < NumBytesPerElement; ++j) { // Note that this is x86 and so always little endian: the low byte is // the first byte of the mask. RawMask.push_back(MaskElement.getLoBits(8).getZExtValue()); MaskElement = MaskElement.lshr(8); } } DecodePSHUFBMask(RawMask, Mask); break; } auto *MaskLoad = dyn_cast<LoadSDNode>(MaskNode); if (!MaskLoad) return false; SDValue Ptr = MaskLoad->getBasePtr(); if (Ptr->getOpcode() == X86ISD::Wrapper || Ptr->getOpcode() == X86ISD::WrapperRIP) Ptr = Ptr->getOperand(0); auto *MaskCP = dyn_cast<ConstantPoolSDNode>(Ptr); if (!MaskCP || MaskCP->isMachineConstantPoolEntry()) return false; if (auto *C = dyn_cast<Constant>(MaskCP->getConstVal())) { DecodePSHUFBMask(C, Mask); if (Mask.empty()) return false; break; } return false; } case X86ISD::VPERMI: ImmN = N->getOperand(N->getNumOperands()-1); DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); IsUnary = true; break; case X86ISD::MOVSS: case X86ISD::MOVSD: DecodeScalarMoveMask(VT, /* IsLoad */ false, Mask); break; case X86ISD::VPERM2X128: ImmN = N->getOperand(N->getNumOperands()-1); DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); if (Mask.empty()) return false; // Mask only contains negative index if an element is zero. if (std::any_of(Mask.begin(), Mask.end(), [](int M){ return M == SM_SentinelZero; })) return false; break; case X86ISD::MOVSLDUP: DecodeMOVSLDUPMask(VT, Mask); IsUnary = true; break; case X86ISD::MOVSHDUP: DecodeMOVSHDUPMask(VT, Mask); IsUnary = true; break; case X86ISD::MOVDDUP: DecodeMOVDDUPMask(VT, Mask); IsUnary = true; break; case X86ISD::MOVLHPD: case X86ISD::MOVLPD: case X86ISD::MOVLPS: // Not yet implemented return false; case X86ISD::VPERMV: { IsUnary = true; SDValue MaskNode = N->getOperand(0); while (MaskNode->getOpcode() == ISD::BITCAST) MaskNode = MaskNode->getOperand(0); unsigned MaskLoBits = Log2_64(VT.getVectorNumElements()); SmallVector<uint64_t, 32> RawMask; if (MaskNode->getOpcode() == ISD::BUILD_VECTOR) { // If we have a build-vector, then things are easy. assert(MaskNode.getSimpleValueType().isInteger() && MaskNode.getSimpleValueType().getVectorNumElements() == VT.getVectorNumElements()); for (unsigned i = 0; i < MaskNode->getNumOperands(); ++i) { SDValue Op = MaskNode->getOperand(i); if (Op->getOpcode() == ISD::UNDEF) RawMask.push_back((uint64_t)SM_SentinelUndef); else if (isa<ConstantSDNode>(Op)) { APInt MaskElement = cast<ConstantSDNode>(Op)->getAPIntValue(); RawMask.push_back(MaskElement.getLoBits(MaskLoBits).getZExtValue()); } else return false; } DecodeVPERMVMask(RawMask, Mask); break; } if (MaskNode->getOpcode() == X86ISD::VBROADCAST) { unsigned NumEltsInMask = MaskNode->getNumOperands(); MaskNode = MaskNode->getOperand(0); auto *CN = dyn_cast<ConstantSDNode>(MaskNode); if (CN) { APInt MaskEltValue = CN->getAPIntValue(); for (unsigned i = 0; i < NumEltsInMask; ++i) RawMask.push_back(MaskEltValue.getLoBits(MaskLoBits).getZExtValue()); DecodeVPERMVMask(RawMask, Mask); break; } // It may be a scalar load } auto *MaskLoad = dyn_cast<LoadSDNode>(MaskNode); if (!MaskLoad) return false; SDValue Ptr = MaskLoad->getBasePtr(); if (Ptr->getOpcode() == X86ISD::Wrapper || Ptr->getOpcode() == X86ISD::WrapperRIP) Ptr = Ptr->getOperand(0); auto *MaskCP = dyn_cast<ConstantPoolSDNode>(Ptr); if (!MaskCP || MaskCP->isMachineConstantPoolEntry()) return false; auto *C = dyn_cast<Constant>(MaskCP->getConstVal()); if (C) { DecodeVPERMVMask(C, VT, Mask); if (Mask.empty()) return false; break; } return false; } case X86ISD::VPERMV3: { IsUnary = false; SDValue MaskNode = N->getOperand(1); while (MaskNode->getOpcode() == ISD::BITCAST) MaskNode = MaskNode->getOperand(1); if (MaskNode->getOpcode() == ISD::BUILD_VECTOR) { // If we have a build-vector, then things are easy. assert(MaskNode.getSimpleValueType().isInteger() && MaskNode.getSimpleValueType().getVectorNumElements() == VT.getVectorNumElements()); SmallVector<uint64_t, 32> RawMask; unsigned MaskLoBits = Log2_64(VT.getVectorNumElements()*2); for (unsigned i = 0; i < MaskNode->getNumOperands(); ++i) { SDValue Op = MaskNode->getOperand(i); if (Op->getOpcode() == ISD::UNDEF) RawMask.push_back((uint64_t)SM_SentinelUndef); else { auto *CN = dyn_cast<ConstantSDNode>(Op.getNode()); if (!CN) return false; APInt MaskElement = CN->getAPIntValue(); RawMask.push_back(MaskElement.getLoBits(MaskLoBits).getZExtValue()); } } DecodeVPERMV3Mask(RawMask, Mask); break; } auto *MaskLoad = dyn_cast<LoadSDNode>(MaskNode); if (!MaskLoad) return false; SDValue Ptr = MaskLoad->getBasePtr(); if (Ptr->getOpcode() == X86ISD::Wrapper || Ptr->getOpcode() == X86ISD::WrapperRIP) Ptr = Ptr->getOperand(0); auto *MaskCP = dyn_cast<ConstantPoolSDNode>(Ptr); if (!MaskCP || MaskCP->isMachineConstantPoolEntry()) return false; auto *C = dyn_cast<Constant>(MaskCP->getConstVal()); if (C) { DecodeVPERMV3Mask(C, VT, Mask); if (Mask.empty()) return false; break; } return false; } default: llvm_unreachable("unknown target shuffle node"); } // If we have a fake unary shuffle, the shuffle mask is spread across two // inputs that are actually the same node. Re-map the mask to always point // into the first input. if (IsFakeUnary) for (int &M : Mask) if (M >= (int)Mask.size()) M -= Mask.size(); return true; } /// Returns the scalar element that will make up the ith /// element of the result of the vector shuffle. static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG, unsigned Depth) { if (Depth == 6) return SDValue(); // Limit search depth. SDValue V = SDValue(N, 0); EVT VT = V.getValueType(); unsigned Opcode = V.getOpcode(); // Recurse into ISD::VECTOR_SHUFFLE node to find scalars. if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) { int Elt = SV->getMaskElt(Index); if (Elt < 0) return DAG.getUNDEF(VT.getVectorElementType()); unsigned NumElems = VT.getVectorNumElements(); SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0) : SV->getOperand(1); return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1); } // Recurse into target specific vector shuffles to find scalars. if (isTargetShuffle(Opcode)) { MVT ShufVT = V.getSimpleValueType(); unsigned NumElems = ShufVT.getVectorNumElements(); SmallVector<int, 16> ShuffleMask; bool IsUnary; if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary)) return SDValue(); int Elt = ShuffleMask[Index]; if (Elt < 0) return DAG.getUNDEF(ShufVT.getVectorElementType()); SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0) : N->getOperand(1); return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1); } // Actual nodes that may contain scalar elements if (Opcode == ISD::BITCAST) { V = V.getOperand(0); EVT SrcVT = V.getValueType(); unsigned NumElems = VT.getVectorNumElements(); if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems) return SDValue(); } if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) return (Index == 0) ? V.getOperand(0) : DAG.getUNDEF(VT.getVectorElementType()); if (V.getOpcode() == ISD::BUILD_VECTOR) return V.getOperand(Index); return SDValue(); } /// Custom lower build_vector of v16i8. static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros, unsigned NumNonZero, unsigned NumZero, SelectionDAG &DAG, const X86Subtarget* Subtarget, const TargetLowering &TLI) { if (NumNonZero > 8) return SDValue(); SDLoc dl(Op); SDValue V; bool First = true; // SSE4.1 - use PINSRB to insert each byte directly. if (Subtarget->hasSSE41()) { for (unsigned i = 0; i < 16; ++i) { bool isNonZero = (NonZeros & (1 << i)) != 0; if (isNonZero) { if (First) { if (NumZero) V = getZeroVector(MVT::v16i8, Subtarget, DAG, dl); else V = DAG.getUNDEF(MVT::v16i8); First = false; } V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v16i8, V, Op.getOperand(i), DAG.getIntPtrConstant(i, dl)); } } return V; } // Pre-SSE4.1 - merge byte pairs and insert with PINSRW. for (unsigned i = 0; i < 16; ++i) { bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; if (ThisIsNonZero && First) { if (NumZero) V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl); else V = DAG.getUNDEF(MVT::v8i16); First = false; } if ((i & 1) != 0) { SDValue ThisElt, LastElt; bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; if (LastIsNonZero) { LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i-1)); } if (ThisIsNonZero) { ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i)); ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16, ThisElt, DAG.getConstant(8, dl, MVT::i8)); if (LastIsNonZero) ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt); } else ThisElt = LastElt; if (ThisElt.getNode()) V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt, DAG.getIntPtrConstant(i/2, dl)); } } return DAG.getBitcast(MVT::v16i8, V); } /// Custom lower build_vector of v8i16. static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros, unsigned NumNonZero, unsigned NumZero, SelectionDAG &DAG, const X86Subtarget* Subtarget, const TargetLowering &TLI) { if (NumNonZero > 4) return SDValue(); SDLoc dl(Op); SDValue V; bool First = true; for (unsigned i = 0; i < 8; ++i) { bool isNonZero = (NonZeros & (1 << i)) != 0; if (isNonZero) { if (First) { if (NumZero) V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl); else V = DAG.getUNDEF(MVT::v8i16); First = false; } V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, Op.getOperand(i), DAG.getIntPtrConstant(i, dl)); } } return V; } /// Custom lower build_vector of v4i32 or v4f32. static SDValue LowerBuildVectorv4x32(SDValue Op, SelectionDAG &DAG, const X86Subtarget *Subtarget, const TargetLowering &TLI) { // Find all zeroable elements. std::bitset<4> Zeroable; for (int i=0; i < 4; ++i) { SDValue Elt = Op->getOperand(i); Zeroable[i] = (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt)); } assert(Zeroable.size() - Zeroable.count() > 1 && "We expect at least two non-zero elements!"); // We only know how to deal with build_vector nodes where elements are either // zeroable or extract_vector_elt with constant index. SDValue FirstNonZero; unsigned FirstNonZeroIdx; for (unsigned i=0; i < 4; ++i) { if (Zeroable[i]) continue; SDValue Elt = Op->getOperand(i); if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT || !isa<ConstantSDNode>(Elt.getOperand(1))) return SDValue(); // Make sure that this node is extracting from a 128-bit vector. MVT VT = Elt.getOperand(0).getSimpleValueType(); if (!VT.is128BitVector()) return SDValue(); if (!FirstNonZero.getNode()) { FirstNonZero = Elt; FirstNonZeroIdx = i; } } assert(FirstNonZero.getNode() && "Unexpected build vector of all zeros!"); SDValue V1 = FirstNonZero.getOperand(0); MVT VT = V1.getSimpleValueType(); // See if this build_vector can be lowered as a blend with zero. SDValue Elt; unsigned EltMaskIdx, EltIdx; int Mask[4]; for (EltIdx = 0; EltIdx < 4; ++EltIdx) { if (Zeroable[EltIdx]) { // The zero vector will be on the right hand side. Mask[EltIdx] = EltIdx+4; continue; } Elt = Op->getOperand(EltIdx); // By construction, Elt is a EXTRACT_VECTOR_ELT with constant index. EltMaskIdx = cast<ConstantSDNode>(Elt.getOperand(1))->getZExtValue(); if (Elt.getOperand(0) != V1 || EltMaskIdx != EltIdx) break; Mask[EltIdx] = EltIdx; } if (EltIdx == 4) { // Let the shuffle legalizer deal with blend operations. SDValue VZero = getZeroVector(VT, Subtarget, DAG, SDLoc(Op)); if (V1.getSimpleValueType() != VT) V1 = DAG.getNode(ISD::BITCAST, SDLoc(V1), VT, V1); return DAG.getVectorShuffle(VT, SDLoc(V1), V1, VZero, &Mask[0]); } // See if we can lower this build_vector to a INSERTPS. if (!Subtarget->hasSSE41()) return SDValue(); SDValue V2 = Elt.getOperand(0); if (Elt == FirstNonZero && EltIdx == FirstNonZeroIdx) V1 = SDValue(); bool CanFold = true; for (unsigned i = EltIdx + 1; i < 4 && CanFold; ++i) { if (Zeroable[i]) continue; SDValue Current = Op->getOperand(i); SDValue SrcVector = Current->getOperand(0); if (!V1.getNode()) V1 = SrcVector; CanFold = SrcVector == V1 && cast<ConstantSDNode>(Current.getOperand(1))->getZExtValue() == i; } if (!CanFold) return SDValue(); assert(V1.getNode() && "Expected at least two non-zero elements!"); if (V1.getSimpleValueType() != MVT::v4f32) V1 = DAG.getNode(ISD::BITCAST, SDLoc(V1), MVT::v4f32, V1); if (V2.getSimpleValueType() != MVT::v4f32) V2 = DAG.getNode(ISD::BITCAST, SDLoc(V2), MVT::v4f32, V2); // Ok, we can emit an INSERTPS instruction. unsigned ZMask = Zeroable.to_ulong(); unsigned InsertPSMask = EltMaskIdx << 6 | EltIdx << 4 | ZMask; assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!"); SDLoc DL(Op); SDValue Result = DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2, DAG.getIntPtrConstant(InsertPSMask, DL)); return DAG.getBitcast(VT, Result); } /// Return a vector logical shift node. static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp, unsigned NumBits, SelectionDAG &DAG, const TargetLowering &TLI, SDLoc dl) { assert(VT.is128BitVector() && "Unknown type for VShift"); MVT ShVT = MVT::v2i64; unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ; SrcOp = DAG.getBitcast(ShVT, SrcOp); MVT ScalarShiftTy = TLI.getScalarShiftAmountTy(DAG.getDataLayout(), VT); assert(NumBits % 8 == 0 && "Only support byte sized shifts"); SDValue ShiftVal = DAG.getConstant(NumBits/8, dl, ScalarShiftTy); return DAG.getBitcast(VT, DAG.getNode(Opc, dl, ShVT, SrcOp, ShiftVal)); } static SDValue LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, SDLoc dl, SelectionDAG &DAG) { // Check if the scalar load can be widened into a vector load. And if // the address is "base + cst" see if the cst can be "absorbed" into // the shuffle mask. if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) { SDValue Ptr = LD->getBasePtr(); if (!ISD::isNormalLoad(LD) || LD->isVolatile()) return SDValue(); EVT PVT = LD->getValueType(0); if (PVT != MVT::i32 && PVT != MVT::f32) return SDValue(); int FI = -1; int64_t Offset = 0; if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) { FI = FINode->getIndex(); Offset = 0; } else if (DAG.isBaseWithConstantOffset(Ptr) && isa<FrameIndexSDNode>(Ptr.getOperand(0))) { FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); Offset = Ptr.getConstantOperandVal(1); Ptr = Ptr.getOperand(0); } else { return SDValue(); } // FIXME: 256-bit vector instructions don't require a strict alignment, // improve this code to support it better. unsigned RequiredAlign = VT.getSizeInBits()/8; SDValue Chain = LD->getChain(); // Make sure the stack object alignment is at least 16 or 32. MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) { if (MFI->isFixedObjectIndex(FI)) { // Can't change the alignment. FIXME: It's possible to compute // the exact stack offset and reference FI + adjust offset instead. // If someone *really* cares about this. That's the way to implement it. return SDValue(); } else { MFI->setObjectAlignment(FI, RequiredAlign); } } // (Offset % 16 or 32) must be multiple of 4. Then address is then // Ptr + (Offset & ~15). if (Offset < 0) return SDValue(); if ((Offset % RequiredAlign) & 3) return SDValue(); int64_t StartOffset = Offset & ~int64_t(RequiredAlign - 1); if (StartOffset) { SDLoc DL(Ptr); Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, DAG.getConstant(StartOffset, DL, Ptr.getValueType())); } int EltNo = (Offset - StartOffset) >> 2; unsigned NumElems = VT.getVectorNumElements(); EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems); SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(StartOffset), false, false, false, 0); SmallVector<int, 8> Mask(NumElems, EltNo); return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]); } return SDValue(); } /// Given the initializing elements 'Elts' of a vector of type 'VT', see if the /// elements can be replaced by a single large load which has the same value as /// a build_vector or insert_subvector whose loaded operands are 'Elts'. /// /// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a /// /// FIXME: we'd also like to handle the case where the last elements are zero /// rather than undef via VZEXT_LOAD, but we do not detect that case today. /// There's even a handy isZeroNode for that purpose. static SDValue EltsFromConsecutiveLoads(EVT VT, ArrayRef<SDValue> Elts, SDLoc &DL, SelectionDAG &DAG, bool isAfterLegalize) { unsigned NumElems = Elts.size(); LoadSDNode *LDBase = nullptr; unsigned LastLoadedElt = -1U; // For each element in the initializer, see if we've found a load or an undef. // If we don't find an initial load element, or later load elements are // non-consecutive, bail out. for (unsigned i = 0; i < NumElems; ++i) { SDValue Elt = Elts[i]; // Look through a bitcast. if (Elt.getNode() && Elt.getOpcode() == ISD::BITCAST) Elt = Elt.getOperand(0); if (!Elt.getNode() || (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode()))) return SDValue(); if (!LDBase) { if (Elt.getNode()->getOpcode() == ISD::UNDEF) return SDValue(); LDBase = cast<LoadSDNode>(Elt.getNode()); LastLoadedElt = i; continue; } if (Elt.getOpcode() == ISD::UNDEF) continue; LoadSDNode *LD = cast<LoadSDNode>(Elt); EVT LdVT = Elt.getValueType(); // Each loaded element must be the correct fractional portion of the // requested vector load. if (LdVT.getSizeInBits() != VT.getSizeInBits() / NumElems) return SDValue(); if (!DAG.isConsecutiveLoad(LD, LDBase, LdVT.getSizeInBits() / 8, i)) return SDValue(); LastLoadedElt = i; } // If we have found an entire vector of loads and undefs, then return a large // load of the entire vector width starting at the base pointer. If we found // consecutive loads for the low half, generate a vzext_load node. if (LastLoadedElt == NumElems - 1) { assert(LDBase && "Did not find base load for merging consecutive loads"); EVT EltVT = LDBase->getValueType(0); // Ensure that the input vector size for the merged loads matches the // cumulative size of the input elements. if (VT.getSizeInBits() != EltVT.getSizeInBits() * NumElems) return SDValue(); if (isAfterLegalize && !DAG.getTargetLoweringInfo().isOperationLegal(ISD::LOAD, VT)) return SDValue(); SDValue NewLd = SDValue(); NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(), LDBase->getPointerInfo(), LDBase->isVolatile(), LDBase->isNonTemporal(), LDBase->isInvariant(), LDBase->getAlignment()); if (LDBase->hasAnyUseOfValue(1)) { SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, SDValue(LDBase, 1), SDValue(NewLd.getNode(), 1)); DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain); DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1), SDValue(NewLd.getNode(), 1)); } return NewLd; } //TODO: The code below fires only for for loading the low v2i32 / v2f32 //of a v4i32 / v4f32. It's probably worth generalizing. EVT EltVT = VT.getVectorElementType(); if (NumElems == 4 && LastLoadedElt == 1 && (EltVT.getSizeInBits() == 32) && DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) { SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other); SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() }; SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, MVT::i64, LDBase->getPointerInfo(), LDBase->getAlignment(), false/*isVolatile*/, true/*ReadMem*/, false/*WriteMem*/); // Make sure the newly-created LOAD is in the same position as LDBase in // terms of dependency. We create a TokenFactor for LDBase and ResNode, and // update uses of LDBase's output chain to use the TokenFactor. if (LDBase->hasAnyUseOfValue(1)) { SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1)); DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain); DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1)); } return DAG.getBitcast(VT, ResNode); } return SDValue(); } /// LowerVectorBroadcast - Attempt to use the vbroadcast instruction /// to generate a splat value for the following cases: /// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant. /// 2. A splat shuffle which uses a scalar_to_vector node which comes from /// a scalar load, or a constant. /// The VBROADCAST node is returned when a pattern is found, /// or SDValue() otherwise. static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget, SelectionDAG &DAG) { // VBROADCAST requires AVX. // TODO: Splats could be generated for non-AVX CPUs using SSE // instructions, but there's less potential gain for only 128-bit vectors. if (!Subtarget->hasAVX()) return SDValue(); MVT VT = Op.getSimpleValueType(); SDLoc dl(Op); assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) && "Unsupported vector type for broadcast."); SDValue Ld; bool ConstSplatVal; switch (Op.getOpcode()) { default: // Unknown pattern found. return SDValue(); case ISD::BUILD_VECTOR: { auto *BVOp = cast<BuildVectorSDNode>(Op.getNode()); BitVector UndefElements; SDValue Splat = BVOp->getSplatValue(&UndefElements); // We need a splat of a single value to use broadcast, and it doesn't // make any sense if the value is only in one element of the vector. if (!Splat || (VT.getVectorNumElements() - UndefElements.count()) <= 1) return SDValue(); Ld = Splat; ConstSplatVal = (Ld.getOpcode() == ISD::Constant || Ld.getOpcode() == ISD::ConstantFP); // Make sure that all of the users of a non-constant load are from the // BUILD_VECTOR node. if (!ConstSplatVal && !BVOp->isOnlyUserOf(Ld.getNode())) return SDValue(); break; } case ISD::VECTOR_SHUFFLE: { ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); // Shuffles must have a splat mask where the first element is // broadcasted. if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0) return SDValue(); SDValue Sc = Op.getOperand(0); if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR && Sc.getOpcode() != ISD::BUILD_VECTOR) { if (!Subtarget->hasInt256()) return SDValue(); // Use the register form of the broadcast instruction available on AVX2. if (VT.getSizeInBits() >= 256) Sc = Extract128BitVector(Sc, 0, DAG, dl); return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc); } Ld = Sc.getOperand(0); ConstSplatVal = (Ld.getOpcode() == ISD::Constant || Ld.getOpcode() == ISD::ConstantFP); // The scalar_to_vector node and the suspected // load node must have exactly one user. // Constants may have multiple users. // AVX-512 has register version of the broadcast bool hasRegVer = Subtarget->hasAVX512() && VT.is512BitVector() && Ld.getValueType().getSizeInBits() >= 32; if (!ConstSplatVal && ((!Sc.hasOneUse() || !Ld.hasOneUse()) && !hasRegVer)) return SDValue(); break; } } unsigned ScalarSize = Ld.getValueType().getSizeInBits(); bool IsGE256 = (VT.getSizeInBits() >= 256); // When optimizing for size, generate up to 5 extra bytes for a broadcast // instruction to save 8 or more bytes of constant pool data. // TODO: If multiple splats are generated to load the same constant, // it may be detrimental to overall size. There needs to be a way to detect // that condition to know if this is truly a size win. bool OptForSize = DAG.getMachineFunction().getFunction()->optForSize(); // Handle broadcasting a single constant scalar from the constant pool // into a vector. // On Sandybridge (no AVX2), it is still better to load a constant vector // from the constant pool and not to broadcast it from a scalar. // But override that restriction when optimizing for size. // TODO: Check if splatting is recommended for other AVX-capable CPUs. if (ConstSplatVal && (Subtarget->hasAVX2() || OptForSize)) { EVT CVT = Ld.getValueType(); assert(!CVT.isVector() && "Must not broadcast a vector type"); // Splat f32, i32, v4f64, v4i64 in all cases with AVX2. // For size optimization, also splat v2f64 and v2i64, and for size opt // with AVX2, also splat i8 and i16. // With pattern matching, the VBROADCAST node may become a VMOVDDUP. if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) || (OptForSize && (ScalarSize == 64 || Subtarget->hasAVX2()))) { const Constant *C = nullptr; if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld)) C = CI->getConstantIntValue(); else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld)) C = CF->getConstantFPValue(); assert(C && "Invalid constant type"); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy(DAG.getDataLayout())); unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment(); Ld = DAG.getLoad( CVT, dl, DAG.getEntryNode(), CP, MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, false, false, Alignment); return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); } } bool IsLoad = ISD::isNormalLoad(Ld.getNode()); // Handle AVX2 in-register broadcasts. if (!IsLoad && Subtarget->hasInt256() && (ScalarSize == 32 || (IsGE256 && ScalarSize == 64))) return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); // The scalar source must be a normal load. if (!IsLoad) return SDValue(); if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) || (Subtarget->hasVLX() && ScalarSize == 64)) return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); // The integer check is needed for the 64-bit into 128-bit so it doesn't match // double since there is no vbroadcastsd xmm if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) { if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64) return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); } // Unsupported broadcast. return SDValue(); } /// \brief For an EXTRACT_VECTOR_ELT with a constant index return the real /// underlying vector and index. /// /// Modifies \p ExtractedFromVec to the real vector and returns the real /// index. static int getUnderlyingExtractedFromVec(SDValue &ExtractedFromVec, SDValue ExtIdx) { int Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue(); if (!isa<ShuffleVectorSDNode>(ExtractedFromVec)) return Idx; // For 256-bit vectors, LowerEXTRACT_VECTOR_ELT_SSE4 may have already // lowered this: // (extract_vector_elt (v8f32 %vreg1), Constant<6>) // to: // (extract_vector_elt (vector_shuffle<2,u,u,u> // (extract_subvector (v8f32 %vreg0), Constant<4>), // undef) // Constant<0>) // In this case the vector is the extract_subvector expression and the index // is 2, as specified by the shuffle. ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(ExtractedFromVec); SDValue ShuffleVec = SVOp->getOperand(0); MVT ShuffleVecVT = ShuffleVec.getSimpleValueType(); assert(ShuffleVecVT.getVectorElementType() == ExtractedFromVec.getSimpleValueType().getVectorElementType()); int ShuffleIdx = SVOp->getMaskElt(Idx); if (isUndefOrInRange(ShuffleIdx, 0, ShuffleVecVT.getVectorNumElements())) { ExtractedFromVec = ShuffleVec; return ShuffleIdx; } return Idx; } static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) { MVT VT = Op.getSimpleValueType(); // Skip if insert_vec_elt is not supported. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT)) return SDValue(); SDLoc DL(Op); unsigned NumElems = Op.getNumOperands(); SDValue VecIn1; SDValue VecIn2; SmallVector<unsigned, 4> InsertIndices; SmallVector<int, 8> Mask(NumElems, -1); for (unsigned i = 0; i != NumElems; ++i) { unsigned Opc = Op.getOperand(i).getOpcode(); if (Opc == ISD::UNDEF) continue; if (Opc != ISD::EXTRACT_VECTOR_ELT) { // Quit if more than 1 elements need inserting. if (InsertIndices.size() > 1) return SDValue(); InsertIndices.push_back(i); continue; } SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0); SDValue ExtIdx = Op.getOperand(i).getOperand(1); // Quit if non-constant index. if (!isa<ConstantSDNode>(ExtIdx)) return SDValue(); int Idx = getUnderlyingExtractedFromVec(ExtractedFromVec, ExtIdx); // Quit if extracted from vector of different type. if (ExtractedFromVec.getValueType() != VT) return SDValue(); if (!VecIn1.getNode()) VecIn1 = ExtractedFromVec; else if (VecIn1 != ExtractedFromVec) { if (!VecIn2.getNode()) VecIn2 = ExtractedFromVec; else if (VecIn2 != ExtractedFromVec) // Quit if more than 2 vectors to shuffle return SDValue(); } if (ExtractedFromVec == VecIn1) Mask[i] = Idx; else if (ExtractedFromVec == VecIn2) Mask[i] = Idx + NumElems; } if (!VecIn1.getNode()) return SDValue(); VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT); SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]); for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) { unsigned Idx = InsertIndices[i]; NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx), DAG.getIntPtrConstant(Idx, DL)); } return NV; } static SDValue ConvertI1VectorToInteger(SDValue Op, SelectionDAG &DAG) { assert(ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && Op.getScalarValueSizeInBits() == 1 && "Can not convert non-constant vector"); uint64_t Immediate = 0; for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) { SDValue In = Op.getOperand(idx); if (In.getOpcode() != ISD::UNDEF) Immediate |= cast<ConstantSDNode>(In)->getZExtValue() << idx; } SDLoc dl(Op); MVT VT = MVT::getIntegerVT(std::max((int)Op.getValueType().getSizeInBits(), 8)); return DAG.getConstant(Immediate, dl, VT); } // Lower BUILD_VECTOR operation for v8i1 and v16i1 types. SDValue X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const { MVT VT = Op.getSimpleValueType(); assert((VT.getVectorElementType() == MVT::i1) && "Unexpected type in LowerBUILD_VECTORvXi1!"); SDLoc dl(Op); if (ISD::isBuildVectorAllZeros(Op.getNode())) { SDValue Cst = DAG.getTargetConstant(0, dl, MVT::i1); SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst); return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); } if (ISD::isBuildVectorAllOnes(Op.getNode())) { SDValue Cst = DAG.getTargetConstant(1, dl, MVT::i1); SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst); return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); } if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { SDValue Imm = ConvertI1VectorToInteger(Op, DAG); if (Imm.getValueSizeInBits() == VT.getSizeInBits()) return DAG.getBitcast(VT, Imm); SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec, DAG.getIntPtrConstant(0, dl)); } // Vector has one or more non-const elements uint64_t Immediate = 0; SmallVector<unsigned, 16> NonConstIdx; bool IsSplat = true; bool HasConstElts = false; int SplatIdx = -1; for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) { SDValue In = Op.getOperand(idx); if (In.getOpcode() == ISD::UNDEF) continue; if (!isa<ConstantSDNode>(In)) NonConstIdx.push_back(idx); else { Immediate |= cast<ConstantSDNode>(In)->getZExtValue() << idx; HasConstElts = true; } if (SplatIdx == -1) SplatIdx = idx; else if (In != Op.getOperand(SplatIdx)) IsSplat = false; } // for splat use " (select i1 splat_elt, all-ones, all-zeroes)" if (IsSplat) return DAG.getNode(ISD::SELECT, dl, VT, Op.getOperand(SplatIdx), DAG.getConstant(1, dl, VT), DAG.getConstant(0, dl, VT)); // insert elements one by one SDValue DstVec; SDValue Imm; if (Immediate) { MVT ImmVT = MVT::getIntegerVT(std::max((int)VT.getSizeInBits(), 8)); Imm = DAG.getConstant(Immediate, dl, ImmVT); } else if (HasConstElts) Imm = DAG.getConstant(0, dl, VT); else Imm = DAG.getUNDEF(VT); if (Imm.getValueSizeInBits() == VT.getSizeInBits()) DstVec = DAG.getBitcast(VT, Imm); else { SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm); DstVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec, DAG.getIntPtrConstant(0, dl)); } for (unsigned i = 0; i < NonConstIdx.size(); ++i) { unsigned InsertIdx = NonConstIdx[i]; DstVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DstVec, Op.getOperand(InsertIdx), DAG.getIntPtrConstant(InsertIdx, dl)); } return DstVec; } /// \brief Return true if \p N implements a horizontal binop and return the /// operands for the horizontal binop into V0 and V1. /// /// This is a helper function of LowerToHorizontalOp(). /// This function checks that the build_vector \p N in input implements a /// horizontal operation. Parameter \p Opcode defines the kind of horizontal /// operation to match. /// For example, if \p Opcode is equal to ISD::ADD, then this function /// checks if \p N implements a horizontal arithmetic add; if instead \p Opcode /// is equal to ISD::SUB, then this function checks if this is a horizontal /// arithmetic sub. /// /// This function only analyzes elements of \p N whose indices are /// in range [BaseIdx, LastIdx). static bool isHorizontalBinOp(const BuildVectorSDNode *N, unsigned Opcode, SelectionDAG &DAG, unsigned BaseIdx, unsigned LastIdx, SDValue &V0, SDValue &V1) { EVT VT = N->getValueType(0); assert(BaseIdx * 2 <= LastIdx && "Invalid Indices in input!"); assert(VT.isVector() && VT.getVectorNumElements() >= LastIdx && "Invalid Vector in input!"); bool IsCommutable = (Opcode == ISD::ADD || Opcode == ISD::FADD); bool CanFold = true; unsigned ExpectedVExtractIdx = BaseIdx; unsigned NumElts = LastIdx - BaseIdx; V0 = DAG.getUNDEF(VT); V1 = DAG.getUNDEF(VT); // Check if N implements a horizontal binop. for (unsigned i = 0, e = NumElts; i != e && CanFold; ++i) { SDValue Op = N->getOperand(i + BaseIdx); // Skip UNDEFs. if (Op->getOpcode() == ISD::UNDEF) { // Update the expected vector extract index. if (i * 2 == NumElts) ExpectedVExtractIdx = BaseIdx; ExpectedVExtractIdx += 2; continue; } CanFold = Op->getOpcode() == Opcode && Op->hasOneUse(); if (!CanFold) break; SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); // Try to match the following pattern: // (BINOP (extract_vector_elt A, I), (extract_vector_elt A, I+1)) CanFold = (Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT && Op0.getOperand(0) == Op1.getOperand(0) && isa<ConstantSDNode>(Op0.getOperand(1)) && isa<ConstantSDNode>(Op1.getOperand(1))); if (!CanFold) break; unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); unsigned I1 = cast<ConstantSDNode>(Op1.getOperand(1))->getZExtValue(); if (i * 2 < NumElts) { if (V0.getOpcode() == ISD::UNDEF) { V0 = Op0.getOperand(0); if (V0.getValueType() != VT) return false; } } else { if (V1.getOpcode() == ISD::UNDEF) { V1 = Op0.getOperand(0); if (V1.getValueType() != VT) return false; } if (i * 2 == NumElts) ExpectedVExtractIdx = BaseIdx; } SDValue Expected = (i * 2 < NumElts) ? V0 : V1; if (I0 == ExpectedVExtractIdx) CanFold = I1 == I0 + 1 && Op0.getOperand(0) == Expected; else if (IsCommutable && I1 == ExpectedVExtractIdx) { // Try to match the following dag sequence: // (BINOP (extract_vector_elt A, I+1), (extract_vector_elt A, I)) CanFold = I0 == I1 + 1 && Op1.getOperand(0) == Expected; } else CanFold = false; ExpectedVExtractIdx += 2; } return CanFold; } /// \brief Emit a sequence of two 128-bit horizontal add/sub followed by /// a concat_vector. /// /// This is a helper function of LowerToHorizontalOp(). /// This function expects two 256-bit vectors called V0 and V1. /// At first, each vector is split into two separate 128-bit vectors. /// Then, the resulting 128-bit vectors are used to implement two /// horizontal binary operations. /// /// The kind of horizontal binary operation is defined by \p X86Opcode. /// /// \p Mode specifies how the 128-bit parts of V0 and V1 are passed in input to /// the two new horizontal binop. /// When Mode is set, the first horizontal binop dag node would take as input /// the lower 128-bit of V0 and the upper 128-bit of V0. The second /// horizontal binop dag node would take as input the lower 128-bit of V1 /// and the upper 128-bit of V1. /// Example: /// HADD V0_LO, V0_HI /// HADD V1_LO, V1_HI /// /// Otherwise, the first horizontal binop dag node takes as input the lower /// 128-bit of V0 and the lower 128-bit of V1, and the second horizontal binop /// dag node takes the upper 128-bit of V0 and the upper 128-bit of V1. /// Example: /// HADD V0_LO, V1_LO /// HADD V0_HI, V1_HI /// /// If \p isUndefLO is set, then the algorithm propagates UNDEF to the lower /// 128-bits of the result. If \p isUndefHI is set, then UNDEF is propagated to /// the upper 128-bits of the result. static SDValue ExpandHorizontalBinOp(const SDValue &V0, const SDValue &V1, SDLoc DL, SelectionDAG &DAG, unsigned X86Opcode, bool Mode, bool isUndefLO, bool isUndefHI) { EVT VT = V0.getValueType(); assert(VT.is256BitVector() && VT == V1.getValueType() && "Invalid nodes in input!"); unsigned NumElts = VT.getVectorNumElements(); SDValue V0_LO = Extract128BitVector(V0, 0, DAG, DL); SDValue V0_HI = Extract128BitVector(V0, NumElts/2, DAG, DL); SDValue V1_LO = Extract128BitVector(V1, 0, DAG, DL); SDValue V1_HI = Extract128BitVector(V1, NumElts/2, DAG, DL); EVT NewVT = V0_LO.getValueType(); SDValue LO = DAG.getUNDEF(NewVT); SDValue HI = DAG.getUNDEF(NewVT); if (Mode) { // Don't emit a horizontal binop if the result is expected to be UNDEF. if (!isUndefLO && V0->getOpcode() != ISD::UNDEF) LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V0_HI); if (!isUndefHI && V1->getOpcode() != ISD::UNDEF) HI = DAG.getNode(X86Opcode, DL, NewVT, V1_LO, V1_HI); } else { // Don't emit a horizontal binop if the result is expected to be UNDEF. if (!isUndefLO && (V0_LO->getOpcode() != ISD::UNDEF || V1_LO->getOpcode() != ISD::UNDEF)) LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V1_LO); if (!isUndefHI && (V0_HI->getOpcode() != ISD::UNDEF || V1_HI->getOpcode() != ISD::UNDEF)) HI = DAG.getNode(X86Opcode, DL, NewVT, V0_HI, V1_HI); } return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LO, HI); } /// Try to fold a build_vector that performs an 'addsub' to an X86ISD::ADDSUB /// node. static SDValue LowerToAddSub(const BuildVectorSDNode *BV, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT VT = BV->getSimpleValueType(0); if ((!Subtarget->hasSSE3() || (VT != MVT::v4f32 && VT != MVT::v2f64)) && (!Subtarget->hasAVX() || (VT != MVT::v8f32 && VT != MVT::v4f64))) return SDValue(); SDLoc DL(BV); unsigned NumElts = VT.getVectorNumElements(); SDValue InVec0 = DAG.getUNDEF(VT); SDValue InVec1 = DAG.getUNDEF(VT); assert((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v4f32 || VT == MVT::v2f64) && "build_vector with an invalid type found!"); // Odd-numbered elements in the input build vector are obtained from // adding two integer/float elements. // Even-numbered elements in the input build vector are obtained from // subtracting two integer/float elements. unsigned ExpectedOpcode = ISD::FSUB; unsigned NextExpectedOpcode = ISD::FADD; bool AddFound = false; bool SubFound = false; for (unsigned i = 0, e = NumElts; i != e; ++i) { SDValue Op = BV->getOperand(i); // Skip 'undef' values. unsigned Opcode = Op.getOpcode(); if (Opcode == ISD::UNDEF) { std::swap(ExpectedOpcode, NextExpectedOpcode); continue; } // Early exit if we found an unexpected opcode. if (Opcode != ExpectedOpcode) return SDValue(); SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); // Try to match the following pattern: // (BINOP (extract_vector_elt A, i), (extract_vector_elt B, i)) // Early exit if we cannot match that sequence. if (Op0.getOpcode() != ISD::EXTRACT_VECTOR_ELT || Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || !isa<ConstantSDNode>(Op0.getOperand(1)) || !isa<ConstantSDNode>(Op1.getOperand(1)) || Op0.getOperand(1) != Op1.getOperand(1)) return SDValue(); unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); if (I0 != i) return SDValue(); // We found a valid add/sub node. Update the information accordingly. if (i & 1) AddFound = true; else SubFound = true; // Update InVec0 and InVec1. if (InVec0.getOpcode() == ISD::UNDEF) { InVec0 = Op0.getOperand(0); if (InVec0.getSimpleValueType() != VT) return SDValue(); } if (InVec1.getOpcode() == ISD::UNDEF) { InVec1 = Op1.getOperand(0); if (InVec1.getSimpleValueType() != VT) return SDValue(); } // Make sure that operands in input to each add/sub node always // come from a same pair of vectors. if (InVec0 != Op0.getOperand(0)) { if (ExpectedOpcode == ISD::FSUB) return SDValue(); // FADD is commutable. Try to commute the operands // and then test again. std::swap(Op0, Op1); if (InVec0 != Op0.getOperand(0)) return SDValue(); } if (InVec1 != Op1.getOperand(0)) return SDValue(); // Update the pair of expected opcodes. std::swap(ExpectedOpcode, NextExpectedOpcode); } // Don't try to fold this build_vector into an ADDSUB if the inputs are undef. if (AddFound && SubFound && InVec0.getOpcode() != ISD::UNDEF && InVec1.getOpcode() != ISD::UNDEF) return DAG.getNode(X86ISD::ADDSUB, DL, VT, InVec0, InVec1); return SDValue(); } /// Lower BUILD_VECTOR to a horizontal add/sub operation if possible. static SDValue LowerToHorizontalOp(const BuildVectorSDNode *BV, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT VT = BV->getSimpleValueType(0); unsigned NumElts = VT.getVectorNumElements(); unsigned NumUndefsLO = 0; unsigned NumUndefsHI = 0; unsigned Half = NumElts/2; // Count the number of UNDEF operands in the build_vector in input. for (unsigned i = 0, e = Half; i != e; ++i) if (BV->getOperand(i)->getOpcode() == ISD::UNDEF) NumUndefsLO++; for (unsigned i = Half, e = NumElts; i != e; ++i) if (BV->getOperand(i)->getOpcode() == ISD::UNDEF) NumUndefsHI++; // Early exit if this is either a build_vector of all UNDEFs or all the // operands but one are UNDEF. if (NumUndefsLO + NumUndefsHI + 1 >= NumElts) return SDValue(); SDLoc DL(BV); SDValue InVec0, InVec1; if ((VT == MVT::v4f32 || VT == MVT::v2f64) && Subtarget->hasSSE3()) { // Try to match an SSE3 float HADD/HSUB. if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1)) return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1); if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1)) return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1); } else if ((VT == MVT::v4i32 || VT == MVT::v8i16) && Subtarget->hasSSSE3()) { // Try to match an SSSE3 integer HADD/HSUB. if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1)) return DAG.getNode(X86ISD::HADD, DL, VT, InVec0, InVec1); if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1)) return DAG.getNode(X86ISD::HSUB, DL, VT, InVec0, InVec1); } if (!Subtarget->hasAVX()) return SDValue(); if ((VT == MVT::v8f32 || VT == MVT::v4f64)) { // Try to match an AVX horizontal add/sub of packed single/double // precision floating point values from 256-bit vectors. SDValue InVec2, InVec3; if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, Half, InVec0, InVec1) && isHorizontalBinOp(BV, ISD::FADD, DAG, Half, NumElts, InVec2, InVec3) && ((InVec0.getOpcode() == ISD::UNDEF || InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) && ((InVec1.getOpcode() == ISD::UNDEF || InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3)) return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1); if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, Half, InVec0, InVec1) && isHorizontalBinOp(BV, ISD::FSUB, DAG, Half, NumElts, InVec2, InVec3) && ((InVec0.getOpcode() == ISD::UNDEF || InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) && ((InVec1.getOpcode() == ISD::UNDEF || InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3)) return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1); } else if (VT == MVT::v8i32 || VT == MVT::v16i16) { // Try to match an AVX2 horizontal add/sub of signed integers. SDValue InVec2, InVec3; unsigned X86Opcode; bool CanFold = true; if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, Half, InVec0, InVec1) && isHorizontalBinOp(BV, ISD::ADD, DAG, Half, NumElts, InVec2, InVec3) && ((InVec0.getOpcode() == ISD::UNDEF || InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) && ((InVec1.getOpcode() == ISD::UNDEF || InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3)) X86Opcode = X86ISD::HADD; else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, Half, InVec0, InVec1) && isHorizontalBinOp(BV, ISD::SUB, DAG, Half, NumElts, InVec2, InVec3) && ((InVec0.getOpcode() == ISD::UNDEF || InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) && ((InVec1.getOpcode() == ISD::UNDEF || InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3)) X86Opcode = X86ISD::HSUB; else CanFold = false; if (CanFold) { // Fold this build_vector into a single horizontal add/sub. // Do this only if the target has AVX2. if (Subtarget->hasAVX2()) return DAG.getNode(X86Opcode, DL, VT, InVec0, InVec1); // Do not try to expand this build_vector into a pair of horizontal // add/sub if we can emit a pair of scalar add/sub. if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half) return SDValue(); // Convert this build_vector into a pair of horizontal binop followed by // a concat vector. bool isUndefLO = NumUndefsLO == Half; bool isUndefHI = NumUndefsHI == Half; return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, false, isUndefLO, isUndefHI); } } if ((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v8i32 || VT == MVT::v16i16) && Subtarget->hasAVX()) { unsigned X86Opcode; if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1)) X86Opcode = X86ISD::HADD; else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1)) X86Opcode = X86ISD::HSUB; else if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1)) X86Opcode = X86ISD::FHADD; else if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1)) X86Opcode = X86ISD::FHSUB; else return SDValue(); // Don't try to expand this build_vector into a pair of horizontal add/sub // if we can simply emit a pair of scalar add/sub. if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half) return SDValue(); // Convert this build_vector into two horizontal add/sub followed by // a concat vector. bool isUndefLO = NumUndefsLO == Half; bool isUndefHI = NumUndefsHI == Half; return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, true, isUndefLO, isUndefHI); } return SDValue(); } SDValue X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); MVT VT = Op.getSimpleValueType(); MVT ExtVT = VT.getVectorElementType(); unsigned NumElems = Op.getNumOperands(); // Generate vectors for predicate vectors. if (VT.getVectorElementType() == MVT::i1 && Subtarget->hasAVX512()) return LowerBUILD_VECTORvXi1(Op, DAG); // Vectors containing all zeros can be matched by pxor and xorps later if (ISD::isBuildVectorAllZeros(Op.getNode())) { // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd // and 2) ensure that i64 scalars are eliminated on x86-32 hosts. if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32) return Op; return getZeroVector(VT, Subtarget, DAG, dl); } // Vectors containing all ones can be matched by pcmpeqd on 128-bit width // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use // vpcmpeqd on 256-bit vectors. if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) { if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256())) return Op; if (!VT.is512BitVector()) return getOnesVector(VT, Subtarget, DAG, dl); } BuildVectorSDNode *BV = cast<BuildVectorSDNode>(Op.getNode()); if (SDValue AddSub = LowerToAddSub(BV, Subtarget, DAG)) return AddSub; if (SDValue HorizontalOp = LowerToHorizontalOp(BV, Subtarget, DAG)) return HorizontalOp; if (SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG)) return Broadcast; unsigned EVTBits = ExtVT.getSizeInBits(); unsigned NumZero = 0; unsigned NumNonZero = 0; uint64_t NonZeros = 0; bool IsAllConstants = true; SmallSet<SDValue, 8> Values; for (unsigned i = 0; i < NumElems; ++i) { SDValue Elt = Op.getOperand(i); if (Elt.getOpcode() == ISD::UNDEF) continue; Values.insert(Elt); if (Elt.getOpcode() != ISD::Constant && Elt.getOpcode() != ISD::ConstantFP) IsAllConstants = false; if (X86::isZeroNode(Elt)) NumZero++; else { assert(i < sizeof(NonZeros) * 8); // Make sure the shift is within range. NonZeros |= ((uint64_t)1 << i); NumNonZero++; } } // All undef vector. Return an UNDEF. All zero vectors were handled above. if (NumNonZero == 0) return DAG.getUNDEF(VT); // Special case for single non-zero, non-undef, element. if (NumNonZero == 1) { unsigned Idx = countTrailingZeros(NonZeros); SDValue Item = Op.getOperand(Idx); // If this is an insertion of an i64 value on x86-32, and if the top bits of // the value are obviously zero, truncate the value to i32 and do the // insertion that way. Only do this if the value is non-constant or if the // value is a constant being inserted into element 0. It is cheaper to do // a constant pool load than it is to do a movd + shuffle. if (ExtVT == MVT::i64 && !Subtarget->is64Bit() && (!IsAllConstants || Idx == 0)) { if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) { // Handle SSE only. assert(VT == MVT::v2i64 && "Expected an SSE value type!"); MVT VecVT = MVT::v4i32; // Truncate the value (which may itself be a constant) to i32, and // convert it to a vector with movd (S2V+shuffle to zero extend). Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item); Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item); return DAG.getBitcast(VT, getShuffleVectorZeroOrUndef( Item, Idx * 2, true, Subtarget, DAG)); } } // If we have a constant or non-constant insertion into the low element of // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into // the rest of the elements. This will be matched as movd/movq/movss/movsd // depending on what the source datatype is. if (Idx == 0) { if (NumZero == 0) return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 || (ExtVT == MVT::i64 && Subtarget->is64Bit())) { if (VT.is512BitVector()) { SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl); return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec, Item, DAG.getIntPtrConstant(0, dl)); } assert((VT.is128BitVector() || VT.is256BitVector()) && "Expected an SSE value type!"); Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); } // We can't directly insert an i8 or i16 into a vector, so zero extend // it to i32 first. if (ExtVT == MVT::i16 || ExtVT == MVT::i8) { Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item); if (VT.is256BitVector()) { if (Subtarget->hasAVX()) { Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v8i32, Item); Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); } else { // Without AVX, we need to extend to a 128-bit vector and then // insert into the 256-bit vector. Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item); SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl); Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl); } } else { assert(VT.is128BitVector() && "Expected an SSE value type!"); Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item); Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); } return DAG.getBitcast(VT, Item); } } // Is it a vector logical left shift? if (NumElems == 2 && Idx == 1 && X86::isZeroNode(Op.getOperand(0)) && !X86::isZeroNode(Op.getOperand(1))) { unsigned NumBits = VT.getSizeInBits(); return getVShift(true, VT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(1)), NumBits/2, DAG, *this, dl); } if (IsAllConstants) // Otherwise, it's better to do a constpool load. return SDValue(); // Otherwise, if this is a vector with i32 or f32 elements, and the element // is a non-constant being inserted into an element other than the low one, // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka // movd/movss) to move this into the low element, then shuffle it into // place. if (EVTBits == 32) { Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); return getShuffleVectorZeroOrUndef(Item, Idx, NumZero > 0, Subtarget, DAG); } } // Splat is obviously ok. Let legalizer expand it to a shuffle. if (Values.size() == 1) { if (EVTBits == 32) { // Instead of a shuffle like this: // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0> // Check if it's possible to issue this instead. // shuffle (vload ptr)), undef, <1, 1, 1, 1> unsigned Idx = countTrailingZeros(NonZeros); SDValue Item = Op.getOperand(Idx); if (Op.getNode()->isOnlyUserOf(Item.getNode())) return LowerAsSplatVectorLoad(Item, VT, dl, DAG); } return SDValue(); } // A vector full of immediates; various special cases are already // handled, so this is best done with a single constant-pool load. if (IsAllConstants) return SDValue(); // For AVX-length vectors, see if we can use a vector load to get all of the // elements, otherwise build the individual 128-bit pieces and use // shuffles to put them in place. if (VT.is256BitVector() || VT.is512BitVector()) { SmallVector<SDValue, 64> V(Op->op_begin(), Op->op_begin() + NumElems); // Check for a build vector of consecutive loads. if (SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false)) return LD; EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2); // Build both the lower and upper subvector. SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, makeArrayRef(&V[0], NumElems/2)); SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, makeArrayRef(&V[NumElems / 2], NumElems/2)); // Recreate the wider vector with the lower and upper part. if (VT.is256BitVector()) return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl); return Concat256BitVectors(Lower, Upper, VT, NumElems, DAG, dl); } // Let legalizer expand 2-wide build_vectors. if (EVTBits == 64) { if (NumNonZero == 1) { // One half is zero or undef. unsigned Idx = countTrailingZeros(NonZeros); SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(Idx)); return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG); } return SDValue(); } // If element VT is < 32 bits, convert it to inserts into a zero vector. if (EVTBits == 8 && NumElems == 16) if (SDValue V = LowerBuildVectorv16i8(Op, NonZeros, NumNonZero, NumZero, DAG, Subtarget, *this)) return V; if (EVTBits == 16 && NumElems == 8) if (SDValue V = LowerBuildVectorv8i16(Op, NonZeros, NumNonZero, NumZero, DAG, Subtarget, *this)) return V; // If element VT is == 32 bits and has 4 elems, try to generate an INSERTPS if (EVTBits == 32 && NumElems == 4) if (SDValue V = LowerBuildVectorv4x32(Op, DAG, Subtarget, *this)) return V; // If element VT is == 32 bits, turn it into a number of shuffles. SmallVector<SDValue, 8> V(NumElems); if (NumElems == 4 && NumZero > 0) { for (unsigned i = 0; i < 4; ++i) { bool isZero = !(NonZeros & (1ULL << i)); if (isZero) V[i] = getZeroVector(VT, Subtarget, DAG, dl); else V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); } for (unsigned i = 0; i < 2; ++i) { switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { default: break; case 0: V[i] = V[i*2]; // Must be a zero vector. break; case 1: V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]); break; case 2: V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]); break; case 3: V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]); break; } } bool Reverse1 = (NonZeros & 0x3) == 2; bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2; int MaskVec[] = { Reverse1 ? 1 : 0, Reverse1 ? 0 : 1, static_cast<int>(Reverse2 ? NumElems+1 : NumElems), static_cast<int>(Reverse2 ? NumElems : NumElems+1) }; return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]); } if (Values.size() > 1 && VT.is128BitVector()) { // Check for a build vector of consecutive loads. for (unsigned i = 0; i < NumElems; ++i) V[i] = Op.getOperand(i); // Check for elements which are consecutive loads. if (SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false)) return LD; // Check for a build vector from mostly shuffle plus few inserting. if (SDValue Sh = buildFromShuffleMostly(Op, DAG)) return Sh; // For SSE 4.1, use insertps to put the high elements into the low element. if (Subtarget->hasSSE41()) { SDValue Result; if (Op.getOperand(0).getOpcode() != ISD::UNDEF) Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0)); else Result = DAG.getUNDEF(VT); for (unsigned i = 1; i < NumElems; ++i) { if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue; Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result, Op.getOperand(i), DAG.getIntPtrConstant(i, dl)); } return Result; } // Otherwise, expand into a number of unpckl*, start by extending each of // our (non-undef) elements to the full vector width with the element in the // bottom slot of the vector (which generates no code for SSE). for (unsigned i = 0; i < NumElems; ++i) { if (Op.getOperand(i).getOpcode() != ISD::UNDEF) V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); else V[i] = DAG.getUNDEF(VT); } // Next, we iteratively mix elements, e.g. for v4f32: // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0> // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1> // Step 2: unpcklps X, Y ==> <3, 2, 1, 0> unsigned EltStride = NumElems >> 1; while (EltStride != 0) { for (unsigned i = 0; i < EltStride; ++i) { // If V[i+EltStride] is undef and this is the first round of mixing, // then it is safe to just drop this shuffle: V[i] is already in the // right place, the one element (since it's the first round) being // inserted as undef can be dropped. This isn't safe for successive // rounds because they will permute elements within both vectors. if (V[i+EltStride].getOpcode() == ISD::UNDEF && EltStride == NumElems/2) continue; V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]); } EltStride >>= 1; } return V[0]; } return SDValue(); } // 256-bit AVX can use the vinsertf128 instruction // to create 256-bit vectors from two other 128-bit ones. static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { SDLoc dl(Op); MVT ResVT = Op.getSimpleValueType(); assert((ResVT.is256BitVector() || ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide"); SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); unsigned NumElems = ResVT.getVectorNumElements(); if (ResVT.is256BitVector()) return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl); if (Op.getNumOperands() == 4) { MVT HalfVT = MVT::getVectorVT(ResVT.getVectorElementType(), ResVT.getVectorNumElements()/2); SDValue V3 = Op.getOperand(2); SDValue V4 = Op.getOperand(3); return Concat256BitVectors(Concat128BitVectors(V1, V2, HalfVT, NumElems/2, DAG, dl), Concat128BitVectors(V3, V4, HalfVT, NumElems/2, DAG, dl), ResVT, NumElems, DAG, dl); } return Concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl); } static SDValue LowerCONCAT_VECTORSvXi1(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG & DAG) { SDLoc dl(Op); MVT ResVT = Op.getSimpleValueType(); unsigned NumOfOperands = Op.getNumOperands(); assert(isPowerOf2_32(NumOfOperands) && "Unexpected number of operands in CONCAT_VECTORS"); SDValue Undef = DAG.getUNDEF(ResVT); if (NumOfOperands > 2) { // Specialize the cases when all, or all but one, of the operands are undef. unsigned NumOfDefinedOps = 0; unsigned OpIdx = 0; for (unsigned i = 0; i < NumOfOperands; i++) if (!Op.getOperand(i).isUndef()) { NumOfDefinedOps++; OpIdx = i; } if (NumOfDefinedOps == 0) return Undef; if (NumOfDefinedOps == 1) { unsigned SubVecNumElts = Op.getOperand(OpIdx).getValueType().getVectorNumElements(); SDValue IdxVal = DAG.getIntPtrConstant(SubVecNumElts * OpIdx, dl); return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, Op.getOperand(OpIdx), IdxVal); } MVT HalfVT = MVT::getVectorVT(ResVT.getVectorElementType(), ResVT.getVectorNumElements()/2); SmallVector<SDValue, 2> Ops; for (unsigned i = 0; i < NumOfOperands/2; i++) Ops.push_back(Op.getOperand(i)); SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, Ops); Ops.clear(); for (unsigned i = NumOfOperands/2; i < NumOfOperands; i++) Ops.push_back(Op.getOperand(i)); SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, Ops); return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi); } // 2 operands SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); unsigned NumElems = ResVT.getVectorNumElements(); assert(V1.getValueType() == V2.getValueType() && V1.getValueType().getVectorNumElements() == NumElems/2 && "Unexpected operands in CONCAT_VECTORS"); if (ResVT.getSizeInBits() >= 16) return Op; // The operation is legal with KUNPCK bool IsZeroV1 = ISD::isBuildVectorAllZeros(V1.getNode()); bool IsZeroV2 = ISD::isBuildVectorAllZeros(V2.getNode()); SDValue ZeroVec = getZeroVector(ResVT, Subtarget, DAG, dl); if (IsZeroV1 && IsZeroV2) return ZeroVec; SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl); if (V2.isUndef()) return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V1, ZeroIdx); if (IsZeroV2) return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, ZeroVec, V1, ZeroIdx); SDValue IdxVal = DAG.getIntPtrConstant(NumElems/2, dl); if (V1.isUndef()) V2 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V2, IdxVal); if (IsZeroV1) return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, ZeroVec, V2, IdxVal); V1 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V1, ZeroIdx); return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, V1, V2, IdxVal); } static SDValue LowerCONCAT_VECTORS(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT VT = Op.getSimpleValueType(); if (VT.getVectorElementType() == MVT::i1) return LowerCONCAT_VECTORSvXi1(Op, Subtarget, DAG); assert((VT.is256BitVector() && Op.getNumOperands() == 2) || (VT.is512BitVector() && (Op.getNumOperands() == 2 || Op.getNumOperands() == 4))); // AVX can use the vinsertf128 instruction to create 256-bit vectors // from two other 128-bit ones. // 512-bit vector may contain 2 256-bit vectors or 4 128-bit vectors return LowerAVXCONCAT_VECTORS(Op, DAG); } //===----------------------------------------------------------------------===// // Vector shuffle lowering // // This is an experimental code path for lowering vector shuffles on x86. It is // designed to handle arbitrary vector shuffles and blends, gracefully // degrading performance as necessary. It works hard to recognize idiomatic // shuffles and lower them to optimal instruction patterns without leaving // a framework that allows reasonably efficient handling of all vector shuffle // patterns. //===----------------------------------------------------------------------===// /// \brief Tiny helper function to identify a no-op mask. /// /// This is a somewhat boring predicate function. It checks whether the mask /// array input, which is assumed to be a single-input shuffle mask of the kind /// used by the X86 shuffle instructions (not a fully general /// ShuffleVectorSDNode mask) requires any shuffles to occur. Both undef and an /// in-place shuffle are 'no-op's. static bool isNoopShuffleMask(ArrayRef<int> Mask) { for (int i = 0, Size = Mask.size(); i < Size; ++i) if (Mask[i] != -1 && Mask[i] != i) return false; return true; } /// \brief Helper function to classify a mask as a single-input mask. /// /// This isn't a generic single-input test because in the vector shuffle /// lowering we canonicalize single inputs to be the first input operand. This /// means we can more quickly test for a single input by only checking whether /// an input from the second operand exists. We also assume that the size of /// mask corresponds to the size of the input vectors which isn't true in the /// fully general case. static bool isSingleInputShuffleMask(ArrayRef<int> Mask) { for (int M : Mask) if (M >= (int)Mask.size()) return false; return true; } /// \brief Test whether there are elements crossing 128-bit lanes in this /// shuffle mask. /// /// X86 divides up its shuffles into in-lane and cross-lane shuffle operations /// and we routinely test for these. static bool is128BitLaneCrossingShuffleMask(MVT VT, ArrayRef<int> Mask) { int LaneSize = 128 / VT.getScalarSizeInBits(); int Size = Mask.size(); for (int i = 0; i < Size; ++i) if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize) return true; return false; } /// \brief Test whether a shuffle mask is equivalent within each 128-bit lane. /// /// This checks a shuffle mask to see if it is performing the same /// 128-bit lane-relative shuffle in each 128-bit lane. This trivially implies /// that it is also not lane-crossing. It may however involve a blend from the /// same lane of a second vector. /// /// The specific repeated shuffle mask is populated in \p RepeatedMask, as it is /// non-trivial to compute in the face of undef lanes. The representation is /// *not* suitable for use with existing 128-bit shuffles as it will contain /// entries from both V1 and V2 inputs to the wider mask. static bool is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask, SmallVectorImpl<int> &RepeatedMask) { int LaneSize = 128 / VT.getScalarSizeInBits(); RepeatedMask.resize(LaneSize, -1); int Size = Mask.size(); for (int i = 0; i < Size; ++i) { if (Mask[i] < 0) continue; if ((Mask[i] % Size) / LaneSize != i / LaneSize) // This entry crosses lanes, so there is no way to model this shuffle. return false; // Ok, handle the in-lane shuffles by detecting if and when they repeat. if (RepeatedMask[i % LaneSize] == -1) // This is the first non-undef entry in this slot of a 128-bit lane. RepeatedMask[i % LaneSize] = Mask[i] < Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + Size; else if (RepeatedMask[i % LaneSize] + (i / LaneSize) * LaneSize != Mask[i]) // Found a mismatch with the repeated mask. return false; } return true; } /// \brief Checks whether a shuffle mask is equivalent to an explicit list of /// arguments. /// /// This is a fast way to test a shuffle mask against a fixed pattern: /// /// if (isShuffleEquivalent(Mask, 3, 2, {1, 0})) { ... } /// /// It returns true if the mask is exactly as wide as the argument list, and /// each element of the mask is either -1 (signifying undef) or the value given /// in the argument. static bool isShuffleEquivalent(SDValue V1, SDValue V2, ArrayRef<int> Mask, ArrayRef<int> ExpectedMask) { if (Mask.size() != ExpectedMask.size()) return false; int Size = Mask.size(); // If the values are build vectors, we can look through them to find // equivalent inputs that make the shuffles equivalent. auto *BV1 = dyn_cast<BuildVectorSDNode>(V1); auto *BV2 = dyn_cast<BuildVectorSDNode>(V2); for (int i = 0; i < Size; ++i) if (Mask[i] != -1 && Mask[i] != ExpectedMask[i]) { auto *MaskBV = Mask[i] < Size ? BV1 : BV2; auto *ExpectedBV = ExpectedMask[i] < Size ? BV1 : BV2; if (!MaskBV || !ExpectedBV || MaskBV->getOperand(Mask[i] % Size) != ExpectedBV->getOperand(ExpectedMask[i] % Size)) return false; } return true; } /// \brief Get a 4-lane 8-bit shuffle immediate for a mask. /// /// This helper function produces an 8-bit shuffle immediate corresponding to /// the ubiquitous shuffle encoding scheme used in x86 instructions for /// shuffling 4 lanes. It can be used with most of the PSHUF instructions for /// example. /// /// NB: We rely heavily on "undef" masks preserving the input lane. static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask, SDLoc DL, SelectionDAG &DAG) { assert(Mask.size() == 4 && "Only 4-lane shuffle masks"); assert(Mask[0] >= -1 && Mask[0] < 4 && "Out of bound mask element!"); assert(Mask[1] >= -1 && Mask[1] < 4 && "Out of bound mask element!"); assert(Mask[2] >= -1 && Mask[2] < 4 && "Out of bound mask element!"); assert(Mask[3] >= -1 && Mask[3] < 4 && "Out of bound mask element!"); unsigned Imm = 0; Imm |= (Mask[0] == -1 ? 0 : Mask[0]) << 0; Imm |= (Mask[1] == -1 ? 1 : Mask[1]) << 2; Imm |= (Mask[2] == -1 ? 2 : Mask[2]) << 4; Imm |= (Mask[3] == -1 ? 3 : Mask[3]) << 6; return DAG.getConstant(Imm, DL, MVT::i8); } /// \brief Compute whether each element of a shuffle is zeroable. /// /// A "zeroable" vector shuffle element is one which can be lowered to zero. /// Either it is an undef element in the shuffle mask, the element of the input /// referenced is undef, or the element of the input referenced is known to be /// zero. Many x86 shuffles can zero lanes cheaply and we often want to handle /// as many lanes with this technique as possible to simplify the remaining /// shuffle. static SmallBitVector computeZeroableShuffleElements(ArrayRef<int> Mask, SDValue V1, SDValue V2) { SmallBitVector Zeroable(Mask.size(), false); while (V1.getOpcode() == ISD::BITCAST) V1 = V1->getOperand(0); while (V2.getOpcode() == ISD::BITCAST) V2 = V2->getOperand(0); bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode()); bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode()); for (int i = 0, Size = Mask.size(); i < Size; ++i) { int M = Mask[i]; // Handle the easy cases. if (M < 0 || (M >= 0 && M < Size && V1IsZero) || (M >= Size && V2IsZero)) { Zeroable[i] = true; continue; } // If this is an index into a build_vector node (which has the same number // of elements), dig out the input value and use it. SDValue V = M < Size ? V1 : V2; if (V.getOpcode() != ISD::BUILD_VECTOR || Size != (int)V.getNumOperands()) continue; SDValue Input = V.getOperand(M % Size); // The UNDEF opcode check really should be dead code here, but not quite // worth asserting on (it isn't invalid, just unexpected). if (Input.getOpcode() == ISD::UNDEF || X86::isZeroNode(Input)) Zeroable[i] = true; } return Zeroable; } // X86 has dedicated unpack instructions that can handle specific blend // operations: UNPCKH and UNPCKL. static SDValue lowerVectorShuffleWithUNPCK(SDLoc DL, MVT VT, ArrayRef<int> Mask, SDValue V1, SDValue V2, SelectionDAG &DAG) { int NumElts = VT.getVectorNumElements(); int NumEltsInLane = 128 / VT.getScalarSizeInBits(); SmallVector<int, 8> Unpckl; SmallVector<int, 8> Unpckh; for (int i = 0; i < NumElts; ++i) { unsigned LaneStart = (i / NumEltsInLane) * NumEltsInLane; int LoPos = (i % NumEltsInLane) / 2 + LaneStart + NumElts * (i % 2); int HiPos = LoPos + NumEltsInLane / 2; Unpckl.push_back(LoPos); Unpckh.push_back(HiPos); } if (isShuffleEquivalent(V1, V2, Mask, Unpckl)) return DAG.getNode(X86ISD::UNPCKL, DL, VT, V1, V2); if (isShuffleEquivalent(V1, V2, Mask, Unpckh)) return DAG.getNode(X86ISD::UNPCKH, DL, VT, V1, V2); // Commute and try again. ShuffleVectorSDNode::commuteMask(Unpckl); if (isShuffleEquivalent(V1, V2, Mask, Unpckl)) return DAG.getNode(X86ISD::UNPCKL, DL, VT, V2, V1); ShuffleVectorSDNode::commuteMask(Unpckh); if (isShuffleEquivalent(V1, V2, Mask, Unpckh)) return DAG.getNode(X86ISD::UNPCKH, DL, VT, V2, V1); return SDValue(); } /// \brief Try to emit a bitmask instruction for a shuffle. /// /// This handles cases where we can model a blend exactly as a bitmask due to /// one of the inputs being zeroable. static SDValue lowerVectorShuffleAsBitMask(SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, SelectionDAG &DAG) { MVT EltVT = VT.getVectorElementType(); int NumEltBits = EltVT.getSizeInBits(); MVT IntEltVT = MVT::getIntegerVT(NumEltBits); SDValue Zero = DAG.getConstant(0, DL, IntEltVT); SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(NumEltBits), DL, IntEltVT); if (EltVT.isFloatingPoint()) { Zero = DAG.getBitcast(EltVT, Zero); AllOnes = DAG.getBitcast(EltVT, AllOnes); } SmallVector<SDValue, 16> VMaskOps(Mask.size(), Zero); SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); SDValue V; for (int i = 0, Size = Mask.size(); i < Size; ++i) { if (Zeroable[i]) continue; if (Mask[i] % Size != i) return SDValue(); // Not a blend. if (!V) V = Mask[i] < Size ? V1 : V2; else if (V != (Mask[i] < Size ? V1 : V2)) return SDValue(); // Can only let one input through the mask. VMaskOps[i] = AllOnes; } if (!V) return SDValue(); // No non-zeroable elements! SDValue VMask = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, VMaskOps); V = DAG.getNode(VT.isFloatingPoint() ? (unsigned) X86ISD::FAND : (unsigned) ISD::AND, DL, VT, V, VMask); return V; } /// \brief Try to emit a blend instruction for a shuffle using bit math. /// /// This is used as a fallback approach when first class blend instructions are /// unavailable. Currently it is only suitable for integer vectors, but could /// be generalized for floating point vectors if desirable. static SDValue lowerVectorShuffleAsBitBlend(SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, SelectionDAG &DAG) { assert(VT.isInteger() && "Only supports integer vector types!"); MVT EltVT = VT.getVectorElementType(); int NumEltBits = EltVT.getSizeInBits(); SDValue Zero = DAG.getConstant(0, DL, EltVT); SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(NumEltBits), DL, EltVT); SmallVector<SDValue, 16> MaskOps; for (int i = 0, Size = Mask.size(); i < Size; ++i) { if (Mask[i] != -1 && Mask[i] != i && Mask[i] != i + Size) return SDValue(); // Shuffled input! MaskOps.push_back(Mask[i] < Size ? AllOnes : Zero); } SDValue V1Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, MaskOps); V1 = DAG.getNode(ISD::AND, DL, VT, V1, V1Mask); // We have to cast V2 around. MVT MaskVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64); V2 = DAG.getBitcast(VT, DAG.getNode(X86ISD::ANDNP, DL, MaskVT, DAG.getBitcast(MaskVT, V1Mask), DAG.getBitcast(MaskVT, V2))); return DAG.getNode(ISD::OR, DL, VT, V1, V2); } /// \brief Try to emit a blend instruction for a shuffle. /// /// This doesn't do any checks for the availability of instructions for blending /// these values. It relies on the availability of the X86ISD::BLENDI pattern to /// be matched in the backend with the type given. What it does check for is /// that the shuffle mask is a blend, or convertible into a blend with zero. static SDValue lowerVectorShuffleAsBlend(SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Original, const X86Subtarget *Subtarget, SelectionDAG &DAG) { bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode()); bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode()); SmallVector<int, 8> Mask(Original.begin(), Original.end()); SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); bool ForceV1Zero = false, ForceV2Zero = false; // Attempt to generate the binary blend mask. If an input is zero then // we can use any lane. // TODO: generalize the zero matching to any scalar like isShuffleEquivalent. unsigned BlendMask = 0; for (int i = 0, Size = Mask.size(); i < Size; ++i) { int M = Mask[i]; if (M < 0) continue; if (M == i) continue; if (M == i + Size) { BlendMask |= 1u << i; continue; } if (Zeroable[i]) { if (V1IsZero) { ForceV1Zero = true; Mask[i] = i; continue; } if (V2IsZero) { ForceV2Zero = true; BlendMask |= 1u << i; Mask[i] = i + Size; continue; } } return SDValue(); // Shuffled input! } // Create a REAL zero vector - ISD::isBuildVectorAllZeros allows UNDEFs. if (ForceV1Zero) V1 = getZeroVector(VT, Subtarget, DAG, DL); if (ForceV2Zero) V2 = getZeroVector(VT, Subtarget, DAG, DL); auto ScaleBlendMask = [](unsigned BlendMask, int Size, int Scale) { unsigned ScaledMask = 0; for (int i = 0; i != Size; ++i) if (BlendMask & (1u << i)) for (int j = 0; j != Scale; ++j) ScaledMask |= 1u << (i * Scale + j); return ScaledMask; }; switch (VT.SimpleTy) { case MVT::v2f64: case MVT::v4f32: case MVT::v4f64: case MVT::v8f32: return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V2, DAG.getConstant(BlendMask, DL, MVT::i8)); case MVT::v4i64: case MVT::v8i32: assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!"); // FALLTHROUGH case MVT::v2i64: case MVT::v4i32: // If we have AVX2 it is faster to use VPBLENDD when the shuffle fits into // that instruction. if (Subtarget->hasAVX2()) { // Scale the blend by the number of 32-bit dwords per element. int Scale = VT.getScalarSizeInBits() / 32; BlendMask = ScaleBlendMask(BlendMask, Mask.size(), Scale); MVT BlendVT = VT.getSizeInBits() > 128 ? MVT::v8i32 : MVT::v4i32; V1 = DAG.getBitcast(BlendVT, V1); V2 = DAG.getBitcast(BlendVT, V2); return DAG.getBitcast( VT, DAG.getNode(X86ISD::BLENDI, DL, BlendVT, V1, V2, DAG.getConstant(BlendMask, DL, MVT::i8))); } // FALLTHROUGH case MVT::v8i16: { // For integer shuffles we need to expand the mask and cast the inputs to // v8i16s prior to blending. int Scale = 8 / VT.getVectorNumElements(); BlendMask = ScaleBlendMask(BlendMask, Mask.size(), Scale); V1 = DAG.getBitcast(MVT::v8i16, V1); V2 = DAG.getBitcast(MVT::v8i16, V2); return DAG.getBitcast(VT, DAG.getNode(X86ISD::BLENDI, DL, MVT::v8i16, V1, V2, DAG.getConstant(BlendMask, DL, MVT::i8))); } case MVT::v16i16: { assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!"); SmallVector<int, 8> RepeatedMask; if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) { // We can lower these with PBLENDW which is mirrored across 128-bit lanes. assert(RepeatedMask.size() == 8 && "Repeated mask size doesn't match!"); BlendMask = 0; for (int i = 0; i < 8; ++i) if (RepeatedMask[i] >= 16) BlendMask |= 1u << i; return DAG.getNode(X86ISD::BLENDI, DL, MVT::v16i16, V1, V2, DAG.getConstant(BlendMask, DL, MVT::i8)); } } // FALLTHROUGH case MVT::v16i8: case MVT::v32i8: { assert((VT.is128BitVector() || Subtarget->hasAVX2()) && "256-bit byte-blends require AVX2 support!"); // Attempt to lower to a bitmask if we can. VPAND is faster than VPBLENDVB. if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, VT, V1, V2, Mask, DAG)) return Masked; // Scale the blend by the number of bytes per element. int Scale = VT.getScalarSizeInBits() / 8; // This form of blend is always done on bytes. Compute the byte vector // type. MVT BlendVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8); // Compute the VSELECT mask. Note that VSELECT is really confusing in the // mix of LLVM's code generator and the x86 backend. We tell the code // generator that boolean values in the elements of an x86 vector register // are -1 for true and 0 for false. We then use the LLVM semantics of 'true' // mapping a select to operand #1, and 'false' mapping to operand #2. The // reality in x86 is that vector masks (pre-AVX-512) use only the high bit // of the element (the remaining are ignored) and 0 in that high bit would // mean operand #1 while 1 in the high bit would mean operand #2. So while // the LLVM model for boolean values in vector elements gets the relevant // bit set, it is set backwards and over constrained relative to x86's // actual model. SmallVector<SDValue, 32> VSELECTMask; for (int i = 0, Size = Mask.size(); i < Size; ++i) for (int j = 0; j < Scale; ++j) VSELECTMask.push_back( Mask[i] < 0 ? DAG.getUNDEF(MVT::i8) : DAG.getConstant(Mask[i] < Size ? -1 : 0, DL, MVT::i8)); V1 = DAG.getBitcast(BlendVT, V1); V2 = DAG.getBitcast(BlendVT, V2); return DAG.getBitcast(VT, DAG.getNode(ISD::VSELECT, DL, BlendVT, DAG.getNode(ISD::BUILD_VECTOR, DL, BlendVT, VSELECTMask), V1, V2)); } default: llvm_unreachable("Not a supported integer vector type!"); } } /// \brief Try to lower as a blend of elements from two inputs followed by /// a single-input permutation. /// /// This matches the pattern where we can blend elements from two inputs and /// then reduce the shuffle to a single-input permutation. static SDValue lowerVectorShuffleAsBlendAndPermute(SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, SelectionDAG &DAG) { // We build up the blend mask while checking whether a blend is a viable way // to reduce the shuffle. SmallVector<int, 32> BlendMask(Mask.size(), -1); SmallVector<int, 32> PermuteMask(Mask.size(), -1); for (int i = 0, Size = Mask.size(); i < Size; ++i) { if (Mask[i] < 0) continue; assert(Mask[i] < Size * 2 && "Shuffle input is out of bounds."); if (BlendMask[Mask[i] % Size] == -1) BlendMask[Mask[i] % Size] = Mask[i]; else if (BlendMask[Mask[i] % Size] != Mask[i]) return SDValue(); // Can't blend in the needed input! PermuteMask[i] = Mask[i] % Size; } SDValue V = DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask); return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), PermuteMask); } /// \brief Generic routine to decompose a shuffle and blend into indepndent /// blends and permutes. /// /// This matches the extremely common pattern for handling combined /// shuffle+blend operations on newer X86 ISAs where we have very fast blend /// operations. It will try to pick the best arrangement of shuffles and /// blends. static SDValue lowerVectorShuffleAsDecomposedShuffleBlend(SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, SelectionDAG &DAG) { // Shuffle the input elements into the desired positions in V1 and V2 and // blend them together. SmallVector<int, 32> V1Mask(Mask.size(), -1); SmallVector<int, 32> V2Mask(Mask.size(), -1); SmallVector<int, 32> BlendMask(Mask.size(), -1); for (int i = 0, Size = Mask.size(); i < Size; ++i) if (Mask[i] >= 0 && Mask[i] < Size) { V1Mask[i] = Mask[i]; BlendMask[i] = i; } else if (Mask[i] >= Size) { V2Mask[i] = Mask[i] - Size; BlendMask[i] = i + Size; } // Try to lower with the simpler initial blend strategy unless one of the // input shuffles would be a no-op. We prefer to shuffle inputs as the // shuffle may be able to fold with a load or other benefit. However, when // we'll have to do 2x as many shuffles in order to achieve this, blending // first is a better strategy. if (!isNoopShuffleMask(V1Mask) && !isNoopShuffleMask(V2Mask)) if (SDValue BlendPerm = lowerVectorShuffleAsBlendAndPermute(DL, VT, V1, V2, Mask, DAG)) return BlendPerm; V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask); V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask); return DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask); } /// \brief Try to lower a vector shuffle as a byte rotation. /// /// SSSE3 has a generic PALIGNR instruction in x86 that will do an arbitrary /// byte-rotation of the concatenation of two vectors; pre-SSSE3 can use /// a PSRLDQ/PSLLDQ/POR pattern to get a similar effect. This routine will /// try to generically lower a vector shuffle through such an pattern. It /// does not check for the profitability of lowering either as PALIGNR or /// PSRLDQ/PSLLDQ/POR, only whether the mask is valid to lower in that form. /// This matches shuffle vectors that look like: /// /// v8i16 [11, 12, 13, 14, 15, 0, 1, 2] /// /// Essentially it concatenates V1 and V2, shifts right by some number of /// elements, and takes the low elements as the result. Note that while this is /// specified as a *right shift* because x86 is little-endian, it is a *left /// rotate* of the vector lanes. static SDValue lowerVectorShuffleAsByteRotate(SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, const X86Subtarget *Subtarget, SelectionDAG &DAG) { assert(!isNoopShuffleMask(Mask) && "We shouldn't lower no-op shuffles!"); int NumElts = Mask.size(); int NumLanes = VT.getSizeInBits() / 128; int NumLaneElts = NumElts / NumLanes; // We need to detect various ways of spelling a rotation: // [11, 12, 13, 14, 15, 0, 1, 2] // [-1, 12, 13, 14, -1, -1, 1, -1] // [-1, -1, -1, -1, -1, -1, 1, 2] // [ 3, 4, 5, 6, 7, 8, 9, 10] // [-1, 4, 5, 6, -1, -1, 9, -1] // [-1, 4, 5, 6, -1, -1, -1, -1] int Rotation = 0; SDValue Lo, Hi; for (int l = 0; l < NumElts; l += NumLaneElts) { for (int i = 0; i < NumLaneElts; ++i) { if (Mask[l + i] == -1) continue; assert(Mask[l + i] >= 0 && "Only -1 is a valid negative mask element!"); // Get the mod-Size index and lane correct it. int LaneIdx = (Mask[l + i] % NumElts) - l; // Make sure it was in this lane. if (LaneIdx < 0 || LaneIdx >= NumLaneElts) return SDValue(); // Determine where a rotated vector would have started. int StartIdx = i - LaneIdx; if (StartIdx == 0) // The identity rotation isn't interesting, stop. return SDValue(); // If we found the tail of a vector the rotation must be the missing // front. If we found the head of a vector, it must be how much of the // head. int CandidateRotation = StartIdx < 0 ? -StartIdx : NumLaneElts - StartIdx; if (Rotation == 0) Rotation = CandidateRotation; else if (Rotation != CandidateRotation) // The rotations don't match, so we can't match this mask. return SDValue(); // Compute which value this mask is pointing at. SDValue MaskV = Mask[l + i] < NumElts ? V1 : V2; // Compute which of the two target values this index should be assigned // to. This reflects whether the high elements are remaining or the low // elements are remaining. SDValue &TargetV = StartIdx < 0 ? Hi : Lo; // Either set up this value if we've not encountered it before, or check // that it remains consistent. if (!TargetV) TargetV = MaskV; else if (TargetV != MaskV) // This may be a rotation, but it pulls from the inputs in some // unsupported interleaving. return SDValue(); } } // Check that we successfully analyzed the mask, and normalize the results. assert(Rotation != 0 && "Failed to locate a viable rotation!"); assert((Lo || Hi) && "Failed to find a rotated input vector!"); if (!Lo) Lo = Hi; else if (!Hi) Hi = Lo; // The actual rotate instruction rotates bytes, so we need to scale the // rotation based on how many bytes are in the vector lane. int Scale = 16 / NumLaneElts; // SSSE3 targets can use the palignr instruction. if (Subtarget->hasSSSE3()) { // Cast the inputs to i8 vector of correct length to match PALIGNR. MVT AlignVT = MVT::getVectorVT(MVT::i8, 16 * NumLanes); Lo = DAG.getBitcast(AlignVT, Lo); Hi = DAG.getBitcast(AlignVT, Hi); return DAG.getBitcast( VT, DAG.getNode(X86ISD::PALIGNR, DL, AlignVT, Lo, Hi, DAG.getConstant(Rotation * Scale, DL, MVT::i8))); } assert(VT.is128BitVector() && "Rotate-based lowering only supports 128-bit lowering!"); assert(Mask.size() <= 16 && "Can shuffle at most 16 bytes in a 128-bit vector!"); // Default SSE2 implementation int LoByteShift = 16 - Rotation * Scale; int HiByteShift = Rotation * Scale; // Cast the inputs to v2i64 to match PSLLDQ/PSRLDQ. Lo = DAG.getBitcast(MVT::v2i64, Lo); Hi = DAG.getBitcast(MVT::v2i64, Hi); SDValue LoShift = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v2i64, Lo, DAG.getConstant(LoByteShift, DL, MVT::i8)); SDValue HiShift = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v2i64, Hi, DAG.getConstant(HiByteShift, DL, MVT::i8)); return DAG.getBitcast(VT, DAG.getNode(ISD::OR, DL, MVT::v2i64, LoShift, HiShift)); } /// \brief Try to lower a vector shuffle as a bit shift (shifts in zeros). /// /// Attempts to match a shuffle mask against the PSLL(W/D/Q/DQ) and /// PSRL(W/D/Q/DQ) SSE2 and AVX2 logical bit-shift instructions. The function /// matches elements from one of the input vectors shuffled to the left or /// right with zeroable elements 'shifted in'. It handles both the strictly /// bit-wise element shifts and the byte shift across an entire 128-bit double /// quad word lane. /// /// PSHL : (little-endian) left bit shift. /// [ zz, 0, zz, 2 ] /// [ -1, 4, zz, -1 ] /// PSRL : (little-endian) right bit shift. /// [ 1, zz, 3, zz] /// [ -1, -1, 7, zz] /// PSLLDQ : (little-endian) left byte shift /// [ zz, 0, 1, 2, 3, 4, 5, 6] /// [ zz, zz, -1, -1, 2, 3, 4, -1] /// [ zz, zz, zz, zz, zz, zz, -1, 1] /// PSRLDQ : (little-endian) right byte shift /// [ 5, 6, 7, zz, zz, zz, zz, zz] /// [ -1, 5, 6, 7, zz, zz, zz, zz] /// [ 1, 2, -1, -1, -1, -1, zz, zz] static SDValue lowerVectorShuffleAsShift(SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, SelectionDAG &DAG) { SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); int Size = Mask.size(); assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); auto CheckZeros = [&](int Shift, int Scale, bool Left) { for (int i = 0; i < Size; i += Scale) for (int j = 0; j < Shift; ++j) if (!Zeroable[i + j + (Left ? 0 : (Scale - Shift))]) return false; return true; }; auto MatchShift = [&](int Shift, int Scale, bool Left, SDValue V) { for (int i = 0; i != Size; i += Scale) { unsigned Pos = Left ? i + Shift : i; unsigned Low = Left ? i : i + Shift; unsigned Len = Scale - Shift; if (!isSequentialOrUndefInRange(Mask, Pos, Len, Low + (V == V1 ? 0 : Size))) return SDValue(); } int ShiftEltBits = VT.getScalarSizeInBits() * Scale; bool ByteShift = ShiftEltBits > 64; unsigned OpCode = Left ? (ByteShift ? X86ISD::VSHLDQ : X86ISD::VSHLI) : (ByteShift ? X86ISD::VSRLDQ : X86ISD::VSRLI); int ShiftAmt = Shift * VT.getScalarSizeInBits() / (ByteShift ? 8 : 1); // Normalize the scale for byte shifts to still produce an i64 element // type. Scale = ByteShift ? Scale / 2 : Scale; // We need to round trip through the appropriate type for the shift. MVT ShiftSVT = MVT::getIntegerVT(VT.getScalarSizeInBits() * Scale); MVT ShiftVT = MVT::getVectorVT(ShiftSVT, Size / Scale); assert(DAG.getTargetLoweringInfo().isTypeLegal(ShiftVT) && "Illegal integer vector type"); V = DAG.getBitcast(ShiftVT, V); V = DAG.getNode(OpCode, DL, ShiftVT, V, DAG.getConstant(ShiftAmt, DL, MVT::i8)); return DAG.getBitcast(VT, V); }; // SSE/AVX supports logical shifts up to 64-bit integers - so we can just // keep doubling the size of the integer elements up to that. We can // then shift the elements of the integer vector by whole multiples of // their width within the elements of the larger integer vector. Test each // multiple to see if we can find a match with the moved element indices // and that the shifted in elements are all zeroable. for (int Scale = 2; Scale * VT.getScalarSizeInBits() <= 128; Scale *= 2) for (int Shift = 1; Shift != Scale; ++Shift) for (bool Left : {true, false}) if (CheckZeros(Shift, Scale, Left)) for (SDValue V : {V1, V2}) if (SDValue Match = MatchShift(Shift, Scale, Left, V)) return Match; // no match return SDValue(); } /// \brief Try to lower a vector shuffle using SSE4a EXTRQ/INSERTQ. static SDValue lowerVectorShuffleWithSSE4A(SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, SelectionDAG &DAG) { SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); assert(!Zeroable.all() && "Fully zeroable shuffle mask"); int Size = Mask.size(); int HalfSize = Size / 2; assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); // Upper half must be undefined. if (!isUndefInRange(Mask, HalfSize, HalfSize)) return SDValue(); // EXTRQ: Extract Len elements from lower half of source, starting at Idx. // Remainder of lower half result is zero and upper half is all undef. auto LowerAsEXTRQ = [&]() { // Determine the extraction length from the part of the // lower half that isn't zeroable. int Len = HalfSize; for (; Len > 0; --Len) if (!Zeroable[Len - 1]) break; assert(Len > 0 && "Zeroable shuffle mask"); // Attempt to match first Len sequential elements from the lower half. SDValue Src; int Idx = -1; for (int i = 0; i != Len; ++i) { int M = Mask[i]; if (M < 0) continue; SDValue &V = (M < Size ? V1 : V2); M = M % Size; // The extracted elements must start at a valid index and all mask // elements must be in the lower half. if (i > M || M >= HalfSize) return SDValue(); if (Idx < 0 || (Src == V && Idx == (M - i))) { Src = V; Idx = M - i; continue; } return SDValue(); } if (Idx < 0) return SDValue(); assert((Idx + Len) <= HalfSize && "Illegal extraction mask"); int BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f; int BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f; return DAG.getNode(X86ISD::EXTRQI, DL, VT, Src, DAG.getConstant(BitLen, DL, MVT::i8), DAG.getConstant(BitIdx, DL, MVT::i8)); }; if (SDValue ExtrQ = LowerAsEXTRQ()) return ExtrQ; // INSERTQ: Extract lowest Len elements from lower half of second source and // insert over first source, starting at Idx. // { A[0], .., A[Idx-1], B[0], .., B[Len-1], A[Idx+Len], .., UNDEF, ... } auto LowerAsInsertQ = [&]() { for (int Idx = 0; Idx != HalfSize; ++Idx) { SDValue Base; // Attempt to match first source from mask before insertion point. if (isUndefInRange(Mask, 0, Idx)) { /* EMPTY */ } else if (isSequentialOrUndefInRange(Mask, 0, Idx, 0)) { Base = V1; } else if (isSequentialOrUndefInRange(Mask, 0, Idx, Size)) { Base = V2; } else { continue; } // Extend the extraction length looking to match both the insertion of // the second source and the remaining elements of the first. for (int Hi = Idx + 1; Hi <= HalfSize; ++Hi) { SDValue Insert; int Len = Hi - Idx; // Match insertion. if (isSequentialOrUndefInRange(Mask, Idx, Len, 0)) { Insert = V1; } else if (isSequentialOrUndefInRange(Mask, Idx, Len, Size)) { Insert = V2; } else { continue; } // Match the remaining elements of the lower half. if (isUndefInRange(Mask, Hi, HalfSize - Hi)) { /* EMPTY */ } else if ((!Base || (Base == V1)) && isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi, Hi)) { Base = V1; } else if ((!Base || (Base == V2)) && isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi, Size + Hi)) { Base = V2; } else { continue; } // We may not have a base (first source) - this can safely be undefined. if (!Base) Base = DAG.getUNDEF(VT); int BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f; int BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f; return DAG.getNode(X86ISD::INSERTQI, DL, VT, Base, Insert, DAG.getConstant(BitLen, DL, MVT::i8), DAG.getConstant(BitIdx, DL, MVT::i8)); } } return SDValue(); }; if (SDValue InsertQ = LowerAsInsertQ()) return InsertQ; return SDValue(); } /// \brief Lower a vector shuffle as a zero or any extension. /// /// Given a specific number of elements, element bit width, and extension /// stride, produce either a zero or any extension based on the available /// features of the subtarget. The extended elements are consecutive and /// begin and can start from an offseted element index in the input; to /// avoid excess shuffling the offset must either being in the bottom lane /// or at the start of a higher lane. All extended elements must be from /// the same lane. static SDValue lowerVectorShuffleAsSpecificZeroOrAnyExtend( SDLoc DL, MVT VT, int Scale, int Offset, bool AnyExt, SDValue InputV, ArrayRef<int> Mask, const X86Subtarget *Subtarget, SelectionDAG &DAG) { assert(Scale > 1 && "Need a scale to extend."); int EltBits = VT.getScalarSizeInBits(); int NumElements = VT.getVectorNumElements(); int NumEltsPerLane = 128 / EltBits; int OffsetLane = Offset / NumEltsPerLane; assert((EltBits == 8 || EltBits == 16 || EltBits == 32) && "Only 8, 16, and 32 bit elements can be extended."); assert(Scale * EltBits <= 64 && "Cannot zero extend past 64 bits."); assert(0 <= Offset && "Extension offset must be positive."); assert((Offset < NumEltsPerLane || Offset % NumEltsPerLane == 0) && "Extension offset must be in the first lane or start an upper lane."); // Check that an index is in same lane as the base offset. auto SafeOffset = [&](int Idx) { return OffsetLane == (Idx / NumEltsPerLane); }; // Shift along an input so that the offset base moves to the first element. auto ShuffleOffset = [&](SDValue V) { if (!Offset) return V; SmallVector<int, 8> ShMask((unsigned)NumElements, -1); for (int i = 0; i * Scale < NumElements; ++i) { int SrcIdx = i + Offset; ShMask[i] = SafeOffset(SrcIdx) ? SrcIdx : -1; } return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), ShMask); }; // Found a valid zext mask! Try various lowering strategies based on the // input type and available ISA extensions. if (Subtarget->hasSSE41()) { // Not worth offseting 128-bit vectors if scale == 2, a pattern using // PUNPCK will catch this in a later shuffle match. if (Offset && Scale == 2 && VT.is128BitVector()) return SDValue(); MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits * Scale), NumElements / Scale); InputV = DAG.getNode(X86ISD::VZEXT, DL, ExtVT, ShuffleOffset(InputV)); return DAG.getBitcast(VT, InputV); } assert(VT.is128BitVector() && "Only 128-bit vectors can be extended."); // For any extends we can cheat for larger element sizes and use shuffle // instructions that can fold with a load and/or copy. if (AnyExt && EltBits == 32) { int PSHUFDMask[4] = {Offset, -1, SafeOffset(Offset + 1) ? Offset + 1 : -1, -1}; return DAG.getBitcast( VT, DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, DAG.getBitcast(MVT::v4i32, InputV), getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG))); } if (AnyExt && EltBits == 16 && Scale > 2) { int PSHUFDMask[4] = {Offset / 2, -1, SafeOffset(Offset + 1) ? (Offset + 1) / 2 : -1, -1}; InputV = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, DAG.getBitcast(MVT::v4i32, InputV), getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)); int PSHUFWMask[4] = {1, -1, -1, -1}; unsigned OddEvenOp = (Offset & 1 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW); return DAG.getBitcast( VT, DAG.getNode(OddEvenOp, DL, MVT::v8i16, DAG.getBitcast(MVT::v8i16, InputV), getV4X86ShuffleImm8ForMask(PSHUFWMask, DL, DAG))); } // The SSE4A EXTRQ instruction can efficiently extend the first 2 lanes // to 64-bits. if ((Scale * EltBits) == 64 && EltBits < 32 && Subtarget->hasSSE4A()) { assert(NumElements == (int)Mask.size() && "Unexpected shuffle mask size!"); assert(VT.is128BitVector() && "Unexpected vector width!"); int LoIdx = Offset * EltBits; SDValue Lo = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV, DAG.getConstant(EltBits, DL, MVT::i8), DAG.getConstant(LoIdx, DL, MVT::i8))); if (isUndefInRange(Mask, NumElements / 2, NumElements / 2) || !SafeOffset(Offset + 1)) return DAG.getNode(ISD::BITCAST, DL, VT, Lo); int HiIdx = (Offset + 1) * EltBits; SDValue Hi = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV, DAG.getConstant(EltBits, DL, MVT::i8), DAG.getConstant(HiIdx, DL, MVT::i8))); return DAG.getNode(ISD::BITCAST, DL, VT, DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, Lo, Hi)); } // If this would require more than 2 unpack instructions to expand, use // pshufb when available. We can only use more than 2 unpack instructions // when zero extending i8 elements which also makes it easier to use pshufb. if (Scale > 4 && EltBits == 8 && Subtarget->hasSSSE3()) { assert(NumElements == 16 && "Unexpected byte vector width!"); SDValue PSHUFBMask[16]; for (int i = 0; i < 16; ++i) { int Idx = Offset + (i / Scale); PSHUFBMask[i] = DAG.getConstant( (i % Scale == 0 && SafeOffset(Idx)) ? Idx : 0x80, DL, MVT::i8); } InputV = DAG.getBitcast(MVT::v16i8, InputV); return DAG.getBitcast(VT, DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, InputV, DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, PSHUFBMask))); } // If we are extending from an offset, ensure we start on a boundary that // we can unpack from. int AlignToUnpack = Offset % (NumElements / Scale); if (AlignToUnpack) { SmallVector<int, 8> ShMask((unsigned)NumElements, -1); for (int i = AlignToUnpack; i < NumElements; ++i) ShMask[i - AlignToUnpack] = i; InputV = DAG.getVectorShuffle(VT, DL, InputV, DAG.getUNDEF(VT), ShMask); Offset -= AlignToUnpack; } // Otherwise emit a sequence of unpacks. do { unsigned UnpackLoHi = X86ISD::UNPCKL; if (Offset >= (NumElements / 2)) { UnpackLoHi = X86ISD::UNPCKH; Offset -= (NumElements / 2); } MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements); SDValue Ext = AnyExt ? DAG.getUNDEF(InputVT) : getZeroVector(InputVT, Subtarget, DAG, DL); InputV = DAG.getBitcast(InputVT, InputV); InputV = DAG.getNode(UnpackLoHi, DL, InputVT, InputV, Ext); Scale /= 2; EltBits *= 2; NumElements /= 2; } while (Scale > 1); return DAG.getBitcast(VT, InputV); } /// \brief Try to lower a vector shuffle as a zero extension on any microarch. /// /// This routine will try to do everything in its power to cleverly lower /// a shuffle which happens to match the pattern of a zero extend. It doesn't /// check for the profitability of this lowering, it tries to aggressively /// match this pattern. It will use all of the micro-architectural details it /// can to emit an efficient lowering. It handles both blends with all-zero /// inputs to explicitly zero-extend and undef-lanes (sometimes undef due to /// masking out later). /// /// The reason we have dedicated lowering for zext-style shuffles is that they /// are both incredibly common and often quite performance sensitive. static SDValue lowerVectorShuffleAsZeroOrAnyExtend( SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); int Bits = VT.getSizeInBits(); int NumLanes = Bits / 128; int NumElements = VT.getVectorNumElements(); int NumEltsPerLane = NumElements / NumLanes; assert(VT.getScalarSizeInBits() <= 32 && "Exceeds 32-bit integer zero extension limit"); assert((int)Mask.size() == NumElements && "Unexpected shuffle mask size"); // Define a helper function to check a particular ext-scale and lower to it if // valid. auto Lower = [&](int Scale) -> SDValue { SDValue InputV; bool AnyExt = true; int Offset = 0; int Matches = 0; for (int i = 0; i < NumElements; ++i) { int M = Mask[i]; if (M == -1) continue; // Valid anywhere but doesn't tell us anything. if (i % Scale != 0) { // Each of the extended elements need to be zeroable. if (!Zeroable[i]) return SDValue(); // We no longer are in the anyext case. AnyExt = false; continue; } // Each of the base elements needs to be consecutive indices into the // same input vector. SDValue V = M < NumElements ? V1 : V2; M = M % NumElements; if (!InputV) { InputV = V; Offset = M - (i / Scale); } else if (InputV != V) return SDValue(); // Flip-flopping inputs. // Offset must start in the lowest 128-bit lane or at the start of an // upper lane. // FIXME: Is it ever worth allowing a negative base offset? if (!((0 <= Offset && Offset < NumEltsPerLane) || (Offset % NumEltsPerLane) == 0)) return SDValue(); // If we are offsetting, all referenced entries must come from the same // lane. if (Offset && (Offset / NumEltsPerLane) != (M / NumEltsPerLane)) return SDValue(); if ((M % NumElements) != (Offset + (i / Scale))) return SDValue(); // Non-consecutive strided elements. Matches++; } // If we fail to find an input, we have a zero-shuffle which should always // have already been handled. // FIXME: Maybe handle this here in case during blending we end up with one? if (!InputV) return SDValue(); // If we are offsetting, don't extend if we only match a single input, we // can always do better by using a basic PSHUF or PUNPCK. if (Offset != 0 && Matches < 2) return SDValue(); return lowerVectorShuffleAsSpecificZeroOrAnyExtend( DL, VT, Scale, Offset, AnyExt, InputV, Mask, Subtarget, DAG); }; // The widest scale possible for extending is to a 64-bit integer. assert(Bits % 64 == 0 && "The number of bits in a vector must be divisible by 64 on x86!"); int NumExtElements = Bits / 64; // Each iteration, try extending the elements half as much, but into twice as // many elements. for (; NumExtElements < NumElements; NumExtElements *= 2) { assert(NumElements % NumExtElements == 0 && "The input vector size must be divisible by the extended size."); if (SDValue V = Lower(NumElements / NumExtElements)) return V; } // General extends failed, but 128-bit vectors may be able to use MOVQ. if (Bits != 128) return SDValue(); // Returns one of the source operands if the shuffle can be reduced to a // MOVQ, copying the lower 64-bits and zero-extending to the upper 64-bits. auto CanZExtLowHalf = [&]() { for (int i = NumElements / 2; i != NumElements; ++i) if (!Zeroable[i]) return SDValue(); if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, 0)) return V1; if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, NumElements)) return V2; return SDValue(); }; if (SDValue V = CanZExtLowHalf()) { V = DAG.getBitcast(MVT::v2i64, V); V = DAG.getNode(X86ISD::VZEXT_MOVL, DL, MVT::v2i64, V); return DAG.getBitcast(VT, V); } // No viable ext lowering found. return SDValue(); } /// \brief Try to get a scalar value for a specific element of a vector. /// /// Looks through BUILD_VECTOR and SCALAR_TO_VECTOR nodes to find a scalar. static SDValue getScalarValueForVectorElement(SDValue V, int Idx, SelectionDAG &DAG) { MVT VT = V.getSimpleValueType(); MVT EltVT = VT.getVectorElementType(); while (V.getOpcode() == ISD::BITCAST) V = V.getOperand(0); // If the bitcasts shift the element size, we can't extract an equivalent // element from it. MVT NewVT = V.getSimpleValueType(); if (!NewVT.isVector() || NewVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) return SDValue(); if (V.getOpcode() == ISD::BUILD_VECTOR || (Idx == 0 && V.getOpcode() == ISD::SCALAR_TO_VECTOR)) { // Ensure the scalar operand is the same size as the destination. // FIXME: Add support for scalar truncation where possible. SDValue S = V.getOperand(Idx); if (EltVT.getSizeInBits() == S.getSimpleValueType().getSizeInBits()) return DAG.getNode(ISD::BITCAST, SDLoc(V), EltVT, S); } return SDValue(); } /// \brief Helper to test for a load that can be folded with x86 shuffles. /// /// This is particularly important because the set of instructions varies /// significantly based on whether the operand is a load or not. static bool isShuffleFoldableLoad(SDValue V) { while (V.getOpcode() == ISD::BITCAST) V = V.getOperand(0); return ISD::isNON_EXTLoad(V.getNode()); } /// \brief Try to lower insertion of a single element into a zero vector. /// /// This is a common pattern that we have especially efficient patterns to lower /// across all subtarget feature sets. static SDValue lowerVectorShuffleAsElementInsertion( SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); MVT ExtVT = VT; MVT EltVT = VT.getVectorElementType(); int V2Index = std::find_if(Mask.begin(), Mask.end(), [&Mask](int M) { return M >= (int)Mask.size(); }) - Mask.begin(); bool IsV1Zeroable = true; for (int i = 0, Size = Mask.size(); i < Size; ++i) if (i != V2Index && !Zeroable[i]) { IsV1Zeroable = false; break; } // Check for a single input from a SCALAR_TO_VECTOR node. // FIXME: All of this should be canonicalized into INSERT_VECTOR_ELT and // all the smarts here sunk into that routine. However, the current // lowering of BUILD_VECTOR makes that nearly impossible until the old // vector shuffle lowering is dead. SDValue V2S = getScalarValueForVectorElement(V2, Mask[V2Index] - Mask.size(), DAG); if (V2S && DAG.getTargetLoweringInfo().isTypeLegal(V2S.getValueType())) { // We need to zext the scalar if it is smaller than an i32. V2S = DAG.getBitcast(EltVT, V2S); if (EltVT == MVT::i8 || EltVT == MVT::i16) { // Using zext to expand a narrow element won't work for non-zero // insertions. if (!IsV1Zeroable) return SDValue(); // Zero-extend directly to i32. ExtVT = MVT::v4i32; V2S = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, V2S); } V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, ExtVT, V2S); } else if (Mask[V2Index] != (int)Mask.size() || EltVT == MVT::i8 || EltVT == MVT::i16) { // Either not inserting from the low element of the input or the input // element size is too small to use VZEXT_MOVL to clear the high bits. return SDValue(); } if (!IsV1Zeroable) { // If V1 can't be treated as a zero vector we have fewer options to lower // this. We can't support integer vectors or non-zero targets cheaply, and // the V1 elements can't be permuted in any way. assert(VT == ExtVT && "Cannot change extended type when non-zeroable!"); if (!VT.isFloatingPoint() || V2Index != 0) return SDValue(); SmallVector<int, 8> V1Mask(Mask.begin(), Mask.end()); V1Mask[V2Index] = -1; if (!isNoopShuffleMask(V1Mask)) return SDValue(); // This is essentially a special case blend operation, but if we have // general purpose blend operations, they are always faster. Bail and let // the rest of the lowering handle these as blends. if (Subtarget->hasSSE41()) return SDValue(); // Otherwise, use MOVSD or MOVSS. assert((EltVT == MVT::f32 || EltVT == MVT::f64) && "Only two types of floating point element types to handle!"); return DAG.getNode(EltVT == MVT::f32 ? X86ISD::MOVSS : X86ISD::MOVSD, DL, ExtVT, V1, V2); } // This lowering only works for the low element with floating point vectors. if (VT.isFloatingPoint() && V2Index != 0) return SDValue(); V2 = DAG.getNode(X86ISD::VZEXT_MOVL, DL, ExtVT, V2); if (ExtVT != VT) V2 = DAG.getBitcast(VT, V2); if (V2Index != 0) { // If we have 4 or fewer lanes we can cheaply shuffle the element into // the desired position. Otherwise it is more efficient to do a vector // shift left. We know that we can do a vector shift left because all // the inputs are zero. if (VT.isFloatingPoint() || VT.getVectorNumElements() <= 4) { SmallVector<int, 4> V2Shuffle(Mask.size(), 1); V2Shuffle[V2Index] = 0; V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Shuffle); } else { V2 = DAG.getBitcast(MVT::v2i64, V2); V2 = DAG.getNode( X86ISD::VSHLDQ, DL, MVT::v2i64, V2, DAG.getConstant(V2Index * EltVT.getSizeInBits() / 8, DL, DAG.getTargetLoweringInfo().getScalarShiftAmountTy( DAG.getDataLayout(), VT))); V2 = DAG.getBitcast(VT, V2); } } return V2; } /// \brief Try to lower broadcast of a single - truncated - integer element, /// coming from a scalar_to_vector/build_vector node \p V0 with larger elements. /// /// This assumes we have AVX2. static SDValue lowerVectorShuffleAsTruncBroadcast(SDLoc DL, MVT VT, SDValue V0, int BroadcastIdx, const X86Subtarget *Subtarget, SelectionDAG &DAG) { assert(Subtarget->hasAVX2() && "We can only lower integer broadcasts with AVX2!"); EVT EltVT = VT.getVectorElementType(); EVT V0VT = V0.getValueType(); assert(VT.isInteger() && "Unexpected non-integer trunc broadcast!"); assert(V0VT.isVector() && "Unexpected non-vector vector-sized value!"); EVT V0EltVT = V0VT.getVectorElementType(); if (!V0EltVT.isInteger()) return SDValue(); const unsigned EltSize = EltVT.getSizeInBits(); const unsigned V0EltSize = V0EltVT.getSizeInBits(); // This is only a truncation if the original element type is larger. if (V0EltSize <= EltSize) return SDValue(); assert(((V0EltSize % EltSize) == 0) && "Scalar type sizes must all be powers of 2 on x86!"); const unsigned V0Opc = V0.getOpcode(); const unsigned Scale = V0EltSize / EltSize; const unsigned V0BroadcastIdx = BroadcastIdx / Scale; if ((V0Opc != ISD::SCALAR_TO_VECTOR || V0BroadcastIdx != 0) && V0Opc != ISD::BUILD_VECTOR) return SDValue(); SDValue Scalar = V0.getOperand(V0BroadcastIdx); // If we're extracting non-least-significant bits, shift so we can truncate. // Hopefully, we can fold away the trunc/srl/load into the broadcast. // Even if we can't (and !isShuffleFoldableLoad(Scalar)), prefer // vpbroadcast+vmovd+shr to vpshufb(m)+vmovd. if (const int OffsetIdx = BroadcastIdx % Scale) Scalar = DAG.getNode(ISD::SRL, DL, Scalar.getValueType(), Scalar, DAG.getConstant(OffsetIdx * EltSize, DL, Scalar.getValueType())); return DAG.getNode(X86ISD::VBROADCAST, DL, VT, DAG.getNode(ISD::TRUNCATE, DL, EltVT, Scalar)); } /// \brief Try to lower broadcast of a single element. /// /// For convenience, this code also bundles all of the subtarget feature set /// filtering. While a little annoying to re-dispatch on type here, there isn't /// a convenient way to factor it out. /// FIXME: This is very similar to LowerVectorBroadcast - can we merge them? static SDValue lowerVectorShuffleAsBroadcast(SDLoc DL, MVT VT, SDValue V, ArrayRef<int> Mask, const X86Subtarget *Subtarget, SelectionDAG &DAG) { if (!Subtarget->hasAVX()) return SDValue(); if (VT.isInteger() && !Subtarget->hasAVX2()) return SDValue(); // Check that the mask is a broadcast. int BroadcastIdx = -1; for (int M : Mask) if (M >= 0 && BroadcastIdx == -1) BroadcastIdx = M; else if (M >= 0 && M != BroadcastIdx) return SDValue(); assert(BroadcastIdx < (int)Mask.size() && "We only expect to be called with " "a sorted mask where the broadcast " "comes from V1."); // Go up the chain of (vector) values to find a scalar load that we can // combine with the broadcast. for (;;) { switch (V.getOpcode()) { case ISD::CONCAT_VECTORS: { int OperandSize = Mask.size() / V.getNumOperands(); V = V.getOperand(BroadcastIdx / OperandSize); BroadcastIdx %= OperandSize; continue; } case ISD::INSERT_SUBVECTOR: { SDValue VOuter = V.getOperand(0), VInner = V.getOperand(1); auto ConstantIdx = dyn_cast<ConstantSDNode>(V.getOperand(2)); if (!ConstantIdx) break; int BeginIdx = (int)ConstantIdx->getZExtValue(); int EndIdx = BeginIdx + (int)VInner.getSimpleValueType().getVectorNumElements(); if (BroadcastIdx >= BeginIdx && BroadcastIdx < EndIdx) { BroadcastIdx -= BeginIdx; V = VInner; } else { V = VOuter; } continue; } } break; } // Check if this is a broadcast of a scalar. We special case lowering // for scalars so that we can more effectively fold with loads. // First, look through bitcast: if the original value has a larger element // type than the shuffle, the broadcast element is in essence truncated. // Make that explicit to ease folding. if (V.getOpcode() == ISD::BITCAST && VT.isInteger()) if (SDValue TruncBroadcast = lowerVectorShuffleAsTruncBroadcast( DL, VT, V.getOperand(0), BroadcastIdx, Subtarget, DAG)) return TruncBroadcast; // Also check the simpler case, where we can directly reuse the scalar. if (V.getOpcode() == ISD::BUILD_VECTOR || (V.getOpcode() == ISD::SCALAR_TO_VECTOR && BroadcastIdx == 0)) { V = V.getOperand(BroadcastIdx); // If the scalar isn't a load, we can't broadcast from it in AVX1. // Only AVX2 has register broadcasts. if (!Subtarget->hasAVX2() && !isShuffleFoldableLoad(V)) return SDValue(); } else if (MayFoldLoad(V) && !cast<LoadSDNode>(V)->isVolatile()) { // If we are broadcasting a load that is only used by the shuffle // then we can reduce the vector load to the broadcasted scalar load. LoadSDNode *Ld = cast<LoadSDNode>(V); SDValue BaseAddr = Ld->getOperand(1); EVT AddrVT = BaseAddr.getValueType(); EVT SVT = VT.getScalarType(); unsigned Offset = BroadcastIdx * SVT.getStoreSize(); SDValue NewAddr = DAG.getNode( ISD::ADD, DL, AddrVT, BaseAddr, DAG.getConstant(Offset, DL, AddrVT)); V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, DAG.getMachineFunction().getMachineMemOperand( Ld->getMemOperand(), Offset, SVT.getStoreSize())); } else if (BroadcastIdx != 0 || !Subtarget->hasAVX2()) { // We can't broadcast from a vector register without AVX2, and we can only // broadcast from the zero-element of a vector register. return SDValue(); } return DAG.getNode(X86ISD::VBROADCAST, DL, VT, V); } // Check for whether we can use INSERTPS to perform the shuffle. We only use // INSERTPS when the V1 elements are already in the correct locations // because otherwise we can just always use two SHUFPS instructions which // are much smaller to encode than a SHUFPS and an INSERTPS. We can also // perform INSERTPS if a single V1 element is out of place and all V2 // elements are zeroable. static SDValue lowerVectorShuffleAsInsertPS(SDValue Op, SDValue V1, SDValue V2, ArrayRef<int> Mask, SelectionDAG &DAG) { assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!"); assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!"); assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); unsigned ZMask = 0; int V1DstIndex = -1; int V2DstIndex = -1; bool V1UsedInPlace = false; for (int i = 0; i < 4; ++i) { // Synthesize a zero mask from the zeroable elements (includes undefs). if (Zeroable[i]) { ZMask |= 1 << i; continue; } // Flag if we use any V1 inputs in place. if (i == Mask[i]) { V1UsedInPlace = true; continue; } // We can only insert a single non-zeroable element. if (V1DstIndex != -1 || V2DstIndex != -1) return SDValue(); if (Mask[i] < 4) { // V1 input out of place for insertion. V1DstIndex = i; } else { // V2 input for insertion. V2DstIndex = i; } } // Don't bother if we have no (non-zeroable) element for insertion. if (V1DstIndex == -1 && V2DstIndex == -1) return SDValue(); // Determine element insertion src/dst indices. The src index is from the // start of the inserted vector, not the start of the concatenated vector. unsigned V2SrcIndex = 0; if (V1DstIndex != -1) { // If we have a V1 input out of place, we use V1 as the V2 element insertion // and don't use the original V2 at all. V2SrcIndex = Mask[V1DstIndex]; V2DstIndex = V1DstIndex; V2 = V1; } else { V2SrcIndex = Mask[V2DstIndex] - 4; } // If no V1 inputs are used in place, then the result is created only from // the zero mask and the V2 insertion - so remove V1 dependency. if (!V1UsedInPlace) V1 = DAG.getUNDEF(MVT::v4f32); unsigned InsertPSMask = V2SrcIndex << 6 | V2DstIndex << 4 | ZMask; assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!"); // Insert the V2 element into the desired position. SDLoc DL(Op); return DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2, DAG.getConstant(InsertPSMask, DL, MVT::i8)); } /// \brief Try to lower a shuffle as a permute of the inputs followed by an /// UNPCK instruction. /// /// This specifically targets cases where we end up with alternating between /// the two inputs, and so can permute them into something that feeds a single /// UNPCK instruction. Note that this routine only targets integer vectors /// because for floating point vectors we have a generalized SHUFPS lowering /// strategy that handles everything that doesn't *exactly* match an unpack, /// making this clever lowering unnecessary. static SDValue lowerVectorShuffleAsPermuteAndUnpack(SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, SelectionDAG &DAG) { assert(!VT.isFloatingPoint() && "This routine only supports integer vectors."); assert(!isSingleInputShuffleMask(Mask) && "This routine should only be used when blending two inputs."); assert(Mask.size() >= 2 && "Single element masks are invalid."); int Size = Mask.size(); int NumLoInputs = std::count_if(Mask.begin(), Mask.end(), [Size](int M) { return M >= 0 && M % Size < Size / 2; }); int NumHiInputs = std::count_if( Mask.begin(), Mask.end(), [Size](int M) { return M % Size >= Size / 2; }); bool UnpackLo = NumLoInputs >= NumHiInputs; auto TryUnpack = [&](MVT UnpackVT, int Scale) { SmallVector<int, 32> V1Mask(Mask.size(), -1); SmallVector<int, 32> V2Mask(Mask.size(), -1); for (int i = 0; i < Size; ++i) { if (Mask[i] < 0) continue; // Each element of the unpack contains Scale elements from this mask. int UnpackIdx = i / Scale; // We only handle the case where V1 feeds the first slots of the unpack. // We rely on canonicalization to ensure this is the case. if ((UnpackIdx % 2 == 0) != (Mask[i] < Size)) return SDValue(); // Setup the mask for this input. The indexing is tricky as we have to // handle the unpack stride. SmallVectorImpl<int> &VMask = (UnpackIdx % 2 == 0) ? V1Mask : V2Mask; VMask[(UnpackIdx / 2) * Scale + i % Scale + (UnpackLo ? 0 : Size / 2)] = Mask[i] % Size; } // If we will have to shuffle both inputs to use the unpack, check whether // we can just unpack first and shuffle the result. If so, skip this unpack. if ((NumLoInputs == 0 || NumHiInputs == 0) && !isNoopShuffleMask(V1Mask) && !isNoopShuffleMask(V2Mask)) return SDValue(); // Shuffle the inputs into place. V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask); V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask); // Cast the inputs to the type we will use to unpack them. V1 = DAG.getBitcast(UnpackVT, V1); V2 = DAG.getBitcast(UnpackVT, V2); // Unpack the inputs and cast the result back to the desired type. return DAG.getBitcast( VT, DAG.getNode(UnpackLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL, UnpackVT, V1, V2)); }; // We try each unpack from the largest to the smallest to try and find one // that fits this mask. int OrigNumElements = VT.getVectorNumElements(); int OrigScalarSize = VT.getScalarSizeInBits(); for (int ScalarSize = 64; ScalarSize >= OrigScalarSize; ScalarSize /= 2) { int Scale = ScalarSize / OrigScalarSize; int NumElements = OrigNumElements / Scale; MVT UnpackVT = MVT::getVectorVT(MVT::getIntegerVT(ScalarSize), NumElements); if (SDValue Unpack = TryUnpack(UnpackVT, Scale)) return Unpack; } // If none of the unpack-rooted lowerings worked (or were profitable) try an // initial unpack. if (NumLoInputs == 0 || NumHiInputs == 0) { assert((NumLoInputs > 0 || NumHiInputs > 0) && "We have to have *some* inputs!"); int HalfOffset = NumLoInputs == 0 ? Size / 2 : 0; // FIXME: We could consider the total complexity of the permute of each // possible unpacking. Or at the least we should consider how many // half-crossings are created. // FIXME: We could consider commuting the unpacks. SmallVector<int, 32> PermMask; PermMask.assign(Size, -1); for (int i = 0; i < Size; ++i) { if (Mask[i] < 0) continue; assert(Mask[i] % Size >= HalfOffset && "Found input from wrong half!"); PermMask[i] = 2 * ((Mask[i] % Size) - HalfOffset) + (Mask[i] < Size ? 0 : 1); } return DAG.getVectorShuffle( VT, DL, DAG.getNode(NumLoInputs == 0 ? X86ISD::UNPCKH : X86ISD::UNPCKL, DL, VT, V1, V2), DAG.getUNDEF(VT), PermMask); } return SDValue(); } /// \brief Handle lowering of 2-lane 64-bit floating point shuffles. /// /// This is the basis function for the 2-lane 64-bit shuffles as we have full /// support for floating point shuffles but not integer shuffles. These /// instructions will incur a domain crossing penalty on some chips though so /// it is better to avoid lowering through this for integer vectors where /// possible. static SDValue lowerV2F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(Op.getSimpleValueType() == MVT::v2f64 && "Bad shuffle type!"); assert(V1.getSimpleValueType() == MVT::v2f64 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v2f64 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); ArrayRef<int> Mask = SVOp->getMask(); assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!"); if (isSingleInputShuffleMask(Mask)) { // Use low duplicate instructions for masks that match their pattern. if (Subtarget->hasSSE3()) if (isShuffleEquivalent(V1, V2, Mask, {0, 0})) return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v2f64, V1); // Straight shuffle of a single input vector. Simulate this by using the // single input as both of the "inputs" to this instruction.. unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1); if (Subtarget->hasAVX()) { // If we have AVX, we can use VPERMILPS which will allow folding a load // into the shuffle. return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v2f64, V1, DAG.getConstant(SHUFPDMask, DL, MVT::i8)); } return DAG.getNode(X86ISD::SHUFP, DL, MVT::v2f64, V1, V1, DAG.getConstant(SHUFPDMask, DL, MVT::i8)); } assert(Mask[0] >= 0 && Mask[0] < 2 && "Non-canonicalized blend!"); assert(Mask[1] >= 2 && "Non-canonicalized blend!"); // If we have a single input, insert that into V1 if we can do so cheaply. if ((Mask[0] >= 2) + (Mask[1] >= 2) == 1) { if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( DL, MVT::v2f64, V1, V2, Mask, Subtarget, DAG)) return Insertion; // Try inverting the insertion since for v2 masks it is easy to do and we // can't reliably sort the mask one way or the other. int InverseMask[2] = {Mask[0] < 0 ? -1 : (Mask[0] ^ 2), Mask[1] < 0 ? -1 : (Mask[1] ^ 2)}; if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( DL, MVT::v2f64, V2, V1, InverseMask, Subtarget, DAG)) return Insertion; } // Try to use one of the special instruction patterns to handle two common // blend patterns if a zero-blend above didn't work. if (isShuffleEquivalent(V1, V2, Mask, {0, 3}) || isShuffleEquivalent(V1, V2, Mask, {1, 3})) if (SDValue V1S = getScalarValueForVectorElement(V1, Mask[0], DAG)) // We can either use a special instruction to load over the low double or // to move just the low double. return DAG.getNode( isShuffleFoldableLoad(V1S) ? X86ISD::MOVLPD : X86ISD::MOVSD, DL, MVT::v2f64, V2, DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, V1S)); if (Subtarget->hasSSE41()) if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2f64, V1, V2, Mask, Subtarget, DAG)) return Blend; // Use dedicated unpack instructions for masks that match their pattern. if (SDValue V = lowerVectorShuffleWithUNPCK(DL, MVT::v2f64, Mask, V1, V2, DAG)) return V; unsigned SHUFPDMask = (Mask[0] == 1) | (((Mask[1] - 2) == 1) << 1); return DAG.getNode(X86ISD::SHUFP, DL, MVT::v2f64, V1, V2, DAG.getConstant(SHUFPDMask, DL, MVT::i8)); } /// \brief Handle lowering of 2-lane 64-bit integer shuffles. /// /// Tries to lower a 2-lane 64-bit shuffle using shuffle operations provided by /// the integer unit to minimize domain crossing penalties. However, for blends /// it falls back to the floating point shuffle operation with appropriate bit /// casting. static SDValue lowerV2I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(Op.getSimpleValueType() == MVT::v2i64 && "Bad shuffle type!"); assert(V1.getSimpleValueType() == MVT::v2i64 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v2i64 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); ArrayRef<int> Mask = SVOp->getMask(); assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!"); if (isSingleInputShuffleMask(Mask)) { // Check for being able to broadcast a single element. if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v2i64, V1, Mask, Subtarget, DAG)) return Broadcast; // Straight shuffle of a single input vector. For everything from SSE2 // onward this has a single fast instruction with no scary immediates. // We have to map the mask as it is actually a v4i32 shuffle instruction. V1 = DAG.getBitcast(MVT::v4i32, V1); int WidenedMask[4] = { std::max(Mask[0], 0) * 2, std::max(Mask[0], 0) * 2 + 1, std::max(Mask[1], 0) * 2, std::max(Mask[1], 0) * 2 + 1}; return DAG.getBitcast( MVT::v2i64, DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1, getV4X86ShuffleImm8ForMask(WidenedMask, DL, DAG))); } assert(Mask[0] != -1 && "No undef lanes in multi-input v2 shuffles!"); assert(Mask[1] != -1 && "No undef lanes in multi-input v2 shuffles!"); assert(Mask[0] < 2 && "We sort V1 to be the first input."); assert(Mask[1] >= 2 && "We sort V2 to be the second input."); // If we have a blend of two PACKUS operations an the blend aligns with the // low and half halves, we can just merge the PACKUS operations. This is // particularly important as it lets us merge shuffles that this routine itself // creates. auto GetPackNode = [](SDValue V) { while (V.getOpcode() == ISD::BITCAST) V = V.getOperand(0); return V.getOpcode() == X86ISD::PACKUS ? V : SDValue(); }; if (SDValue V1Pack = GetPackNode(V1)) if (SDValue V2Pack = GetPackNode(V2)) return DAG.getBitcast(MVT::v2i64, DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, Mask[0] == 0 ? V1Pack.getOperand(0) : V1Pack.getOperand(1), Mask[1] == 2 ? V2Pack.getOperand(0) : V2Pack.getOperand(1))); // Try to use shift instructions. if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v2i64, V1, V2, Mask, DAG)) return Shift; // When loading a scalar and then shuffling it into a vector we can often do // the insertion cheaply. if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG)) return Insertion; // Try inverting the insertion since for v2 masks it is easy to do and we // can't reliably sort the mask one way or the other. int InverseMask[2] = {Mask[0] ^ 2, Mask[1] ^ 2}; if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( DL, MVT::v2i64, V2, V1, InverseMask, Subtarget, DAG)) return Insertion; // We have different paths for blend lowering, but they all must use the // *exact* same predicate. bool IsBlendSupported = Subtarget->hasSSE41(); if (IsBlendSupported) if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG)) return Blend; // Use dedicated unpack instructions for masks that match their pattern. if (SDValue V = lowerVectorShuffleWithUNPCK(DL, MVT::v2i64, Mask, V1, V2, DAG)) return V; // Try to use byte rotation instructions. // Its more profitable for pre-SSSE3 to use shuffles/unpacks. if (Subtarget->hasSSSE3()) if (SDValue Rotate = lowerVectorShuffleAsByteRotate( DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG)) return Rotate; // If we have direct support for blends, we should lower by decomposing into // a permute. That will be faster than the domain cross. if (IsBlendSupported) return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v2i64, V1, V2, Mask, DAG); // We implement this with SHUFPD which is pretty lame because it will likely // incur 2 cycles of stall for integer vectors on Nehalem and older chips. // However, all the alternatives are still more cycles and newer chips don't // have this problem. It would be really nice if x86 had better shuffles here. V1 = DAG.getBitcast(MVT::v2f64, V1); V2 = DAG.getBitcast(MVT::v2f64, V2); return DAG.getBitcast(MVT::v2i64, DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask)); } /// \brief Test whether this can be lowered with a single SHUFPS instruction. /// /// This is used to disable more specialized lowerings when the shufps lowering /// will happen to be efficient. static bool isSingleSHUFPSMask(ArrayRef<int> Mask) { // This routine only handles 128-bit shufps. assert(Mask.size() == 4 && "Unsupported mask size!"); // To lower with a single SHUFPS we need to have the low half and high half // each requiring a single input. if (Mask[0] != -1 && Mask[1] != -1 && (Mask[0] < 4) != (Mask[1] < 4)) return false; if (Mask[2] != -1 && Mask[3] != -1 && (Mask[2] < 4) != (Mask[3] < 4)) return false; return true; } /// \brief Lower a vector shuffle using the SHUFPS instruction. /// /// This is a helper routine dedicated to lowering vector shuffles using SHUFPS. /// It makes no assumptions about whether this is the *best* lowering, it simply /// uses it. static SDValue lowerVectorShuffleWithSHUFPS(SDLoc DL, MVT VT, ArrayRef<int> Mask, SDValue V1, SDValue V2, SelectionDAG &DAG) { SDValue LowV = V1, HighV = V2; int NewMask[4] = {Mask[0], Mask[1], Mask[2], Mask[3]}; int NumV2Elements = std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }); if (NumV2Elements == 1) { int V2Index = std::find_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }) - Mask.begin(); // Compute the index adjacent to V2Index and in the same half by toggling // the low bit. int V2AdjIndex = V2Index ^ 1; if (Mask[V2AdjIndex] == -1) { // Handles all the cases where we have a single V2 element and an undef. // This will only ever happen in the high lanes because we commute the // vector otherwise. if (V2Index < 2) std::swap(LowV, HighV); NewMask[V2Index] -= 4; } else { // Handle the case where the V2 element ends up adjacent to a V1 element. // To make this work, blend them together as the first step. int V1Index = V2AdjIndex; int BlendMask[4] = {Mask[V2Index] - 4, 0, Mask[V1Index], 0}; V2 = DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1, getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG)); // Now proceed to reconstruct the final blend as we have the necessary // high or low half formed. if (V2Index < 2) { LowV = V2; HighV = V1; } else { HighV = V2; } NewMask[V1Index] = 2; // We put the V1 element in V2[2]. NewMask[V2Index] = 0; // We shifted the V2 element into V2[0]. } } else if (NumV2Elements == 2) { if (Mask[0] < 4 && Mask[1] < 4) { // Handle the easy case where we have V1 in the low lanes and V2 in the // high lanes. NewMask[2] -= 4; NewMask[3] -= 4; } else if (Mask[2] < 4 && Mask[3] < 4) { // We also handle the reversed case because this utility may get called // when we detect a SHUFPS pattern but can't easily commute the shuffle to // arrange things in the right direction. NewMask[0] -= 4; NewMask[1] -= 4; HighV = V1; LowV = V2; } else { // We have a mixture of V1 and V2 in both low and high lanes. Rather than // trying to place elements directly, just blend them and set up the final // shuffle to place them. // The first two blend mask elements are for V1, the second two are for // V2. int BlendMask[4] = {Mask[0] < 4 ? Mask[0] : Mask[1], Mask[2] < 4 ? Mask[2] : Mask[3], (Mask[0] >= 4 ? Mask[0] : Mask[1]) - 4, (Mask[2] >= 4 ? Mask[2] : Mask[3]) - 4}; V1 = DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2, getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG)); // Now we do a normal shuffle of V1 by giving V1 as both operands to // a blend. LowV = HighV = V1; NewMask[0] = Mask[0] < 4 ? 0 : 2; NewMask[1] = Mask[0] < 4 ? 2 : 0; NewMask[2] = Mask[2] < 4 ? 1 : 3; NewMask[3] = Mask[2] < 4 ? 3 : 1; } } return DAG.getNode(X86ISD::SHUFP, DL, VT, LowV, HighV, getV4X86ShuffleImm8ForMask(NewMask, DL, DAG)); } /// \brief Lower 4-lane 32-bit floating point shuffles. /// /// Uses instructions exclusively from the floating point unit to minimize /// domain crossing penalties, as these are sufficient to implement all v4f32 /// shuffles. static SDValue lowerV4F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!"); assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); ArrayRef<int> Mask = SVOp->getMask(); assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); int NumV2Elements = std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }); if (NumV2Elements == 0) { // Check for being able to broadcast a single element. if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4f32, V1, Mask, Subtarget, DAG)) return Broadcast; // Use even/odd duplicate instructions for masks that match their pattern. if (Subtarget->hasSSE3()) { if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2})) return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v4f32, V1); if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3})) return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v4f32, V1); } if (Subtarget->hasAVX()) { // If we have AVX, we can use VPERMILPS which will allow folding a load // into the shuffle. return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f32, V1, getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); } // Otherwise, use a straight shuffle of a single input vector. We pass the // input vector to both operands to simulate this with a SHUFPS. return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V1, getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); } // There are special ways we can lower some single-element blends. However, we // have custom ways we can lower more complex single-element blends below that // we defer to if both this and BLENDPS fail to match, so restrict this to // when the V2 input is targeting element 0 of the mask -- that is the fast // case here. if (NumV2Elements == 1 && Mask[0] >= 4) if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v4f32, V1, V2, Mask, Subtarget, DAG)) return V; if (Subtarget->hasSSE41()) { if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f32, V1, V2, Mask, Subtarget, DAG)) return Blend; // Use INSERTPS if we can complete the shuffle efficiently. if (SDValue V = lowerVectorShuffleAsInsertPS(Op, V1, V2, Mask, DAG)) return V; if (!isSingleSHUFPSMask(Mask)) if (SDValue BlendPerm = lowerVectorShuffleAsBlendAndPermute( DL, MVT::v4f32, V1, V2, Mask, DAG)) return BlendPerm; } // Use dedicated unpack instructions for masks that match their pattern. if (SDValue V = lowerVectorShuffleWithUNPCK(DL, MVT::v4f32, Mask, V1, V2, DAG)) return V; // Otherwise fall back to a SHUFPS lowering strategy. return lowerVectorShuffleWithSHUFPS(DL, MVT::v4f32, Mask, V1, V2, DAG); } /// \brief Lower 4-lane i32 vector shuffles. /// /// We try to handle these with integer-domain shuffles where we can, but for /// blends we use the floating point domain blend instructions. static SDValue lowerV4I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(Op.getSimpleValueType() == MVT::v4i32 && "Bad shuffle type!"); assert(V1.getSimpleValueType() == MVT::v4i32 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v4i32 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); ArrayRef<int> Mask = SVOp->getMask(); assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); // Whenever we can lower this as a zext, that instruction is strictly faster // than any alternative. It also allows us to fold memory operands into the // shuffle in many cases. if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG)) return ZExt; int NumV2Elements = std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }); if (NumV2Elements == 0) { // Check for being able to broadcast a single element. if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4i32, V1, Mask, Subtarget, DAG)) return Broadcast; // Straight shuffle of a single input vector. For everything from SSE2 // onward this has a single fast instruction with no scary immediates. // We coerce the shuffle pattern to be compatible with UNPCK instructions // but we aren't actually going to use the UNPCK instruction because doing // so prevents folding a load into this instruction or making a copy. const int UnpackLoMask[] = {0, 0, 1, 1}; const int UnpackHiMask[] = {2, 2, 3, 3}; if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 1, 1})) Mask = UnpackLoMask; else if (isShuffleEquivalent(V1, V2, Mask, {2, 2, 3, 3})) Mask = UnpackHiMask; return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1, getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); } // Try to use shift instructions. if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v4i32, V1, V2, Mask, DAG)) return Shift; // There are special ways we can lower some single-element blends. if (NumV2Elements == 1) if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG)) return V; // We have different paths for blend lowering, but they all must use the // *exact* same predicate. bool IsBlendSupported = Subtarget->hasSSE41(); if (IsBlendSupported) if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG)) return Blend; if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, MVT::v4i32, V1, V2, Mask, DAG)) return Masked; // Use dedicated unpack instructions for masks that match their pattern. if (SDValue V = lowerVectorShuffleWithUNPCK(DL, MVT::v4i32, Mask, V1, V2, DAG)) return V; // Try to use byte rotation instructions. // Its more profitable for pre-SSSE3 to use shuffles/unpacks. if (Subtarget->hasSSSE3()) if (SDValue Rotate = lowerVectorShuffleAsByteRotate( DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG)) return Rotate; // If we have direct support for blends, we should lower by decomposing into // a permute. That will be faster than the domain cross. if (IsBlendSupported) return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i32, V1, V2, Mask, DAG); // Try to lower by permuting the inputs into an unpack instruction. if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(DL, MVT::v4i32, V1, V2, Mask, DAG)) return Unpack; // We implement this with SHUFPS because it can blend from two vectors. // Because we're going to eventually use SHUFPS, we use SHUFPS even to build // up the inputs, bypassing domain shift penalties that we would encur if we // directly used PSHUFD on Nehalem and older. For newer chips, this isn't // relevant. return DAG.getBitcast( MVT::v4i32, DAG.getVectorShuffle(MVT::v4f32, DL, DAG.getBitcast(MVT::v4f32, V1), DAG.getBitcast(MVT::v4f32, V2), Mask)); } /// \brief Lowering of single-input v8i16 shuffles is the cornerstone of SSE2 /// shuffle lowering, and the most complex part. /// /// The lowering strategy is to try to form pairs of input lanes which are /// targeted at the same half of the final vector, and then use a dword shuffle /// to place them onto the right half, and finally unpack the paired lanes into /// their final position. /// /// The exact breakdown of how to form these dword pairs and align them on the /// correct sides is really tricky. See the comments within the function for /// more of the details. /// /// This code also handles repeated 128-bit lanes of v8i16 shuffles, but each /// lane must shuffle the *exact* same way. In fact, you must pass a v8 Mask to /// this routine for it to work correctly. To shuffle a 256-bit or 512-bit i16 /// vector, form the analogous 128-bit 8-element Mask. static SDValue lowerV8I16GeneralSingleInputVectorShuffle( SDLoc DL, MVT VT, SDValue V, MutableArrayRef<int> Mask, const X86Subtarget *Subtarget, SelectionDAG &DAG) { assert(VT.getVectorElementType() == MVT::i16 && "Bad input type!"); MVT PSHUFDVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2); assert(Mask.size() == 8 && "Shuffle mask length doen't match!"); MutableArrayRef<int> LoMask = Mask.slice(0, 4); MutableArrayRef<int> HiMask = Mask.slice(4, 4); SmallVector<int, 4> LoInputs; std::copy_if(LoMask.begin(), LoMask.end(), std::back_inserter(LoInputs), [](int M) { return M >= 0; }); std::sort(LoInputs.begin(), LoInputs.end()); LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), LoInputs.end()); SmallVector<int, 4> HiInputs; std::copy_if(HiMask.begin(), HiMask.end(), std::back_inserter(HiInputs), [](int M) { return M >= 0; }); std::sort(HiInputs.begin(), HiInputs.end()); HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), HiInputs.end()); int NumLToL = std::lower_bound(LoInputs.begin(), LoInputs.end(), 4) - LoInputs.begin(); int NumHToL = LoInputs.size() - NumLToL; int NumLToH = std::lower_bound(HiInputs.begin(), HiInputs.end(), 4) - HiInputs.begin(); int NumHToH = HiInputs.size() - NumLToH; MutableArrayRef<int> LToLInputs(LoInputs.data(), NumLToL); MutableArrayRef<int> LToHInputs(HiInputs.data(), NumLToH); MutableArrayRef<int> HToLInputs(LoInputs.data() + NumLToL, NumHToL); MutableArrayRef<int> HToHInputs(HiInputs.data() + NumLToH, NumHToH); // Simplify the 1-into-3 and 3-into-1 cases with a single pshufd. For all // such inputs we can swap two of the dwords across the half mark and end up // with <=2 inputs to each half in each half. Once there, we can fall through // to the generic code below. For example: // // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h] // Mask: [0, 1, 2, 7, 4, 5, 6, 3] -----------------> [0, 1, 4, 7, 2, 3, 6, 5] // // However in some very rare cases we have a 1-into-3 or 3-into-1 on one half // and an existing 2-into-2 on the other half. In this case we may have to // pre-shuffle the 2-into-2 half to avoid turning it into a 3-into-1 or // 1-into-3 which could cause us to cycle endlessly fixing each side in turn. // Fortunately, we don't have to handle anything but a 2-into-2 pattern // because any other situation (including a 3-into-1 or 1-into-3 in the other // half than the one we target for fixing) will be fixed when we re-enter this // path. We will also combine away any sequence of PSHUFD instructions that // result into a single instruction. Here is an example of the tricky case: // // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h] // Mask: [3, 7, 1, 0, 2, 7, 3, 5] -THIS-IS-BAD!!!!-> [5, 7, 1, 0, 4, 7, 5, 3] // // This now has a 1-into-3 in the high half! Instead, we do two shuffles: // // Input: [a, b, c, d, e, f, g, h] PSHUFHW[0,2,1,3]-> [a, b, c, d, e, g, f, h] // Mask: [3, 7, 1, 0, 2, 7, 3, 5] -----------------> [3, 7, 1, 0, 2, 7, 3, 6] // // Input: [a, b, c, d, e, g, f, h] -PSHUFD[0,2,1,3]-> [a, b, e, g, c, d, f, h] // Mask: [3, 7, 1, 0, 2, 7, 3, 6] -----------------> [5, 7, 1, 0, 4, 7, 5, 6] // // The result is fine to be handled by the generic logic. auto balanceSides = [&](ArrayRef<int> AToAInputs, ArrayRef<int> BToAInputs, ArrayRef<int> BToBInputs, ArrayRef<int> AToBInputs, int AOffset, int BOffset) { assert((AToAInputs.size() == 3 || AToAInputs.size() == 1) && "Must call this with A having 3 or 1 inputs from the A half."); assert((BToAInputs.size() == 1 || BToAInputs.size() == 3) && "Must call this with B having 1 or 3 inputs from the B half."); assert(AToAInputs.size() + BToAInputs.size() == 4 && "Must call this with either 3:1 or 1:3 inputs (summing to 4)."); bool ThreeAInputs = AToAInputs.size() == 3; // Compute the index of dword with only one word among the three inputs in // a half by taking the sum of the half with three inputs and subtracting // the sum of the actual three inputs. The difference is the remaining // slot. int ADWord, BDWord; int &TripleDWord = ThreeAInputs ? ADWord : BDWord; int &OneInputDWord = ThreeAInputs ? BDWord : ADWord; int TripleInputOffset = ThreeAInputs ? AOffset : BOffset; ArrayRef<int> TripleInputs = ThreeAInputs ? AToAInputs : BToAInputs; int OneInput = ThreeAInputs ? BToAInputs[0] : AToAInputs[0]; int TripleInputSum = 0 + 1 + 2 + 3 + (4 * TripleInputOffset); int TripleNonInputIdx = TripleInputSum - std::accumulate(TripleInputs.begin(), TripleInputs.end(), 0); TripleDWord = TripleNonInputIdx / 2; // We use xor with one to compute the adjacent DWord to whichever one the // OneInput is in. OneInputDWord = (OneInput / 2) ^ 1; // Check for one tricky case: We're fixing a 3<-1 or a 1<-3 shuffle for AToA // and BToA inputs. If there is also such a problem with the BToB and AToB // inputs, we don't try to fix it necessarily -- we'll recurse and see it in // the next pass. However, if we have a 2<-2 in the BToB and AToB inputs, it // is essential that we don't *create* a 3<-1 as then we might oscillate. if (BToBInputs.size() == 2 && AToBInputs.size() == 2) { // Compute how many inputs will be flipped by swapping these DWords. We // need // to balance this to ensure we don't form a 3-1 shuffle in the other // half. int NumFlippedAToBInputs = std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord) + std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord + 1); int NumFlippedBToBInputs = std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord) + std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord + 1); if ((NumFlippedAToBInputs == 1 && (NumFlippedBToBInputs == 0 || NumFlippedBToBInputs == 2)) || (NumFlippedBToBInputs == 1 && (NumFlippedAToBInputs == 0 || NumFlippedAToBInputs == 2))) { // We choose whether to fix the A half or B half based on whether that // half has zero flipped inputs. At zero, we may not be able to fix it // with that half. We also bias towards fixing the B half because that // will more commonly be the high half, and we have to bias one way. auto FixFlippedInputs = [&V, &DL, &Mask, &DAG](int PinnedIdx, int DWord, ArrayRef<int> Inputs) { int FixIdx = PinnedIdx ^ 1; // The adjacent slot to the pinned slot. bool IsFixIdxInput = std::find(Inputs.begin(), Inputs.end(), PinnedIdx ^ 1) != Inputs.end(); // Determine whether the free index is in the flipped dword or the // unflipped dword based on where the pinned index is. We use this bit // in an xor to conditionally select the adjacent dword. int FixFreeIdx = 2 * (DWord ^ (PinnedIdx / 2 == DWord)); bool IsFixFreeIdxInput = std::find(Inputs.begin(), Inputs.end(), FixFreeIdx) != Inputs.end(); if (IsFixIdxInput == IsFixFreeIdxInput) FixFreeIdx += 1; IsFixFreeIdxInput = std::find(Inputs.begin(), Inputs.end(), FixFreeIdx) != Inputs.end(); assert(IsFixIdxInput != IsFixFreeIdxInput && "We need to be changing the number of flipped inputs!"); int PSHUFHalfMask[] = {0, 1, 2, 3}; std::swap(PSHUFHalfMask[FixFreeIdx % 4], PSHUFHalfMask[FixIdx % 4]); V = DAG.getNode(FixIdx < 4 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW, DL, MVT::v8i16, V, getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DL, DAG)); for (int &M : Mask) if (M != -1 && M == FixIdx) M = FixFreeIdx; else if (M != -1 && M == FixFreeIdx) M = FixIdx; }; if (NumFlippedBToBInputs != 0) { int BPinnedIdx = BToAInputs.size() == 3 ? TripleNonInputIdx : OneInput; FixFlippedInputs(BPinnedIdx, BDWord, BToBInputs); } else { assert(NumFlippedAToBInputs != 0 && "Impossible given predicates!"); int APinnedIdx = ThreeAInputs ? TripleNonInputIdx : OneInput; FixFlippedInputs(APinnedIdx, ADWord, AToBInputs); } } } int PSHUFDMask[] = {0, 1, 2, 3}; PSHUFDMask[ADWord] = BDWord; PSHUFDMask[BDWord] = ADWord; V = DAG.getBitcast( VT, DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V), getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG))); // Adjust the mask to match the new locations of A and B. for (int &M : Mask) if (M != -1 && M/2 == ADWord) M = 2 * BDWord + M % 2; else if (M != -1 && M/2 == BDWord) M = 2 * ADWord + M % 2; // Recurse back into this routine to re-compute state now that this isn't // a 3 and 1 problem. return lowerV8I16GeneralSingleInputVectorShuffle(DL, VT, V, Mask, Subtarget, DAG); }; if ((NumLToL == 3 && NumHToL == 1) || (NumLToL == 1 && NumHToL == 3)) return balanceSides(LToLInputs, HToLInputs, HToHInputs, LToHInputs, 0, 4); else if ((NumHToH == 3 && NumLToH == 1) || (NumHToH == 1 && NumLToH == 3)) return balanceSides(HToHInputs, LToHInputs, LToLInputs, HToLInputs, 4, 0); // At this point there are at most two inputs to the low and high halves from // each half. That means the inputs can always be grouped into dwords and // those dwords can then be moved to the correct half with a dword shuffle. // We use at most one low and one high word shuffle to collect these paired // inputs into dwords, and finally a dword shuffle to place them. int PSHUFLMask[4] = {-1, -1, -1, -1}; int PSHUFHMask[4] = {-1, -1, -1, -1}; int PSHUFDMask[4] = {-1, -1, -1, -1}; // First fix the masks for all the inputs that are staying in their // original halves. This will then dictate the targets of the cross-half // shuffles. auto fixInPlaceInputs = [&PSHUFDMask](ArrayRef<int> InPlaceInputs, ArrayRef<int> IncomingInputs, MutableArrayRef<int> SourceHalfMask, MutableArrayRef<int> HalfMask, int HalfOffset) { if (InPlaceInputs.empty()) return; if (InPlaceInputs.size() == 1) { SourceHalfMask[InPlaceInputs[0] - HalfOffset] = InPlaceInputs[0] - HalfOffset; PSHUFDMask[InPlaceInputs[0] / 2] = InPlaceInputs[0] / 2; return; } if (IncomingInputs.empty()) { // Just fix all of the in place inputs. for (int Input : InPlaceInputs) { SourceHalfMask[Input - HalfOffset] = Input - HalfOffset; PSHUFDMask[Input / 2] = Input / 2; } return; } assert(InPlaceInputs.size() == 2 && "Cannot handle 3 or 4 inputs!"); SourceHalfMask[InPlaceInputs[0] - HalfOffset] = InPlaceInputs[0] - HalfOffset; // Put the second input next to the first so that they are packed into // a dword. We find the adjacent index by toggling the low bit. int AdjIndex = InPlaceInputs[0] ^ 1; SourceHalfMask[AdjIndex - HalfOffset] = InPlaceInputs[1] - HalfOffset; std::replace(HalfMask.begin(), HalfMask.end(), InPlaceInputs[1], AdjIndex); PSHUFDMask[AdjIndex / 2] = AdjIndex / 2; }; fixInPlaceInputs(LToLInputs, HToLInputs, PSHUFLMask, LoMask, 0); fixInPlaceInputs(HToHInputs, LToHInputs, PSHUFHMask, HiMask, 4); // Now gather the cross-half inputs and place them into a free dword of // their target half. // FIXME: This operation could almost certainly be simplified dramatically to // look more like the 3-1 fixing operation. auto moveInputsToRightHalf = [&PSHUFDMask]( MutableArrayRef<int> IncomingInputs, ArrayRef<int> ExistingInputs, MutableArrayRef<int> SourceHalfMask, MutableArrayRef<int> HalfMask, MutableArrayRef<int> FinalSourceHalfMask, int SourceOffset, int DestOffset) { auto isWordClobbered = [](ArrayRef<int> SourceHalfMask, int Word) { return SourceHalfMask[Word] != -1 && SourceHalfMask[Word] != Word; }; auto isDWordClobbered = [&isWordClobbered](ArrayRef<int> SourceHalfMask, int Word) { int LowWord = Word & ~1; int HighWord = Word | 1; return isWordClobbered(SourceHalfMask, LowWord) || isWordClobbered(SourceHalfMask, HighWord); }; if (IncomingInputs.empty()) return; if (ExistingInputs.empty()) { // Map any dwords with inputs from them into the right half. for (int Input : IncomingInputs) { // If the source half mask maps over the inputs, turn those into // swaps and use the swapped lane. if (isWordClobbered(SourceHalfMask, Input - SourceOffset)) { if (SourceHalfMask[SourceHalfMask[Input - SourceOffset]] == -1) { SourceHalfMask[SourceHalfMask[Input - SourceOffset]] = Input - SourceOffset; // We have to swap the uses in our half mask in one sweep. for (int &M : HalfMask) if (M == SourceHalfMask[Input - SourceOffset] + SourceOffset) M = Input; else if (M == Input) M = SourceHalfMask[Input - SourceOffset] + SourceOffset; } else { assert(SourceHalfMask[SourceHalfMask[Input - SourceOffset]] == Input - SourceOffset && "Previous placement doesn't match!"); } // Note that this correctly re-maps both when we do a swap and when // we observe the other side of the swap above. We rely on that to // avoid swapping the members of the input list directly. Input = SourceHalfMask[Input - SourceOffset] + SourceOffset; } // Map the input's dword into the correct half. if (PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] == -1) PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] = Input / 2; else assert(PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] == Input / 2 && "Previous placement doesn't match!"); } // And just directly shift any other-half mask elements to be same-half // as we will have mirrored the dword containing the element into the // same position within that half. for (int &M : HalfMask) if (M >= SourceOffset && M < SourceOffset + 4) { M = M - SourceOffset + DestOffset; assert(M >= 0 && "This should never wrap below zero!"); } return; } // Ensure we have the input in a viable dword of its current half. This // is particularly tricky because the original position may be clobbered // by inputs being moved and *staying* in that half. if (IncomingInputs.size() == 1) { if (isWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) { int InputFixed = std::find(std::begin(SourceHalfMask), std::end(SourceHalfMask), -1) - std::begin(SourceHalfMask) + SourceOffset; SourceHalfMask[InputFixed - SourceOffset] = IncomingInputs[0] - SourceOffset; std::replace(HalfMask.begin(), HalfMask.end(), IncomingInputs[0], InputFixed); IncomingInputs[0] = InputFixed; } } else if (IncomingInputs.size() == 2) { if (IncomingInputs[0] / 2 != IncomingInputs[1] / 2 || isDWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) { // We have two non-adjacent or clobbered inputs we need to extract from // the source half. To do this, we need to map them into some adjacent // dword slot in the source mask. int InputsFixed[2] = {IncomingInputs[0] - SourceOffset, IncomingInputs[1] - SourceOffset}; // If there is a free slot in the source half mask adjacent to one of // the inputs, place the other input in it. We use (Index XOR 1) to // compute an adjacent index. if (!isWordClobbered(SourceHalfMask, InputsFixed[0]) && SourceHalfMask[InputsFixed[0] ^ 1] == -1) { SourceHalfMask[InputsFixed[0]] = InputsFixed[0]; SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1]; InputsFixed[1] = InputsFixed[0] ^ 1; } else if (!isWordClobbered(SourceHalfMask, InputsFixed[1]) && SourceHalfMask[InputsFixed[1] ^ 1] == -1) { SourceHalfMask[InputsFixed[1]] = InputsFixed[1]; SourceHalfMask[InputsFixed[1] ^ 1] = InputsFixed[0]; InputsFixed[0] = InputsFixed[1] ^ 1; } else if (SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] == -1 && SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] == -1) { // The two inputs are in the same DWord but it is clobbered and the // adjacent DWord isn't used at all. Move both inputs to the free // slot. SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] = InputsFixed[0]; SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] = InputsFixed[1]; InputsFixed[0] = 2 * ((InputsFixed[0] / 2) ^ 1); InputsFixed[1] = 2 * ((InputsFixed[0] / 2) ^ 1) + 1; } else { // The only way we hit this point is if there is no clobbering // (because there are no off-half inputs to this half) and there is no // free slot adjacent to one of the inputs. In this case, we have to // swap an input with a non-input. for (int i = 0; i < 4; ++i) assert((SourceHalfMask[i] == -1 || SourceHalfMask[i] == i) && "We can't handle any clobbers here!"); assert(InputsFixed[1] != (InputsFixed[0] ^ 1) && "Cannot have adjacent inputs here!"); SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1]; SourceHalfMask[InputsFixed[1]] = InputsFixed[0] ^ 1; // We also have to update the final source mask in this case because // it may need to undo the above swap. for (int &M : FinalSourceHalfMask) if (M == (InputsFixed[0] ^ 1) + SourceOffset) M = InputsFixed[1] + SourceOffset; else if (M == InputsFixed[1] + SourceOffset) M = (InputsFixed[0] ^ 1) + SourceOffset; InputsFixed[1] = InputsFixed[0] ^ 1; } // Point everything at the fixed inputs. for (int &M : HalfMask) if (M == IncomingInputs[0]) M = InputsFixed[0] + SourceOffset; else if (M == IncomingInputs[1]) M = InputsFixed[1] + SourceOffset; IncomingInputs[0] = InputsFixed[0] + SourceOffset; IncomingInputs[1] = InputsFixed[1] + SourceOffset; } } else { llvm_unreachable("Unhandled input size!"); } // Now hoist the DWord down to the right half. int FreeDWord = (PSHUFDMask[DestOffset / 2] == -1 ? 0 : 1) + DestOffset / 2; assert(PSHUFDMask[FreeDWord] == -1 && "DWord not free"); PSHUFDMask[FreeDWord] = IncomingInputs[0] / 2; for (int &M : HalfMask) for (int Input : IncomingInputs) if (M == Input) M = FreeDWord * 2 + Input % 2; }; moveInputsToRightHalf(HToLInputs, LToLInputs, PSHUFHMask, LoMask, HiMask, /*SourceOffset*/ 4, /*DestOffset*/ 0); moveInputsToRightHalf(LToHInputs, HToHInputs, PSHUFLMask, HiMask, LoMask, /*SourceOffset*/ 0, /*DestOffset*/ 4); // Now enact all the shuffles we've computed to move the inputs into their // target half. if (!isNoopShuffleMask(PSHUFLMask)) V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V, getV4X86ShuffleImm8ForMask(PSHUFLMask, DL, DAG)); if (!isNoopShuffleMask(PSHUFHMask)) V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V, getV4X86ShuffleImm8ForMask(PSHUFHMask, DL, DAG)); if (!isNoopShuffleMask(PSHUFDMask)) V = DAG.getBitcast( VT, DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V), getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG))); // At this point, each half should contain all its inputs, and we can then // just shuffle them into their final position. assert(std::count_if(LoMask.begin(), LoMask.end(), [](int M) { return M >= 4; }) == 0 && "Failed to lift all the high half inputs to the low mask!"); assert(std::count_if(HiMask.begin(), HiMask.end(), [](int M) { return M >= 0 && M < 4; }) == 0 && "Failed to lift all the low half inputs to the high mask!"); // Do a half shuffle for the low mask. if (!isNoopShuffleMask(LoMask)) V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V, getV4X86ShuffleImm8ForMask(LoMask, DL, DAG)); // Do a half shuffle with the high mask after shifting its values down. for (int &M : HiMask) if (M >= 0) M -= 4; if (!isNoopShuffleMask(HiMask)) V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V, getV4X86ShuffleImm8ForMask(HiMask, DL, DAG)); return V; } /// \brief Helper to form a PSHUFB-based shuffle+blend. static SDValue lowerVectorShuffleAsPSHUFB(SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, SelectionDAG &DAG, bool &V1InUse, bool &V2InUse) { SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); SDValue V1Mask[16]; SDValue V2Mask[16]; V1InUse = false; V2InUse = false; int Size = Mask.size(); int Scale = 16 / Size; for (int i = 0; i < 16; ++i) { if (Mask[i / Scale] == -1) { V1Mask[i] = V2Mask[i] = DAG.getUNDEF(MVT::i8); } else { const int ZeroMask = 0x80; int V1Idx = Mask[i / Scale] < Size ? Mask[i / Scale] * Scale + i % Scale : ZeroMask; int V2Idx = Mask[i / Scale] < Size ? ZeroMask : (Mask[i / Scale] - Size) * Scale + i % Scale; if (Zeroable[i / Scale]) V1Idx = V2Idx = ZeroMask; V1Mask[i] = DAG.getConstant(V1Idx, DL, MVT::i8); V2Mask[i] = DAG.getConstant(V2Idx, DL, MVT::i8); V1InUse |= (ZeroMask != V1Idx); V2InUse |= (ZeroMask != V2Idx); } } if (V1InUse) V1 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, DAG.getBitcast(MVT::v16i8, V1), DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V1Mask)); if (V2InUse) V2 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, DAG.getBitcast(MVT::v16i8, V2), DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V2Mask)); // If we need shuffled inputs from both, blend the two. SDValue V; if (V1InUse && V2InUse) V = DAG.getNode(ISD::OR, DL, MVT::v16i8, V1, V2); else V = V1InUse ? V1 : V2; // Cast the result back to the correct type. return DAG.getBitcast(VT, V); } /// \brief Generic lowering of 8-lane i16 shuffles. /// /// This handles both single-input shuffles and combined shuffle/blends with /// two inputs. The single input shuffles are immediately delegated to /// a dedicated lowering routine. /// /// The blends are lowered in one of three fundamental ways. If there are few /// enough inputs, it delegates to a basic UNPCK-based strategy. If the shuffle /// of the input is significantly cheaper when lowered as an interleaving of /// the two inputs, try to interleave them. Otherwise, blend the low and high /// halves of the inputs separately (making them have relatively few inputs) /// and then concatenate them. static SDValue lowerV8I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(Op.getSimpleValueType() == MVT::v8i16 && "Bad shuffle type!"); assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); ArrayRef<int> OrigMask = SVOp->getMask(); int MaskStorage[8] = {OrigMask[0], OrigMask[1], OrigMask[2], OrigMask[3], OrigMask[4], OrigMask[5], OrigMask[6], OrigMask[7]}; MutableArrayRef<int> Mask(MaskStorage); assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); // Whenever we can lower this as a zext, that instruction is strictly faster // than any alternative. if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( DL, MVT::v8i16, V1, V2, OrigMask, Subtarget, DAG)) return ZExt; auto isV1 = [](int M) { return M >= 0 && M < 8; }; (void)isV1; auto isV2 = [](int M) { return M >= 8; }; int NumV2Inputs = std::count_if(Mask.begin(), Mask.end(), isV2); if (NumV2Inputs == 0) { // Check for being able to broadcast a single element. if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8i16, V1, Mask, Subtarget, DAG)) return Broadcast; // Try to use shift instructions. if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V1, Mask, DAG)) return Shift; // Use dedicated unpack instructions for masks that match their pattern. if (SDValue V = lowerVectorShuffleWithUNPCK(DL, MVT::v8i16, Mask, V1, V2, DAG)) return V; // Try to use byte rotation instructions. if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v8i16, V1, V1, Mask, Subtarget, DAG)) return Rotate; return lowerV8I16GeneralSingleInputVectorShuffle(DL, MVT::v8i16, V1, Mask, Subtarget, DAG); } assert(std::any_of(Mask.begin(), Mask.end(), isV1) && "All single-input shuffles should be canonicalized to be V1-input " "shuffles."); // Try to use shift instructions. if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V2, Mask, DAG)) return Shift; // See if we can use SSE4A Extraction / Insertion. if (Subtarget->hasSSE4A()) if (SDValue V = lowerVectorShuffleWithSSE4A(DL, MVT::v8i16, V1, V2, Mask, DAG)) return V; // There are special ways we can lower some single-element blends. if (NumV2Inputs == 1) if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG)) return V; // We have different paths for blend lowering, but they all must use the // *exact* same predicate. bool IsBlendSupported = Subtarget->hasSSE41(); if (IsBlendSupported) if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG)) return Blend; if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, MVT::v8i16, V1, V2, Mask, DAG)) return Masked; // Use dedicated unpack instructions for masks that match their pattern. if (SDValue V = lowerVectorShuffleWithUNPCK(DL, MVT::v8i16, Mask, V1, V2, DAG)) return V; // Try to use byte rotation instructions. if (SDValue Rotate = lowerVectorShuffleAsByteRotate( DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG)) return Rotate; if (SDValue BitBlend = lowerVectorShuffleAsBitBlend(DL, MVT::v8i16, V1, V2, Mask, DAG)) return BitBlend; if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(DL, MVT::v8i16, V1, V2, Mask, DAG)) return Unpack; // If we can't directly blend but can use PSHUFB, that will be better as it // can both shuffle and set up the inefficient blend. if (!IsBlendSupported && Subtarget->hasSSSE3()) { bool V1InUse, V2InUse; return lowerVectorShuffleAsPSHUFB(DL, MVT::v8i16, V1, V2, Mask, DAG, V1InUse, V2InUse); } // We can always bit-blend if we have to so the fallback strategy is to // decompose into single-input permutes and blends. return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i16, V1, V2, Mask, DAG); } /// \brief Check whether a compaction lowering can be done by dropping even /// elements and compute how many times even elements must be dropped. /// /// This handles shuffles which take every Nth element where N is a power of /// two. Example shuffle masks: /// /// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 0, 2, 4, 6, 8, 10, 12, 14 /// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 /// N = 2: 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12 /// N = 2: 0, 4, 8, 12, 16, 20, 24, 28, 0, 4, 8, 12, 16, 20, 24, 28 /// N = 3: 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8 /// N = 3: 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24 /// /// Any of these lanes can of course be undef. /// /// This routine only supports N <= 3. /// FIXME: Evaluate whether either AVX or AVX-512 have any opportunities here /// for larger N. /// /// \returns N above, or the number of times even elements must be dropped if /// there is such a number. Otherwise returns zero. static int canLowerByDroppingEvenElements(ArrayRef<int> Mask) { // Figure out whether we're looping over two inputs or just one. bool IsSingleInput = isSingleInputShuffleMask(Mask); // The modulus for the shuffle vector entries is based on whether this is // a single input or not. int ShuffleModulus = Mask.size() * (IsSingleInput ? 1 : 2); assert(isPowerOf2_32((uint32_t)ShuffleModulus) && "We should only be called with masks with a power-of-2 size!"); uint64_t ModMask = (uint64_t)ShuffleModulus - 1; // We track whether the input is viable for all power-of-2 strides 2^1, 2^2, // and 2^3 simultaneously. This is because we may have ambiguity with // partially undef inputs. bool ViableForN[3] = {true, true, true}; for (int i = 0, e = Mask.size(); i < e; ++i) { // Ignore undef lanes, we'll optimistically collapse them to the pattern we // want. if (Mask[i] == -1) continue; bool IsAnyViable = false; for (unsigned j = 0; j != array_lengthof(ViableForN); ++j) if (ViableForN[j]) { uint64_t N = j + 1; // The shuffle mask must be equal to (i * 2^N) % M. if ((uint64_t)Mask[i] == (((uint64_t)i << N) & ModMask)) IsAnyViable = true; else ViableForN[j] = false; } // Early exit if we exhaust the possible powers of two. if (!IsAnyViable) break; } for (unsigned j = 0; j != array_lengthof(ViableForN); ++j) if (ViableForN[j]) return j + 1; // Return 0 as there is no viable power of two. return 0; } /// \brief Generic lowering of v16i8 shuffles. /// /// This is a hybrid strategy to lower v16i8 vectors. It first attempts to /// detect any complexity reducing interleaving. If that doesn't help, it uses /// UNPCK to spread the i8 elements across two i16-element vectors, and uses /// the existing lowering for v8i16 blends on each half, finally PACK-ing them /// back together. static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(Op.getSimpleValueType() == MVT::v16i8 && "Bad shuffle type!"); assert(V1.getSimpleValueType() == MVT::v16i8 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v16i8 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); ArrayRef<int> Mask = SVOp->getMask(); assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); // Try to use shift instructions. if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v16i8, V1, V2, Mask, DAG)) return Shift; // Try to use byte rotation instructions. if (SDValue Rotate = lowerVectorShuffleAsByteRotate( DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG)) return Rotate; // Try to use a zext lowering. if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG)) return ZExt; // See if we can use SSE4A Extraction / Insertion. if (Subtarget->hasSSE4A()) if (SDValue V = lowerVectorShuffleWithSSE4A(DL, MVT::v16i8, V1, V2, Mask, DAG)) return V; int NumV2Elements = std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 16; }); // For single-input shuffles, there are some nicer lowering tricks we can use. if (NumV2Elements == 0) { // Check for being able to broadcast a single element. if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v16i8, V1, Mask, Subtarget, DAG)) return Broadcast; // Check whether we can widen this to an i16 shuffle by duplicating bytes. // Notably, this handles splat and partial-splat shuffles more efficiently. // However, it only makes sense if the pre-duplication shuffle simplifies // things significantly. Currently, this means we need to be able to // express the pre-duplication shuffle as an i16 shuffle. // // FIXME: We should check for other patterns which can be widened into an // i16 shuffle as well. auto canWidenViaDuplication = [](ArrayRef<int> Mask) { for (int i = 0; i < 16; i += 2) if (Mask[i] != -1 && Mask[i + 1] != -1 && Mask[i] != Mask[i + 1]) return false; return true; }; auto tryToWidenViaDuplication = [&]() -> SDValue { if (!canWidenViaDuplication(Mask)) return SDValue(); SmallVector<int, 4> LoInputs; std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(LoInputs), [](int M) { return M >= 0 && M < 8; }); std::sort(LoInputs.begin(), LoInputs.end()); LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), LoInputs.end()); SmallVector<int, 4> HiInputs; std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(HiInputs), [](int M) { return M >= 8; }); std::sort(HiInputs.begin(), HiInputs.end()); HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), HiInputs.end()); bool TargetLo = LoInputs.size() >= HiInputs.size(); ArrayRef<int> InPlaceInputs = TargetLo ? LoInputs : HiInputs; ArrayRef<int> MovingInputs = TargetLo ? HiInputs : LoInputs; int PreDupI16Shuffle[] = {-1, -1, -1, -1, -1, -1, -1, -1}; SmallDenseMap<int, int, 8> LaneMap; for (int I : InPlaceInputs) { PreDupI16Shuffle[I/2] = I/2; LaneMap[I] = I; } int j = TargetLo ? 0 : 4, je = j + 4; for (int i = 0, ie = MovingInputs.size(); i < ie; ++i) { // Check if j is already a shuffle of this input. This happens when // there are two adjacent bytes after we move the low one. if (PreDupI16Shuffle[j] != MovingInputs[i] / 2) { // If we haven't yet mapped the input, search for a slot into which // we can map it. while (j < je && PreDupI16Shuffle[j] != -1) ++j; if (j == je) // We can't place the inputs into a single half with a simple i16 shuffle, so bail. return SDValue(); // Map this input with the i16 shuffle. PreDupI16Shuffle[j] = MovingInputs[i] / 2; } // Update the lane map based on the mapping we ended up with. LaneMap[MovingInputs[i]] = 2 * j + MovingInputs[i] % 2; } V1 = DAG.getBitcast( MVT::v16i8, DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1), DAG.getUNDEF(MVT::v8i16), PreDupI16Shuffle)); // Unpack the bytes to form the i16s that will be shuffled into place. V1 = DAG.getNode(TargetLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL, MVT::v16i8, V1, V1); int PostDupI16Shuffle[8] = {-1, -1, -1, -1, -1, -1, -1, -1}; for (int i = 0; i < 16; ++i) if (Mask[i] != -1) { int MappedMask = LaneMap[Mask[i]] - (TargetLo ? 0 : 8); assert(MappedMask < 8 && "Invalid v8 shuffle mask!"); if (PostDupI16Shuffle[i / 2] == -1) PostDupI16Shuffle[i / 2] = MappedMask; else assert(PostDupI16Shuffle[i / 2] == MappedMask && "Conflicting entrties in the original shuffle!"); } return DAG.getBitcast( MVT::v16i8, DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1), DAG.getUNDEF(MVT::v8i16), PostDupI16Shuffle)); }; if (SDValue V = tryToWidenViaDuplication()) return V; } if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, MVT::v16i8, V1, V2, Mask, DAG)) return Masked; // Use dedicated unpack instructions for masks that match their pattern. if (SDValue V = lowerVectorShuffleWithUNPCK(DL, MVT::v16i8, Mask, V1, V2, DAG)) return V; // Check for SSSE3 which lets us lower all v16i8 shuffles much more directly // with PSHUFB. It is important to do this before we attempt to generate any // blends but after all of the single-input lowerings. If the single input // lowerings can find an instruction sequence that is faster than a PSHUFB, we // want to preserve that and we can DAG combine any longer sequences into // a PSHUFB in the end. But once we start blending from multiple inputs, // the complexity of DAG combining bad patterns back into PSHUFB is too high, // and there are *very* few patterns that would actually be faster than the // PSHUFB approach because of its ability to zero lanes. // // FIXME: The only exceptions to the above are blends which are exact // interleavings with direct instructions supporting them. We currently don't // handle those well here. if (Subtarget->hasSSSE3()) { bool V1InUse = false; bool V2InUse = false; SDValue PSHUFB = lowerVectorShuffleAsPSHUFB(DL, MVT::v16i8, V1, V2, Mask, DAG, V1InUse, V2InUse); // If both V1 and V2 are in use and we can use a direct blend or an unpack, // do so. This avoids using them to handle blends-with-zero which is // important as a single pshufb is significantly faster for that. if (V1InUse && V2InUse) { if (Subtarget->hasSSE41()) if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG)) return Blend; // We can use an unpack to do the blending rather than an or in some // cases. Even though the or may be (very minorly) more efficient, we // preference this lowering because there are common cases where part of // the complexity of the shuffles goes away when we do the final blend as // an unpack. // FIXME: It might be worth trying to detect if the unpack-feeding // shuffles will both be pshufb, in which case we shouldn't bother with // this. if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack( DL, MVT::v16i8, V1, V2, Mask, DAG)) return Unpack; } return PSHUFB; } // There are special ways we can lower some single-element blends. if (NumV2Elements == 1) if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG)) return V; if (SDValue BitBlend = lowerVectorShuffleAsBitBlend(DL, MVT::v16i8, V1, V2, Mask, DAG)) return BitBlend; // Check whether a compaction lowering can be done. This handles shuffles // which take every Nth element for some even N. See the helper function for // details. // // We special case these as they can be particularly efficiently handled with // the PACKUSB instruction on x86 and they show up in common patterns of // rearranging bytes to truncate wide elements. if (int NumEvenDrops = canLowerByDroppingEvenElements(Mask)) { // NumEvenDrops is the power of two stride of the elements. Another way of // thinking about it is that we need to drop the even elements this many // times to get the original input. bool IsSingleInput = isSingleInputShuffleMask(Mask); // First we need to zero all the dropped bytes. assert(NumEvenDrops <= 3 && "No support for dropping even elements more than 3 times."); // We use the mask type to pick which bytes are preserved based on how many // elements are dropped. MVT MaskVTs[] = { MVT::v8i16, MVT::v4i32, MVT::v2i64 }; SDValue ByteClearMask = DAG.getBitcast( MVT::v16i8, DAG.getConstant(0xFF, DL, MaskVTs[NumEvenDrops - 1])); V1 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V1, ByteClearMask); if (!IsSingleInput) V2 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V2, ByteClearMask); // Now pack things back together. V1 = DAG.getBitcast(MVT::v8i16, V1); V2 = IsSingleInput ? V1 : DAG.getBitcast(MVT::v8i16, V2); SDValue Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, V1, V2); for (int i = 1; i < NumEvenDrops; ++i) { Result = DAG.getBitcast(MVT::v8i16, Result); Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, Result, Result); } return Result; } // Handle multi-input cases by blending single-input shuffles. if (NumV2Elements > 0) return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v16i8, V1, V2, Mask, DAG); // The fallback path for single-input shuffles widens this into two v8i16 // vectors with unpacks, shuffles those, and then pulls them back together // with a pack. SDValue V = V1; int LoBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1}; int HiBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1}; for (int i = 0; i < 16; ++i) if (Mask[i] >= 0) (i < 8 ? LoBlendMask[i] : HiBlendMask[i % 8]) = Mask[i]; SDValue Zero = getZeroVector(MVT::v8i16, Subtarget, DAG, DL); SDValue VLoHalf, VHiHalf; // Check if any of the odd lanes in the v16i8 are used. If not, we can mask // them out and avoid using UNPCK{L,H} to extract the elements of V as // i16s. if (std::none_of(std::begin(LoBlendMask), std::end(LoBlendMask), [](int M) { return M >= 0 && M % 2 == 1; }) && std::none_of(std::begin(HiBlendMask), std::end(HiBlendMask), [](int M) { return M >= 0 && M % 2 == 1; })) { // Use a mask to drop the high bytes. VLoHalf = DAG.getBitcast(MVT::v8i16, V); VLoHalf = DAG.getNode(ISD::AND, DL, MVT::v8i16, VLoHalf, DAG.getConstant(0x00FF, DL, MVT::v8i16)); // This will be a single vector shuffle instead of a blend so nuke VHiHalf. VHiHalf = DAG.getUNDEF(MVT::v8i16); // Squash the masks to point directly into VLoHalf. for (int &M : LoBlendMask) if (M >= 0) M /= 2; for (int &M : HiBlendMask) if (M >= 0) M /= 2; } else { // Otherwise just unpack the low half of V into VLoHalf and the high half into // VHiHalf so that we can blend them as i16s. VLoHalf = DAG.getBitcast( MVT::v8i16, DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V, Zero)); VHiHalf = DAG.getBitcast( MVT::v8i16, DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V, Zero)); } SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, LoBlendMask); SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, HiBlendMask); return DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, LoV, HiV); } /// \brief Dispatching routine to lower various 128-bit x86 vector shuffles. /// /// This routine breaks down the specific type of 128-bit shuffle and /// dispatches to the lowering routines accordingly. static SDValue lower128BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2, MVT VT, const X86Subtarget *Subtarget, SelectionDAG &DAG) { switch (VT.SimpleTy) { case MVT::v2i64: return lowerV2I64VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v2f64: return lowerV2F64VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v4i32: return lowerV4I32VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v4f32: return lowerV4F32VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v8i16: return lowerV8I16VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v16i8: return lowerV16I8VectorShuffle(Op, V1, V2, Subtarget, DAG); default: llvm_unreachable("Unimplemented!"); } } /// \brief Helper function to test whether a shuffle mask could be /// simplified by widening the elements being shuffled. /// /// Appends the mask for wider elements in WidenedMask if valid. Otherwise /// leaves it in an unspecified state. /// /// NOTE: This must handle normal vector shuffle masks and *target* vector /// shuffle masks. The latter have the special property of a '-2' representing /// a zero-ed lane of a vector. static bool canWidenShuffleElements(ArrayRef<int> Mask, SmallVectorImpl<int> &WidenedMask) { for (int i = 0, Size = Mask.size(); i < Size; i += 2) { // If both elements are undef, its trivial. if (Mask[i] == SM_SentinelUndef && Mask[i + 1] == SM_SentinelUndef) { WidenedMask.push_back(SM_SentinelUndef); continue; } // Check for an undef mask and a mask value properly aligned to fit with // a pair of values. If we find such a case, use the non-undef mask's value. if (Mask[i] == SM_SentinelUndef && Mask[i + 1] >= 0 && Mask[i + 1] % 2 == 1) { WidenedMask.push_back(Mask[i + 1] / 2); continue; } if (Mask[i + 1] == SM_SentinelUndef && Mask[i] >= 0 && Mask[i] % 2 == 0) { WidenedMask.push_back(Mask[i] / 2); continue; } // When zeroing, we need to spread the zeroing across both lanes to widen. if (Mask[i] == SM_SentinelZero || Mask[i + 1] == SM_SentinelZero) { if ((Mask[i] == SM_SentinelZero || Mask[i] == SM_SentinelUndef) && (Mask[i + 1] == SM_SentinelZero || Mask[i + 1] == SM_SentinelUndef)) { WidenedMask.push_back(SM_SentinelZero); continue; } return false; } // Finally check if the two mask values are adjacent and aligned with // a pair. if (Mask[i] != SM_SentinelUndef && Mask[i] % 2 == 0 && Mask[i] + 1 == Mask[i + 1]) { WidenedMask.push_back(Mask[i] / 2); continue; } // Otherwise we can't safely widen the elements used in this shuffle. return false; } assert(WidenedMask.size() == Mask.size() / 2 && "Incorrect size of mask after widening the elements!"); return true; } /// \brief Generic routine to split vector shuffle into half-sized shuffles. /// /// This routine just extracts two subvectors, shuffles them independently, and /// then concatenates them back together. This should work effectively with all /// AVX vector shuffle types. static SDValue splitAndLowerVectorShuffle(SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, SelectionDAG &DAG) { assert(VT.getSizeInBits() >= 256 && "Only for 256-bit or wider vector shuffles!"); assert(V1.getSimpleValueType() == VT && "Bad operand type!"); assert(V2.getSimpleValueType() == VT && "Bad operand type!"); ArrayRef<int> LoMask = Mask.slice(0, Mask.size() / 2); ArrayRef<int> HiMask = Mask.slice(Mask.size() / 2); int NumElements = VT.getVectorNumElements(); int SplitNumElements = NumElements / 2; MVT ScalarVT = VT.getVectorElementType(); MVT SplitVT = MVT::getVectorVT(ScalarVT, NumElements / 2); // Rather than splitting build-vectors, just build two narrower build // vectors. This helps shuffling with splats and zeros. auto SplitVector = [&](SDValue V) { while (V.getOpcode() == ISD::BITCAST) V = V->getOperand(0); MVT OrigVT = V.getSimpleValueType(); int OrigNumElements = OrigVT.getVectorNumElements(); int OrigSplitNumElements = OrigNumElements / 2; MVT OrigScalarVT = OrigVT.getVectorElementType(); MVT OrigSplitVT = MVT::getVectorVT(OrigScalarVT, OrigNumElements / 2); SDValue LoV, HiV; auto *BV = dyn_cast<BuildVectorSDNode>(V); if (!BV) { LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V, DAG.getIntPtrConstant(0, DL)); HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V, DAG.getIntPtrConstant(OrigSplitNumElements, DL)); } else { SmallVector<SDValue, 16> LoOps, HiOps; for (int i = 0; i < OrigSplitNumElements; ++i) { LoOps.push_back(BV->getOperand(i)); HiOps.push_back(BV->getOperand(i + OrigSplitNumElements)); } LoV = DAG.getNode(ISD::BUILD_VECTOR, DL, OrigSplitVT, LoOps); HiV = DAG.getNode(ISD::BUILD_VECTOR, DL, OrigSplitVT, HiOps); } return std::make_pair(DAG.getBitcast(SplitVT, LoV), DAG.getBitcast(SplitVT, HiV)); }; SDValue LoV1, HiV1, LoV2, HiV2; std::tie(LoV1, HiV1) = SplitVector(V1); std::tie(LoV2, HiV2) = SplitVector(V2); // Now create two 4-way blends of these half-width vectors. auto HalfBlend = [&](ArrayRef<int> HalfMask) { bool UseLoV1 = false, UseHiV1 = false, UseLoV2 = false, UseHiV2 = false; SmallVector<int, 32> V1BlendMask, V2BlendMask, BlendMask; for (int i = 0; i < SplitNumElements; ++i) { int M = HalfMask[i]; if (M >= NumElements) { if (M >= NumElements + SplitNumElements) UseHiV2 = true; else UseLoV2 = true; V2BlendMask.push_back(M - NumElements); V1BlendMask.push_back(-1); BlendMask.push_back(SplitNumElements + i); } else if (M >= 0) { if (M >= SplitNumElements) UseHiV1 = true; else UseLoV1 = true; V2BlendMask.push_back(-1); V1BlendMask.push_back(M); BlendMask.push_back(i); } else { V2BlendMask.push_back(-1); V1BlendMask.push_back(-1); BlendMask.push_back(-1); } } // Because the lowering happens after all combining takes place, we need to // manually combine these blend masks as much as possible so that we create // a minimal number of high-level vector shuffle nodes. // First try just blending the halves of V1 or V2. if (!UseLoV1 && !UseHiV1 && !UseLoV2 && !UseHiV2) return DAG.getUNDEF(SplitVT); if (!UseLoV2 && !UseHiV2) return DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask); if (!UseLoV1 && !UseHiV1) return DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask); SDValue V1Blend, V2Blend; if (UseLoV1 && UseHiV1) { V1Blend = DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask); } else { // We only use half of V1 so map the usage down into the final blend mask. V1Blend = UseLoV1 ? LoV1 : HiV1; for (int i = 0; i < SplitNumElements; ++i) if (BlendMask[i] >= 0 && BlendMask[i] < SplitNumElements) BlendMask[i] = V1BlendMask[i] - (UseLoV1 ? 0 : SplitNumElements); } if (UseLoV2 && UseHiV2) { V2Blend = DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask); } else { // We only use half of V2 so map the usage down into the final blend mask. V2Blend = UseLoV2 ? LoV2 : HiV2; for (int i = 0; i < SplitNumElements; ++i) if (BlendMask[i] >= SplitNumElements) BlendMask[i] = V2BlendMask[i] + (UseLoV2 ? SplitNumElements : 0); } return DAG.getVectorShuffle(SplitVT, DL, V1Blend, V2Blend, BlendMask); }; SDValue Lo = HalfBlend(LoMask); SDValue Hi = HalfBlend(HiMask); return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); } /// \brief Either split a vector in halves or decompose the shuffles and the /// blend. /// /// This is provided as a good fallback for many lowerings of non-single-input /// shuffles with more than one 128-bit lane. In those cases, we want to select /// between splitting the shuffle into 128-bit components and stitching those /// back together vs. extracting the single-input shuffles and blending those /// results. static SDValue lowerVectorShuffleAsSplitOrBlend(SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, SelectionDAG &DAG) { assert(!isSingleInputShuffleMask(Mask) && "This routine must not be used to " "lower single-input shuffles as it " "could then recurse on itself."); int Size = Mask.size(); // If this can be modeled as a broadcast of two elements followed by a blend, // prefer that lowering. This is especially important because broadcasts can // often fold with memory operands. auto DoBothBroadcast = [&] { int V1BroadcastIdx = -1, V2BroadcastIdx = -1; for (int M : Mask) if (M >= Size) { if (V2BroadcastIdx == -1) V2BroadcastIdx = M - Size; else if (M - Size != V2BroadcastIdx) return false; } else if (M >= 0) { if (V1BroadcastIdx == -1) V1BroadcastIdx = M; else if (M != V1BroadcastIdx) return false; } return true; }; if (DoBothBroadcast()) return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG); // If the inputs all stem from a single 128-bit lane of each input, then we // split them rather than blending because the split will decompose to // unusually few instructions. int LaneCount = VT.getSizeInBits() / 128; int LaneSize = Size / LaneCount; SmallBitVector LaneInputs[2]; LaneInputs[0].resize(LaneCount, false); LaneInputs[1].resize(LaneCount, false); for (int i = 0; i < Size; ++i) if (Mask[i] >= 0) LaneInputs[Mask[i] / Size][(Mask[i] % Size) / LaneSize] = true; if (LaneInputs[0].count() <= 1 && LaneInputs[1].count() <= 1) return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG); // Otherwise, just fall back to decomposed shuffles and a blend. This requires // that the decomposed single-input shuffles don't end up here. return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG); } /// \brief Lower a vector shuffle crossing multiple 128-bit lanes as /// a permutation and blend of those lanes. /// /// This essentially blends the out-of-lane inputs to each lane into the lane /// from a permuted copy of the vector. This lowering strategy results in four /// instructions in the worst case for a single-input cross lane shuffle which /// is lower than any other fully general cross-lane shuffle strategy I'm aware /// of. Special cases for each particular shuffle pattern should be handled /// prior to trying this lowering. static SDValue lowerVectorShuffleAsLanePermuteAndBlend(SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, SelectionDAG &DAG) { // FIXME: This should probably be generalized for 512-bit vectors as well. assert(VT.is256BitVector() && "Only for 256-bit vector shuffles!"); int LaneSize = Mask.size() / 2; // If there are only inputs from one 128-bit lane, splitting will in fact be // less expensive. The flags track whether the given lane contains an element // that crosses to another lane. bool LaneCrossing[2] = {false, false}; for (int i = 0, Size = Mask.size(); i < Size; ++i) if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize) LaneCrossing[(Mask[i] % Size) / LaneSize] = true; if (!LaneCrossing[0] || !LaneCrossing[1]) return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG); if (isSingleInputShuffleMask(Mask)) { SmallVector<int, 32> FlippedBlendMask; for (int i = 0, Size = Mask.size(); i < Size; ++i) FlippedBlendMask.push_back( Mask[i] < 0 ? -1 : (((Mask[i] % Size) / LaneSize == i / LaneSize) ? Mask[i] : Mask[i] % LaneSize + (i / LaneSize) * LaneSize + Size)); // Flip the vector, and blend the results which should now be in-lane. The // VPERM2X128 mask uses the low 2 bits for the low source and bits 4 and // 5 for the high source. The value 3 selects the high half of source 2 and // the value 2 selects the low half of source 2. We only use source 2 to // allow folding it into a memory operand. unsigned PERMMask = 3 | 2 << 4; SDValue Flipped = DAG.getNode(X86ISD::VPERM2X128, DL, VT, DAG.getUNDEF(VT), V1, DAG.getConstant(PERMMask, DL, MVT::i8)); return DAG.getVectorShuffle(VT, DL, V1, Flipped, FlippedBlendMask); } // This now reduces to two single-input shuffles of V1 and V2 which at worst // will be handled by the above logic and a blend of the results, much like // other patterns in AVX. return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG); } /// \brief Handle lowering 2-lane 128-bit shuffles. static SDValue lowerV2X128VectorShuffle(SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, const X86Subtarget *Subtarget, SelectionDAG &DAG) { // TODO: If minimizing size and one of the inputs is a zero vector and the // the zero vector has only one use, we could use a VPERM2X128 to save the // instruction bytes needed to explicitly generate the zero vector. // Blends are faster and handle all the non-lane-crossing cases. if (SDValue Blend = lowerVectorShuffleAsBlend(DL, VT, V1, V2, Mask, Subtarget, DAG)) return Blend; bool IsV1Zero = ISD::isBuildVectorAllZeros(V1.getNode()); bool IsV2Zero = ISD::isBuildVectorAllZeros(V2.getNode()); // If either input operand is a zero vector, use VPERM2X128 because its mask // allows us to replace the zero input with an implicit zero. if (!IsV1Zero && !IsV2Zero) { // Check for patterns which can be matched with a single insert of a 128-bit // subvector. bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask, {0, 1, 0, 1}); if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5})) { MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), VT.getVectorNumElements() / 2); SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1, DAG.getIntPtrConstant(0, DL)); SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, OnlyUsesV1 ? V1 : V2, DAG.getIntPtrConstant(0, DL)); return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV); } } // Otherwise form a 128-bit permutation. After accounting for undefs, // convert the 64-bit shuffle mask selection values into 128-bit // selection bits by dividing the indexes by 2 and shifting into positions // defined by a vperm2*128 instruction's immediate control byte. // The immediate permute control byte looks like this: // [1:0] - select 128 bits from sources for low half of destination // [2] - ignore // [3] - zero low half of destination // [5:4] - select 128 bits from sources for high half of destination // [6] - ignore // [7] - zero high half of destination int MaskLO = Mask[0]; if (MaskLO == SM_SentinelUndef) MaskLO = Mask[1] == SM_SentinelUndef ? 0 : Mask[1]; int MaskHI = Mask[2]; if (MaskHI == SM_SentinelUndef) MaskHI = Mask[3] == SM_SentinelUndef ? 0 : Mask[3]; unsigned PermMask = MaskLO / 2 | (MaskHI / 2) << 4; // If either input is a zero vector, replace it with an undef input. // Shuffle mask values < 4 are selecting elements of V1. // Shuffle mask values >= 4 are selecting elements of V2. // Adjust each half of the permute mask by clearing the half that was // selecting the zero vector and setting the zero mask bit. if (IsV1Zero) { V1 = DAG.getUNDEF(VT); if (MaskLO < 4) PermMask = (PermMask & 0xf0) | 0x08; if (MaskHI < 4) PermMask = (PermMask & 0x0f) | 0x80; } if (IsV2Zero) { V2 = DAG.getUNDEF(VT); if (MaskLO >= 4) PermMask = (PermMask & 0xf0) | 0x08; if (MaskHI >= 4) PermMask = (PermMask & 0x0f) | 0x80; } return DAG.getNode(X86ISD::VPERM2X128, DL, VT, V1, V2, DAG.getConstant(PermMask, DL, MVT::i8)); } /// \brief Lower a vector shuffle by first fixing the 128-bit lanes and then /// shuffling each lane. /// /// This will only succeed when the result of fixing the 128-bit lanes results /// in a single-input non-lane-crossing shuffle with a repeating shuffle mask in /// each 128-bit lanes. This handles many cases where we can quickly blend away /// the lane crosses early and then use simpler shuffles within each lane. /// /// FIXME: It might be worthwhile at some point to support this without /// requiring the 128-bit lane-relative shuffles to be repeating, but currently /// in x86 only floating point has interesting non-repeating shuffles, and even /// those are still *marginally* more expensive. static SDValue lowerVectorShuffleByMerging128BitLanes( SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, const X86Subtarget *Subtarget, SelectionDAG &DAG) { assert(!isSingleInputShuffleMask(Mask) && "This is only useful with multiple inputs."); int Size = Mask.size(); int LaneSize = 128 / VT.getScalarSizeInBits(); int NumLanes = Size / LaneSize; assert(NumLanes > 1 && "Only handles 256-bit and wider shuffles."); // See if we can build a hypothetical 128-bit lane-fixing shuffle mask. Also // check whether the in-128-bit lane shuffles share a repeating pattern. SmallVector<int, 4> Lanes; Lanes.resize(NumLanes, -1); SmallVector<int, 4> InLaneMask; InLaneMask.resize(LaneSize, -1); for (int i = 0; i < Size; ++i) { if (Mask[i] < 0) continue; int j = i / LaneSize; if (Lanes[j] < 0) { // First entry we've seen for this lane. Lanes[j] = Mask[i] / LaneSize; } else if (Lanes[j] != Mask[i] / LaneSize) { // This doesn't match the lane selected previously! return SDValue(); } // Check that within each lane we have a consistent shuffle mask. int k = i % LaneSize; if (InLaneMask[k] < 0) { InLaneMask[k] = Mask[i] % LaneSize; } else if (InLaneMask[k] != Mask[i] % LaneSize) { // This doesn't fit a repeating in-lane mask. return SDValue(); } } // First shuffle the lanes into place. MVT LaneVT = MVT::getVectorVT(VT.isFloatingPoint() ? MVT::f64 : MVT::i64, VT.getSizeInBits() / 64); SmallVector<int, 8> LaneMask; LaneMask.resize(NumLanes * 2, -1); for (int i = 0; i < NumLanes; ++i) if (Lanes[i] >= 0) { LaneMask[2 * i + 0] = 2*Lanes[i] + 0; LaneMask[2 * i + 1] = 2*Lanes[i] + 1; } V1 = DAG.getBitcast(LaneVT, V1); V2 = DAG.getBitcast(LaneVT, V2); SDValue LaneShuffle = DAG.getVectorShuffle(LaneVT, DL, V1, V2, LaneMask); // Cast it back to the type we actually want. LaneShuffle = DAG.getBitcast(VT, LaneShuffle); // Now do a simple shuffle that isn't lane crossing. SmallVector<int, 8> NewMask; NewMask.resize(Size, -1); for (int i = 0; i < Size; ++i) if (Mask[i] >= 0) NewMask[i] = (i / LaneSize) * LaneSize + Mask[i] % LaneSize; assert(!is128BitLaneCrossingShuffleMask(VT, NewMask) && "Must not introduce lane crosses at this point!"); return DAG.getVectorShuffle(VT, DL, LaneShuffle, DAG.getUNDEF(VT), NewMask); } /// \brief Test whether the specified input (0 or 1) is in-place blended by the /// given mask. /// /// This returns true if the elements from a particular input are already in the /// slot required by the given mask and require no permutation. static bool isShuffleMaskInputInPlace(int Input, ArrayRef<int> Mask) { assert((Input == 0 || Input == 1) && "Only two inputs to shuffles."); int Size = Mask.size(); for (int i = 0; i < Size; ++i) if (Mask[i] >= 0 && Mask[i] / Size == Input && Mask[i] % Size != i) return false; return true; } static SDValue lowerVectorShuffleWithSHUFPD(SDLoc DL, MVT VT, ArrayRef<int> Mask, SDValue V1, SDValue V2, SelectionDAG &DAG) { // Mask for V8F64: 0/1, 8/9, 2/3, 10/11, 4/5, .. // Mask for V4F64; 0/1, 4/5, 2/3, 6/7.. assert(VT.getScalarSizeInBits() == 64 && "Unexpected data type for VSHUFPD"); int NumElts = VT.getVectorNumElements(); bool ShufpdMask = true; bool CommutableMask = true; unsigned Immediate = 0; for (int i = 0; i < NumElts; ++i) { if (Mask[i] < 0) continue; int Val = (i & 6) + NumElts * (i & 1); int CommutVal = (i & 0xe) + NumElts * ((i & 1)^1); if (Mask[i] < Val || Mask[i] > Val + 1) ShufpdMask = false; if (Mask[i] < CommutVal || Mask[i] > CommutVal + 1) CommutableMask = false; Immediate |= (Mask[i] % 2) << i; } if (ShufpdMask) return DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2, DAG.getConstant(Immediate, DL, MVT::i8)); if (CommutableMask) return DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1, DAG.getConstant(Immediate, DL, MVT::i8)); return SDValue(); } /// \brief Handle lowering of 4-lane 64-bit floating point shuffles. /// /// Also ends up handling lowering of 4-lane 64-bit integer shuffles when AVX2 /// isn't available. static SDValue lowerV4F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(V1.getSimpleValueType() == MVT::v4f64 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v4f64 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); ArrayRef<int> Mask = SVOp->getMask(); assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); SmallVector<int, 4> WidenedMask; if (canWidenShuffleElements(Mask, WidenedMask)) return lowerV2X128VectorShuffle(DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG); if (isSingleInputShuffleMask(Mask)) { // Check for being able to broadcast a single element. if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4f64, V1, Mask, Subtarget, DAG)) return Broadcast; // Use low duplicate instructions for masks that match their pattern. if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2})) return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v4f64, V1); if (!is128BitLaneCrossingShuffleMask(MVT::v4f64, Mask)) { // Non-half-crossing single input shuffles can be lowerid with an // interleaved permutation. unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) | ((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3); return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f64, V1, DAG.getConstant(VPERMILPMask, DL, MVT::i8)); } // With AVX2 we have direct support for this permutation. if (Subtarget->hasAVX2()) return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4f64, V1, getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); // Otherwise, fall back. return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v4f64, V1, V2, Mask, DAG); } // Use dedicated unpack instructions for masks that match their pattern. if (SDValue V = lowerVectorShuffleWithUNPCK(DL, MVT::v4f64, Mask, V1, V2, DAG)) return V; if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG)) return Blend; // Check if the blend happens to exactly fit that of SHUFPD. if (SDValue Op = lowerVectorShuffleWithSHUFPD(DL, MVT::v4f64, Mask, V1, V2, DAG)) return Op; // Try to simplify this by merging 128-bit lanes to enable a lane-based // shuffle. However, if we have AVX2 and either inputs are already in place, // we will be able to shuffle even across lanes the other input in a single // instruction so skip this pattern. if (!(Subtarget->hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) || isShuffleMaskInputInPlace(1, Mask)))) if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG)) return Result; // If we have AVX2 then we always want to lower with a blend because an v4 we // can fully permute the elements. if (Subtarget->hasAVX2()) return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4f64, V1, V2, Mask, DAG); // Otherwise fall back on generic lowering. return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v4f64, V1, V2, Mask, DAG); } /// \brief Handle lowering of 4-lane 64-bit integer shuffles. /// /// This routine is only called when we have AVX2 and thus a reasonable /// instruction set for v4i64 shuffling.. static SDValue lowerV4I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(V1.getSimpleValueType() == MVT::v4i64 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v4i64 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); ArrayRef<int> Mask = SVOp->getMask(); assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); assert(Subtarget->hasAVX2() && "We can only lower v4i64 with AVX2!"); SmallVector<int, 4> WidenedMask; if (canWidenShuffleElements(Mask, WidenedMask)) return lowerV2X128VectorShuffle(DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG); if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG)) return Blend; // Check for being able to broadcast a single element. if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4i64, V1, Mask, Subtarget, DAG)) return Broadcast; // When the shuffle is mirrored between the 128-bit lanes of the unit, we can // use lower latency instructions that will operate on both 128-bit lanes. SmallVector<int, 2> RepeatedMask; if (is128BitLaneRepeatedShuffleMask(MVT::v4i64, Mask, RepeatedMask)) { if (isSingleInputShuffleMask(Mask)) { int PSHUFDMask[] = {-1, -1, -1, -1}; for (int i = 0; i < 2; ++i) if (RepeatedMask[i] >= 0) { PSHUFDMask[2 * i] = 2 * RepeatedMask[i]; PSHUFDMask[2 * i + 1] = 2 * RepeatedMask[i] + 1; } return DAG.getBitcast( MVT::v4i64, DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, DAG.getBitcast(MVT::v8i32, V1), getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG))); } } // AVX2 provides a direct instruction for permuting a single input across // lanes. if (isSingleInputShuffleMask(Mask)) return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4i64, V1, getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); // Try to use shift instructions. if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v4i64, V1, V2, Mask, DAG)) return Shift; // Use dedicated unpack instructions for masks that match their pattern. if (SDValue V = lowerVectorShuffleWithUNPCK(DL, MVT::v4i64, Mask, V1, V2, DAG)) return V; // Try to simplify this by merging 128-bit lanes to enable a lane-based // shuffle. However, if we have AVX2 and either inputs are already in place, // we will be able to shuffle even across lanes the other input in a single // instruction so skip this pattern. if (!(Subtarget->hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) || isShuffleMaskInputInPlace(1, Mask)))) if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG)) return Result; // Otherwise fall back on generic blend lowering. return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i64, V1, V2, Mask, DAG); } /// \brief Handle lowering of 8-lane 32-bit floating point shuffles. /// /// Also ends up handling lowering of 8-lane 32-bit integer shuffles when AVX2 /// isn't available. static SDValue lowerV8F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(V1.getSimpleValueType() == MVT::v8f32 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v8f32 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); ArrayRef<int> Mask = SVOp->getMask(); assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG)) return Blend; // Check for being able to broadcast a single element. if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8f32, V1, Mask, Subtarget, DAG)) return Broadcast; // If the shuffle mask is repeated in each 128-bit lane, we have many more // options to efficiently lower the shuffle. SmallVector<int, 4> RepeatedMask; if (is128BitLaneRepeatedShuffleMask(MVT::v8f32, Mask, RepeatedMask)) { assert(RepeatedMask.size() == 4 && "Repeated masks must be half the mask width!"); // Use even/odd duplicate instructions for masks that match their pattern. if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2, 4, 4, 6, 6})) return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v8f32, V1); if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3, 5, 5, 7, 7})) return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v8f32, V1); if (isSingleInputShuffleMask(Mask)) return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f32, V1, getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG)); // Use dedicated unpack instructions for masks that match their pattern. if (SDValue V = lowerVectorShuffleWithUNPCK(DL, MVT::v8f32, Mask, V1, V2, DAG)) return V; // Otherwise, fall back to a SHUFPS sequence. Here it is important that we // have already handled any direct blends. We also need to squash the // repeated mask into a simulated v4f32 mask. for (int i = 0; i < 4; ++i) if (RepeatedMask[i] >= 8) RepeatedMask[i] -= 4; return lowerVectorShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask, V1, V2, DAG); } // If we have a single input shuffle with different shuffle patterns in the // two 128-bit lanes use the variable mask to VPERMILPS. if (isSingleInputShuffleMask(Mask)) { SDValue VPermMask[8]; for (int i = 0; i < 8; ++i) VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32) : DAG.getConstant(Mask[i], DL, MVT::i32); if (!is128BitLaneCrossingShuffleMask(MVT::v8f32, Mask)) return DAG.getNode( X86ISD::VPERMILPV, DL, MVT::v8f32, V1, DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask)); if (Subtarget->hasAVX2()) return DAG.getNode( X86ISD::VPERMV, DL, MVT::v8f32, DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask), V1); // Otherwise, fall back. return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v8f32, V1, V2, Mask, DAG); } // Try to simplify this by merging 128-bit lanes to enable a lane-based // shuffle. if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG)) return Result; // If we have AVX2 then we always want to lower with a blend because at v8 we // can fully permute the elements. if (Subtarget->hasAVX2()) return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8f32, V1, V2, Mask, DAG); // Otherwise fall back on generic lowering. return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v8f32, V1, V2, Mask, DAG); } /// \brief Handle lowering of 8-lane 32-bit integer shuffles. /// /// This routine is only called when we have AVX2 and thus a reasonable /// instruction set for v8i32 shuffling.. static SDValue lowerV8I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(V1.getSimpleValueType() == MVT::v8i32 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v8i32 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); ArrayRef<int> Mask = SVOp->getMask(); assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); assert(Subtarget->hasAVX2() && "We can only lower v8i32 with AVX2!"); // Whenever we can lower this as a zext, that instruction is strictly faster // than any alternative. It also allows us to fold memory operands into the // shuffle in many cases. if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG)) return ZExt; if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG)) return Blend; // Check for being able to broadcast a single element. if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8i32, V1, Mask, Subtarget, DAG)) return Broadcast; // If the shuffle mask is repeated in each 128-bit lane we can use more // efficient instructions that mirror the shuffles across the two 128-bit // lanes. SmallVector<int, 4> RepeatedMask; if (is128BitLaneRepeatedShuffleMask(MVT::v8i32, Mask, RepeatedMask)) { assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!"); if (isSingleInputShuffleMask(Mask)) return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, V1, getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG)); // Use dedicated unpack instructions for masks that match their pattern. if (SDValue V = lowerVectorShuffleWithUNPCK(DL, MVT::v8i32, Mask, V1, V2, DAG)) return V; } // Try to use shift instructions. if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v8i32, V1, V2, Mask, DAG)) return Shift; if (SDValue Rotate = lowerVectorShuffleAsByteRotate( DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG)) return Rotate; // If the shuffle patterns aren't repeated but it is a single input, directly // generate a cross-lane VPERMD instruction. if (isSingleInputShuffleMask(Mask)) { SDValue VPermMask[8]; for (int i = 0; i < 8; ++i) VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32) : DAG.getConstant(Mask[i], DL, MVT::i32); return DAG.getNode( X86ISD::VPERMV, DL, MVT::v8i32, DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask), V1); } // Try to simplify this by merging 128-bit lanes to enable a lane-based // shuffle. if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG)) return Result; // Otherwise fall back on generic blend lowering. return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i32, V1, V2, Mask, DAG); } /// \brief Handle lowering of 16-lane 16-bit integer shuffles. /// /// This routine is only called when we have AVX2 and thus a reasonable /// instruction set for v16i16 shuffling.. static SDValue lowerV16I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(V1.getSimpleValueType() == MVT::v16i16 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v16i16 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); ArrayRef<int> Mask = SVOp->getMask(); assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); assert(Subtarget->hasAVX2() && "We can only lower v16i16 with AVX2!"); // Whenever we can lower this as a zext, that instruction is strictly faster // than any alternative. It also allows us to fold memory operands into the // shuffle in many cases. if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG)) return ZExt; // Check for being able to broadcast a single element. if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v16i16, V1, Mask, Subtarget, DAG)) return Broadcast; if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG)) return Blend; // Use dedicated unpack instructions for masks that match their pattern. if (SDValue V = lowerVectorShuffleWithUNPCK(DL, MVT::v16i16, Mask, V1, V2, DAG)) return V; // Try to use shift instructions. if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v16i16, V1, V2, Mask, DAG)) return Shift; // Try to use byte rotation instructions. if (SDValue Rotate = lowerVectorShuffleAsByteRotate( DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG)) return Rotate; if (isSingleInputShuffleMask(Mask)) { // There are no generalized cross-lane shuffle operations available on i16 // element types. if (is128BitLaneCrossingShuffleMask(MVT::v16i16, Mask)) return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v16i16, V1, V2, Mask, DAG); SmallVector<int, 8> RepeatedMask; if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) { // As this is a single-input shuffle, the repeated mask should be // a strictly valid v8i16 mask that we can pass through to the v8i16 // lowering to handle even the v16 case. return lowerV8I16GeneralSingleInputVectorShuffle( DL, MVT::v16i16, V1, RepeatedMask, Subtarget, DAG); } SDValue PSHUFBMask[32]; for (int i = 0; i < 16; ++i) { if (Mask[i] == -1) { PSHUFBMask[2 * i] = PSHUFBMask[2 * i + 1] = DAG.getUNDEF(MVT::i8); continue; } int M = i < 8 ? Mask[i] : Mask[i] - 8; assert(M >= 0 && M < 8 && "Invalid single-input mask!"); PSHUFBMask[2 * i] = DAG.getConstant(2 * M, DL, MVT::i8); PSHUFBMask[2 * i + 1] = DAG.getConstant(2 * M + 1, DL, MVT::i8); } return DAG.getBitcast(MVT::v16i16, DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, DAG.getBitcast(MVT::v32i8, V1), DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, PSHUFBMask))); } // Try to simplify this by merging 128-bit lanes to enable a lane-based // shuffle. if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG)) return Result; // Otherwise fall back on generic lowering. return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v16i16, V1, V2, Mask, DAG); } /// \brief Handle lowering of 32-lane 8-bit integer shuffles. /// /// This routine is only called when we have AVX2 and thus a reasonable /// instruction set for v32i8 shuffling.. static SDValue lowerV32I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(V1.getSimpleValueType() == MVT::v32i8 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v32i8 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); ArrayRef<int> Mask = SVOp->getMask(); assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!"); assert(Subtarget->hasAVX2() && "We can only lower v32i8 with AVX2!"); // Whenever we can lower this as a zext, that instruction is strictly faster // than any alternative. It also allows us to fold memory operands into the // shuffle in many cases. if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG)) return ZExt; // Check for being able to broadcast a single element. if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v32i8, V1, Mask, Subtarget, DAG)) return Broadcast; if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG)) return Blend; // Use dedicated unpack instructions for masks that match their pattern. if (SDValue V = lowerVectorShuffleWithUNPCK(DL, MVT::v32i8, Mask, V1, V2, DAG)) return V; // Try to use shift instructions. if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v32i8, V1, V2, Mask, DAG)) return Shift; // Try to use byte rotation instructions. if (SDValue Rotate = lowerVectorShuffleAsByteRotate( DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG)) return Rotate; if (isSingleInputShuffleMask(Mask)) { // There are no generalized cross-lane shuffle operations available on i8 // element types. if (is128BitLaneCrossingShuffleMask(MVT::v32i8, Mask)) return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v32i8, V1, V2, Mask, DAG); SDValue PSHUFBMask[32]; for (int i = 0; i < 32; ++i) PSHUFBMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i8) : DAG.getConstant(Mask[i] < 16 ? Mask[i] : Mask[i] - 16, DL, MVT::i8); return DAG.getNode( X86ISD::PSHUFB, DL, MVT::v32i8, V1, DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, PSHUFBMask)); } // Try to simplify this by merging 128-bit lanes to enable a lane-based // shuffle. if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG)) return Result; // Otherwise fall back on generic lowering. return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v32i8, V1, V2, Mask, DAG); } /// \brief High-level routine to lower various 256-bit x86 vector shuffles. /// /// This routine either breaks down the specific type of a 256-bit x86 vector /// shuffle or splits it into two 128-bit shuffles and fuses the results back /// together based on the available instructions. static SDValue lower256BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2, MVT VT, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); ArrayRef<int> Mask = SVOp->getMask(); // If we have a single input to the zero element, insert that into V1 if we // can do so cheaply. int NumElts = VT.getVectorNumElements(); int NumV2Elements = std::count_if(Mask.begin(), Mask.end(), [NumElts](int M) { return M >= NumElts; }); if (NumV2Elements == 1 && Mask[0] >= NumElts) if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( DL, VT, V1, V2, Mask, Subtarget, DAG)) return Insertion; // There is a really nice hard cut-over between AVX1 and AVX2 that means we // can check for those subtargets here and avoid much of the subtarget // querying in the per-vector-type lowering routines. With AVX1 we have // essentially *zero* ability to manipulate a 256-bit vector with integer // types. Since we'll use floating point types there eventually, just // immediately cast everything to a float and operate entirely in that domain. if (VT.isInteger() && !Subtarget->hasAVX2()) { int ElementBits = VT.getScalarSizeInBits(); if (ElementBits < 32) // No floating point type available, decompose into 128-bit vectors. return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG); MVT FpVT = MVT::getVectorVT(MVT::getFloatingPointVT(ElementBits), VT.getVectorNumElements()); V1 = DAG.getBitcast(FpVT, V1); V2 = DAG.getBitcast(FpVT, V2); return DAG.getBitcast(VT, DAG.getVectorShuffle(FpVT, DL, V1, V2, Mask)); } switch (VT.SimpleTy) { case MVT::v4f64: return lowerV4F64VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v4i64: return lowerV4I64VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v8f32: return lowerV8F32VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v8i32: return lowerV8I32VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v16i16: return lowerV16I16VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v32i8: return lowerV32I8VectorShuffle(Op, V1, V2, Subtarget, DAG); default: llvm_unreachable("Not a valid 256-bit x86 vector type!"); } } /// \brief Try to lower a vector shuffle as a 128-bit shuffles. static SDValue lowerV4X128VectorShuffle(SDLoc DL, MVT VT, ArrayRef<int> Mask, SDValue V1, SDValue V2, SelectionDAG &DAG) { assert(VT.getScalarSizeInBits() == 64 && "Unexpected element type size for 128bit shuffle."); // To handle 256 bit vector requires VLX and most probably // function lowerV2X128VectorShuffle() is better solution. assert(VT.is512BitVector() && "Unexpected vector size for 128bit shuffle."); SmallVector<int, 4> WidenedMask; if (!canWidenShuffleElements(Mask, WidenedMask)) return SDValue(); // Form a 128-bit permutation. // Convert the 64-bit shuffle mask selection values into 128-bit selection // bits defined by a vshuf64x2 instruction's immediate control byte. unsigned PermMask = 0, Imm = 0; unsigned ControlBitsNum = WidenedMask.size() / 2; for (int i = 0, Size = WidenedMask.size(); i < Size; ++i) { if (WidenedMask[i] == SM_SentinelZero) return SDValue(); // Use first element in place of undef mask. Imm = (WidenedMask[i] == SM_SentinelUndef) ? 0 : WidenedMask[i]; PermMask |= (Imm % WidenedMask.size()) << (i * ControlBitsNum); } return DAG.getNode(X86ISD::SHUF128, DL, VT, V1, V2, DAG.getConstant(PermMask, DL, MVT::i8)); } static SDValue lowerVectorShuffleWithPERMV(SDLoc DL, MVT VT, ArrayRef<int> Mask, SDValue V1, SDValue V2, SelectionDAG &DAG) { assert(VT.getScalarSizeInBits() >= 16 && "Unexpected data type for PERMV"); MVT MaskEltVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); MVT MaskVecVT = MVT::getVectorVT(MaskEltVT, VT.getVectorNumElements()); SDValue MaskNode = getConstVector(Mask, MaskVecVT, DAG, DL, true); if (isSingleInputShuffleMask(Mask)) return DAG.getNode(X86ISD::VPERMV, DL, VT, MaskNode, V1); return DAG.getNode(X86ISD::VPERMV3, DL, VT, V1, MaskNode, V2); } /// \brief Handle lowering of 8-lane 64-bit floating point shuffles. static SDValue lowerV8F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(V1.getSimpleValueType() == MVT::v8f64 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v8f64 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); ArrayRef<int> Mask = SVOp->getMask(); assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); if (SDValue Shuf128 = lowerV4X128VectorShuffle(DL, MVT::v8f64, Mask, V1, V2, DAG)) return Shuf128; if (SDValue Unpck = lowerVectorShuffleWithUNPCK(DL, MVT::v8f64, Mask, V1, V2, DAG)) return Unpck; return lowerVectorShuffleWithPERMV(DL, MVT::v8f64, Mask, V1, V2, DAG); } /// \brief Handle lowering of 16-lane 32-bit floating point shuffles. static SDValue lowerV16F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(V1.getSimpleValueType() == MVT::v16f32 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v16f32 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); ArrayRef<int> Mask = SVOp->getMask(); assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); if (SDValue Unpck = lowerVectorShuffleWithUNPCK(DL, MVT::v16f32, Mask, V1, V2, DAG)) return Unpck; return lowerVectorShuffleWithPERMV(DL, MVT::v16f32, Mask, V1, V2, DAG); } /// \brief Handle lowering of 8-lane 64-bit integer shuffles. static SDValue lowerV8I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(V1.getSimpleValueType() == MVT::v8i64 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v8i64 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); ArrayRef<int> Mask = SVOp->getMask(); assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); if (SDValue Shuf128 = lowerV4X128VectorShuffle(DL, MVT::v8i64, Mask, V1, V2, DAG)) return Shuf128; if (SDValue Unpck = lowerVectorShuffleWithUNPCK(DL, MVT::v8i64, Mask, V1, V2, DAG)) return Unpck; return lowerVectorShuffleWithPERMV(DL, MVT::v8i64, Mask, V1, V2, DAG); } /// \brief Handle lowering of 16-lane 32-bit integer shuffles. static SDValue lowerV16I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(V1.getSimpleValueType() == MVT::v16i32 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v16i32 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); ArrayRef<int> Mask = SVOp->getMask(); assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); if (SDValue Unpck = lowerVectorShuffleWithUNPCK(DL, MVT::v16i32, Mask, V1, V2, DAG)) return Unpck; return lowerVectorShuffleWithPERMV(DL, MVT::v16i32, Mask, V1, V2, DAG); } /// \brief Handle lowering of 32-lane 16-bit integer shuffles. static SDValue lowerV32I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(V1.getSimpleValueType() == MVT::v32i16 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v32i16 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); ArrayRef<int> Mask = SVOp->getMask(); assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!"); assert(Subtarget->hasBWI() && "We can only lower v32i16 with AVX-512-BWI!"); return lowerVectorShuffleWithPERMV(DL, MVT::v32i16, Mask, V1, V2, DAG); } /// \brief Handle lowering of 64-lane 8-bit integer shuffles. static SDValue lowerV64I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); assert(V1.getSimpleValueType() == MVT::v64i8 && "Bad operand type!"); assert(V2.getSimpleValueType() == MVT::v64i8 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); ArrayRef<int> Mask = SVOp->getMask(); assert(Mask.size() == 64 && "Unexpected mask size for v64 shuffle!"); assert(Subtarget->hasBWI() && "We can only lower v64i8 with AVX-512-BWI!"); // FIXME: Implement direct support for this type! return splitAndLowerVectorShuffle(DL, MVT::v64i8, V1, V2, Mask, DAG); } /// \brief High-level routine to lower various 512-bit x86 vector shuffles. /// /// This routine either breaks down the specific type of a 512-bit x86 vector /// shuffle or splits it into two 256-bit shuffles and fuses the results back /// together based on the available instructions. static SDValue lower512BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2, MVT VT, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); ArrayRef<int> Mask = SVOp->getMask(); assert(Subtarget->hasAVX512() && "Cannot lower 512-bit vectors w/ basic ISA!"); // Check for being able to broadcast a single element. if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, VT, V1, Mask, Subtarget, DAG)) return Broadcast; // Dispatch to each element type for lowering. If we don't have supprot for // specific element type shuffles at 512 bits, immediately split them and // lower them. Each lowering routine of a given type is allowed to assume that // the requisite ISA extensions for that element type are available. switch (VT.SimpleTy) { case MVT::v8f64: return lowerV8F64VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v16f32: return lowerV16F32VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v8i64: return lowerV8I64VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v16i32: return lowerV16I32VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v32i16: if (Subtarget->hasBWI()) return lowerV32I16VectorShuffle(Op, V1, V2, Subtarget, DAG); break; case MVT::v64i8: if (Subtarget->hasBWI()) return lowerV64I8VectorShuffle(Op, V1, V2, Subtarget, DAG); break; default: llvm_unreachable("Not a valid 512-bit x86 vector type!"); } // Otherwise fall back on splitting. return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG); } // Lower vXi1 vector shuffles. // There is no a dedicated instruction on AVX-512 that shuffles the masks. // The only way to shuffle bits is to sign-extend the mask vector to SIMD // vector, shuffle and then truncate it back. static SDValue lower1BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2, MVT VT, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); ArrayRef<int> Mask = SVOp->getMask(); assert(Subtarget->hasAVX512() && "Cannot lower 512-bit vectors w/o basic ISA!"); MVT ExtVT; switch (VT.SimpleTy) { default: llvm_unreachable("Expected a vector of i1 elements"); case MVT::v2i1: ExtVT = MVT::v2i64; break; case MVT::v4i1: ExtVT = MVT::v4i32; break; case MVT::v8i1: ExtVT = MVT::v8i64; // Take 512-bit type, more shuffles on KNL break; case MVT::v16i1: ExtVT = MVT::v16i32; break; case MVT::v32i1: ExtVT = MVT::v32i16; break; case MVT::v64i1: ExtVT = MVT::v64i8; break; } if (ISD::isBuildVectorAllZeros(V1.getNode())) V1 = getZeroVector(ExtVT, Subtarget, DAG, DL); else if (ISD::isBuildVectorAllOnes(V1.getNode())) V1 = getOnesVector(ExtVT, Subtarget, DAG, DL); else V1 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V1); if (V2.isUndef()) V2 = DAG.getUNDEF(ExtVT); else if (ISD::isBuildVectorAllZeros(V2.getNode())) V2 = getZeroVector(ExtVT, Subtarget, DAG, DL); else if (ISD::isBuildVectorAllOnes(V2.getNode())) V2 = getOnesVector(ExtVT, Subtarget, DAG, DL); else V2 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V2); return DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getVectorShuffle(ExtVT, DL, V1, V2, Mask)); } /// \brief Top-level lowering for x86 vector shuffles. /// /// This handles decomposition, canonicalization, and lowering of all x86 /// vector shuffles. Most of the specific lowering strategies are encapsulated /// above in helper routines. The canonicalization attempts to widen shuffles /// to involve fewer lanes of wider elements, consolidate symmetric patterns /// s.t. only one of the two inputs needs to be tested, etc. static SDValue lowerVectorShuffle(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); ArrayRef<int> Mask = SVOp->getMask(); SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); MVT VT = Op.getSimpleValueType(); int NumElements = VT.getVectorNumElements(); SDLoc dl(Op); bool Is1BitVector = (VT.getVectorElementType() == MVT::i1); assert((VT.getSizeInBits() != 64 || Is1BitVector) && "Can't lower MMX shuffles"); bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; if (V1IsUndef && V2IsUndef) return DAG.getUNDEF(VT); // When we create a shuffle node we put the UNDEF node to second operand, // but in some cases the first operand may be transformed to UNDEF. // In this case we should just commute the node. if (V1IsUndef) return DAG.getCommutedVectorShuffle(*SVOp); // Check for non-undef masks pointing at an undef vector and make the masks // undef as well. This makes it easier to match the shuffle based solely on // the mask. if (V2IsUndef) for (int M : Mask) if (M >= NumElements) { SmallVector<int, 8> NewMask(Mask.begin(), Mask.end()); for (int &M : NewMask) if (M >= NumElements) M = -1; return DAG.getVectorShuffle(VT, dl, V1, V2, NewMask); } // We actually see shuffles that are entirely re-arrangements of a set of // zero inputs. This mostly happens while decomposing complex shuffles into // simple ones. Directly lower these as a buildvector of zeros. SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); if (Zeroable.all()) return getZeroVector(VT, Subtarget, DAG, dl); // Try to collapse shuffles into using a vector type with fewer elements but // wider element types. We cap this to not form integers or floating point // elements wider than 64 bits, but it might be interesting to form i128 // integers to handle flipping the low and high halves of AVX 256-bit vectors. SmallVector<int, 16> WidenedMask; if (VT.getScalarSizeInBits() < 64 && !Is1BitVector && canWidenShuffleElements(Mask, WidenedMask)) { MVT NewEltVT = VT.isFloatingPoint() ? MVT::getFloatingPointVT(VT.getScalarSizeInBits() * 2) : MVT::getIntegerVT(VT.getScalarSizeInBits() * 2); MVT NewVT = MVT::getVectorVT(NewEltVT, VT.getVectorNumElements() / 2); // Make sure that the new vector type is legal. For example, v2f64 isn't // legal on SSE1. if (DAG.getTargetLoweringInfo().isTypeLegal(NewVT)) { V1 = DAG.getBitcast(NewVT, V1); V2 = DAG.getBitcast(NewVT, V2); return DAG.getBitcast( VT, DAG.getVectorShuffle(NewVT, dl, V1, V2, WidenedMask)); } } int NumV1Elements = 0, NumUndefElements = 0, NumV2Elements = 0; for (int M : SVOp->getMask()) if (M < 0) ++NumUndefElements; else if (M < NumElements) ++NumV1Elements; else ++NumV2Elements; // Commute the shuffle as needed such that more elements come from V1 than // V2. This allows us to match the shuffle pattern strictly on how many // elements come from V1 without handling the symmetric cases. if (NumV2Elements > NumV1Elements) return DAG.getCommutedVectorShuffle(*SVOp); // When the number of V1 and V2 elements are the same, try to minimize the // number of uses of V2 in the low half of the vector. When that is tied, // ensure that the sum of indices for V1 is equal to or lower than the sum // indices for V2. When those are equal, try to ensure that the number of odd // indices for V1 is lower than the number of odd indices for V2. if (NumV1Elements == NumV2Elements) { int LowV1Elements = 0, LowV2Elements = 0; for (int M : SVOp->getMask().slice(0, NumElements / 2)) if (M >= NumElements) ++LowV2Elements; else if (M >= 0) ++LowV1Elements; if (LowV2Elements > LowV1Elements) { return DAG.getCommutedVectorShuffle(*SVOp); } else if (LowV2Elements == LowV1Elements) { int SumV1Indices = 0, SumV2Indices = 0; for (int i = 0, Size = SVOp->getMask().size(); i < Size; ++i) if (SVOp->getMask()[i] >= NumElements) SumV2Indices += i; else if (SVOp->getMask()[i] >= 0) SumV1Indices += i; if (SumV2Indices < SumV1Indices) { return DAG.getCommutedVectorShuffle(*SVOp); } else if (SumV2Indices == SumV1Indices) { int NumV1OddIndices = 0, NumV2OddIndices = 0; for (int i = 0, Size = SVOp->getMask().size(); i < Size; ++i) if (SVOp->getMask()[i] >= NumElements) NumV2OddIndices += i % 2; else if (SVOp->getMask()[i] >= 0) NumV1OddIndices += i % 2; if (NumV2OddIndices < NumV1OddIndices) return DAG.getCommutedVectorShuffle(*SVOp); } } } // For each vector width, delegate to a specialized lowering routine. if (VT.is128BitVector()) return lower128BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG); if (VT.is256BitVector()) return lower256BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG); if (VT.is512BitVector()) return lower512BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG); if (Is1BitVector) return lower1BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG); llvm_unreachable("Unimplemented!"); } // This function assumes its argument is a BUILD_VECTOR of constants or // undef SDNodes. i.e: ISD::isBuildVectorOfConstantSDNodes(BuildVector) is // true. static bool BUILD_VECTORtoBlendMask(BuildVectorSDNode *BuildVector, unsigned &MaskValue) { MaskValue = 0; unsigned NumElems = BuildVector->getNumOperands(); // There are 2 lanes if (NumElems > 8), and 1 lane otherwise. // We don't handle the >2 lanes case right now. unsigned NumLanes = (NumElems - 1) / 8 + 1; if (NumLanes > 2) return false; unsigned NumElemsInLane = NumElems / NumLanes; // Blend for v16i16 should be symmetric for the both lanes. for (unsigned i = 0; i < NumElemsInLane; ++i) { SDValue EltCond = BuildVector->getOperand(i); SDValue SndLaneEltCond = (NumLanes == 2) ? BuildVector->getOperand(i + NumElemsInLane) : EltCond; int Lane1Cond = -1, Lane2Cond = -1; if (isa<ConstantSDNode>(EltCond)) Lane1Cond = !isNullConstant(EltCond); if (isa<ConstantSDNode>(SndLaneEltCond)) Lane2Cond = !isNullConstant(SndLaneEltCond); unsigned LaneMask = 0; if (Lane1Cond == Lane2Cond || Lane2Cond < 0) // Lane1Cond != 0, means we want the first argument. // Lane1Cond == 0, means we want the second argument. // The encoding of this argument is 0 for the first argument, 1 // for the second. Therefore, invert the condition. LaneMask = !Lane1Cond << i; else if (Lane1Cond < 0) LaneMask = !Lane2Cond << i; else return false; MaskValue |= LaneMask; if (NumLanes == 2) MaskValue |= LaneMask << NumElemsInLane; } return true; } /// \brief Try to lower a VSELECT instruction to a vector shuffle. static SDValue lowerVSELECTtoVectorShuffle(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDValue Cond = Op.getOperand(0); SDValue LHS = Op.getOperand(1); SDValue RHS = Op.getOperand(2); SDLoc dl(Op); MVT VT = Op.getSimpleValueType(); if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) return SDValue(); auto *CondBV = cast<BuildVectorSDNode>(Cond); // Only non-legal VSELECTs reach this lowering, convert those into generic // shuffles and re-use the shuffle lowering path for blends. SmallVector<int, 32> Mask; for (int i = 0, Size = VT.getVectorNumElements(); i < Size; ++i) { SDValue CondElt = CondBV->getOperand(i); Mask.push_back( isa<ConstantSDNode>(CondElt) ? i + (isNullConstant(CondElt) ? Size : 0) : -1); } return DAG.getVectorShuffle(VT, dl, LHS, RHS, Mask); } SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const { // A vselect where all conditions and data are constants can be optimized into // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR(). if (ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(0).getNode()) && ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(1).getNode()) && ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(2).getNode())) return SDValue(); // Try to lower this to a blend-style vector shuffle. This can handle all // constant condition cases. if (SDValue BlendOp = lowerVSELECTtoVectorShuffle(Op, Subtarget, DAG)) return BlendOp; // Variable blends are only legal from SSE4.1 onward. if (!Subtarget->hasSSE41()) return SDValue(); // Only some types will be legal on some subtargets. If we can emit a legal // VSELECT-matching blend, return Op, and but if we need to expand, return // a null value. switch (Op.getSimpleValueType().SimpleTy) { default: // Most of the vector types have blends past SSE4.1. return Op; case MVT::v32i8: // The byte blends for AVX vectors were introduced only in AVX2. if (Subtarget->hasAVX2()) return Op; return SDValue(); case MVT::v8i16: case MVT::v16i16: // AVX-512 BWI and VLX features support VSELECT with i16 elements. if (Subtarget->hasBWI() && Subtarget->hasVLX()) return Op; // FIXME: We should custom lower this by fixing the condition and using i8 // blends. return SDValue(); } } static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) { MVT VT = Op.getSimpleValueType(); SDLoc dl(Op); if (!Op.getOperand(0).getSimpleValueType().is128BitVector()) return SDValue(); if (VT.getSizeInBits() == 8) { SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32, Op.getOperand(0), Op.getOperand(1)); SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, DAG.getValueType(VT)); return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); } if (VT.getSizeInBits() == 16) { // If Idx is 0, it's cheaper to do a move instead of a pextrw. if (isNullConstant(Op.getOperand(1))) return DAG.getNode( ISD::TRUNCATE, dl, MVT::i16, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, DAG.getBitcast(MVT::v4i32, Op.getOperand(0)), Op.getOperand(1))); SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32, Op.getOperand(0), Op.getOperand(1)); SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, DAG.getValueType(VT)); return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); } if (VT == MVT::f32) { // EXTRACTPS outputs to a GPR32 register which will require a movd to copy // the result back to FR32 register. It's only worth matching if the // result has a single use which is a store or a bitcast to i32. And in // the case of a store, it's not worth it if the index is a constant 0, // because a MOVSSmr can be used instead, which is smaller and faster. if (!Op.hasOneUse()) return SDValue(); SDNode *User = *Op.getNode()->use_begin(); if ((User->getOpcode() != ISD::STORE || isNullConstant(Op.getOperand(1))) && (User->getOpcode() != ISD::BITCAST || User->getValueType(0) != MVT::i32)) return SDValue(); SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, DAG.getBitcast(MVT::v4i32, Op.getOperand(0)), Op.getOperand(1)); return DAG.getBitcast(MVT::f32, Extract); } if (VT == MVT::i32 || VT == MVT::i64) { // ExtractPS/pextrq works with constant index. if (isa<ConstantSDNode>(Op.getOperand(1))) return Op; } return SDValue(); } /// Extract one bit from mask vector, like v16i1 or v8i1. /// AVX-512 feature. SDValue X86TargetLowering::ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const { SDValue Vec = Op.getOperand(0); SDLoc dl(Vec); MVT VecVT = Vec.getSimpleValueType(); SDValue Idx = Op.getOperand(1); MVT EltVT = Op.getSimpleValueType(); assert((EltVT == MVT::i1) && "Unexpected operands in ExtractBitFromMaskVector"); assert((VecVT.getVectorNumElements() <= 16 || Subtarget->hasBWI()) && "Unexpected vector type in ExtractBitFromMaskVector"); // variable index can't be handled in mask registers, // extend vector to VR512 if (!isa<ConstantSDNode>(Idx)) { MVT ExtVT = (VecVT == MVT::v8i1 ? MVT::v8i64 : MVT::v16i32); SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Vec); SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ExtVT.getVectorElementType(), Ext, Idx); return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt); } unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); const TargetRegisterClass* rc = getRegClassFor(VecVT); if (!Subtarget->hasDQI() && (VecVT.getVectorNumElements() <= 8)) rc = getRegClassFor(MVT::v16i1); unsigned MaxSift = rc->getSize()*8 - 1; Vec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, Vec, DAG.getConstant(MaxSift - IdxVal, dl, MVT::i8)); Vec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, Vec, DAG.getConstant(MaxSift, dl, MVT::i8)); return DAG.getNode(X86ISD::VEXTRACT, dl, MVT::i1, Vec, DAG.getIntPtrConstant(0, dl)); } SDValue X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); SDValue Vec = Op.getOperand(0); MVT VecVT = Vec.getSimpleValueType(); SDValue Idx = Op.getOperand(1); if (Op.getSimpleValueType() == MVT::i1) return ExtractBitFromMaskVector(Op, DAG); if (!isa<ConstantSDNode>(Idx)) { if (VecVT.is512BitVector() || (VecVT.is256BitVector() && Subtarget->hasInt256() && VecVT.getVectorElementType().getSizeInBits() == 32)) { MVT MaskEltVT = MVT::getIntegerVT(VecVT.getVectorElementType().getSizeInBits()); MVT MaskVT = MVT::getVectorVT(MaskEltVT, VecVT.getSizeInBits() / MaskEltVT.getSizeInBits()); Idx = DAG.getZExtOrTrunc(Idx, dl, MaskEltVT); auto PtrVT = getPointerTy(DAG.getDataLayout()); SDValue Mask = DAG.getNode(X86ISD::VINSERT, dl, MaskVT, getZeroVector(MaskVT, Subtarget, DAG, dl), Idx, DAG.getConstant(0, dl, PtrVT)); SDValue Perm = DAG.getNode(X86ISD::VPERMV, dl, VecVT, Mask, Vec); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Perm, DAG.getConstant(0, dl, PtrVT)); } return SDValue(); } // If this is a 256-bit vector result, first extract the 128-bit vector and // then extract the element from the 128-bit vector. if (VecVT.is256BitVector() || VecVT.is512BitVector()) { unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); // Get the 128-bit vector. Vec = Extract128BitVector(Vec, IdxVal, DAG, dl); MVT EltVT = VecVT.getVectorElementType(); unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits(); assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2"); // Find IdxVal modulo ElemsPerChunk. Since ElemsPerChunk is a power of 2 // this can be done with a mask. IdxVal &= ElemsPerChunk - 1; return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec, DAG.getConstant(IdxVal, dl, MVT::i32)); } assert(VecVT.is128BitVector() && "Unexpected vector length"); if (Subtarget->hasSSE41()) if (SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG)) return Res; MVT VT = Op.getSimpleValueType(); // TODO: handle v16i8. if (VT.getSizeInBits() == 16) { SDValue Vec = Op.getOperand(0); if (isNullConstant(Op.getOperand(1))) return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, DAG.getBitcast(MVT::v4i32, Vec), Op.getOperand(1))); // Transform it so it match pextrw which produces a 32-bit result. MVT EltVT = MVT::i32; SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT, Op.getOperand(0), Op.getOperand(1)); SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract, DAG.getValueType(VT)); return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); } if (VT.getSizeInBits() == 32) { unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); if (Idx == 0) return Op; // SHUFPS the element to the lowest double word, then movss. int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 }; MVT VVT = Op.getOperand(0).getSimpleValueType(); SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), DAG.getUNDEF(VVT), Mask); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, DAG.getIntPtrConstant(0, dl)); } if (VT.getSizeInBits() == 64) { // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught // to match extract_elt for f64. if (isNullConstant(Op.getOperand(1))) return Op; // UNPCKHPD the element to the lowest double word, then movsd. // Note if the lower 64 bits of the result of the UNPCKHPD is then stored // to a f64mem, the whole operation is folded into a single MOVHPDmr. int Mask[2] = { 1, -1 }; MVT VVT = Op.getOperand(0).getSimpleValueType(); SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), DAG.getUNDEF(VVT), Mask); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, DAG.getIntPtrConstant(0, dl)); } return SDValue(); } /// Insert one bit to mask vector, like v16i1 or v8i1. /// AVX-512 feature. SDValue X86TargetLowering::InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); SDValue Vec = Op.getOperand(0); SDValue Elt = Op.getOperand(1); SDValue Idx = Op.getOperand(2); MVT VecVT = Vec.getSimpleValueType(); if (!isa<ConstantSDNode>(Idx)) { // Non constant index. Extend source and destination, // insert element and then truncate the result. MVT ExtVecVT = (VecVT == MVT::v8i1 ? MVT::v8i64 : MVT::v16i32); MVT ExtEltVT = (VecVT == MVT::v8i1 ? MVT::i64 : MVT::i32); SDValue ExtOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ExtVecVT, DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVecVT, Vec), DAG.getNode(ISD::ZERO_EXTEND, dl, ExtEltVT, Elt), Idx); return DAG.getNode(ISD::TRUNCATE, dl, VecVT, ExtOp); } unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); SDValue EltInVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Elt); if (IdxVal) EltInVec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec, DAG.getConstant(IdxVal, dl, MVT::i8)); if (Vec.getOpcode() == ISD::UNDEF) return EltInVec; return DAG.getNode(ISD::OR, dl, VecVT, Vec, EltInVec); } SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { MVT VT = Op.getSimpleValueType(); MVT EltVT = VT.getVectorElementType(); if (EltVT == MVT::i1) return InsertBitToMaskVector(Op, DAG); SDLoc dl(Op); SDValue N0 = Op.getOperand(0); SDValue N1 = Op.getOperand(1); SDValue N2 = Op.getOperand(2); if (!isa<ConstantSDNode>(N2)) return SDValue(); auto *N2C = cast<ConstantSDNode>(N2); unsigned IdxVal = N2C->getZExtValue(); // If the vector is wider than 128 bits, extract the 128-bit subvector, insert // into that, and then insert the subvector back into the result. if (VT.is256BitVector() || VT.is512BitVector()) { // With a 256-bit vector, we can insert into the zero element efficiently // using a blend if we have AVX or AVX2 and the right data type. if (VT.is256BitVector() && IdxVal == 0) { // TODO: It is worthwhile to cast integer to floating point and back // and incur a domain crossing penalty if that's what we'll end up // doing anyway after extracting to a 128-bit vector. if ((Subtarget->hasAVX() && (EltVT == MVT::f64 || EltVT == MVT::f32)) || (Subtarget->hasAVX2() && EltVT == MVT::i32)) { SDValue N1Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, N1); N2 = DAG.getIntPtrConstant(1, dl); return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1Vec, N2); } } // Get the desired 128-bit vector chunk. SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl); // Insert the element into the desired chunk. unsigned NumEltsIn128 = 128 / EltVT.getSizeInBits(); assert(isPowerOf2_32(NumEltsIn128)); // Since NumEltsIn128 is a power of 2 we can use mask instead of modulo. unsigned IdxIn128 = IdxVal & (NumEltsIn128 - 1); V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1, DAG.getConstant(IdxIn128, dl, MVT::i32)); // Insert the changed part back into the bigger vector return Insert128BitVector(N0, V, IdxVal, DAG, dl); } assert(VT.is128BitVector() && "Only 128-bit vector types should be left!"); if (Subtarget->hasSSE41()) { if (EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) { unsigned Opc; if (VT == MVT::v8i16) { Opc = X86ISD::PINSRW; } else { assert(VT == MVT::v16i8); Opc = X86ISD::PINSRB; } // Transform it so it match pinsr{b,w} which expects a GR32 as its second // argument. if (N1.getValueType() != MVT::i32) N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); if (N2.getValueType() != MVT::i32) N2 = DAG.getIntPtrConstant(IdxVal, dl); return DAG.getNode(Opc, dl, VT, N0, N1, N2); } if (EltVT == MVT::f32) { // Bits [7:6] of the constant are the source select. This will always be // zero here. The DAG Combiner may combine an extract_elt index into // these bits. For example (insert (extract, 3), 2) could be matched by // putting the '3' into bits [7:6] of X86ISD::INSERTPS. // Bits [5:4] of the constant are the destination select. This is the // value of the incoming immediate. // Bits [3:0] of the constant are the zero mask. The DAG Combiner may // combine either bitwise AND or insert of float 0.0 to set these bits. bool MinSize = DAG.getMachineFunction().getFunction()->optForMinSize(); if (IdxVal == 0 && (!MinSize || !MayFoldLoad(N1))) { // If this is an insertion of 32-bits into the low 32-bits of // a vector, we prefer to generate a blend with immediate rather // than an insertps. Blends are simpler operations in hardware and so // will always have equal or better performance than insertps. // But if optimizing for size and there's a load folding opportunity, // generate insertps because blendps does not have a 32-bit memory // operand form. N2 = DAG.getIntPtrConstant(1, dl); N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1); return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1, N2); } N2 = DAG.getIntPtrConstant(IdxVal << 4, dl); // Create this as a scalar to vector.. N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1); return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2); } if (EltVT == MVT::i32 || EltVT == MVT::i64) { // PINSR* works with constant index. return Op; } } if (EltVT == MVT::i8) return SDValue(); if (EltVT.getSizeInBits() == 16) { // Transform it so it match pinsrw which expects a 16-bit value in a GR32 // as its second argument. if (N1.getValueType() != MVT::i32) N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); if (N2.getValueType() != MVT::i32) N2 = DAG.getIntPtrConstant(IdxVal, dl); return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2); } return SDValue(); } static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) { SDLoc dl(Op); MVT OpVT = Op.getSimpleValueType(); // If this is a 256-bit vector result, first insert into a 128-bit // vector and then insert into the 256-bit vector. if (!OpVT.is128BitVector()) { // Insert into a 128-bit vector. unsigned SizeFactor = OpVT.getSizeInBits()/128; MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(), OpVT.getVectorNumElements() / SizeFactor); Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0)); // Insert the 128-bit vector. return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl); } if (OpVT == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64) return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0)); SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0)); assert(OpVT.is128BitVector() && "Expected an SSE type!"); return DAG.getBitcast( OpVT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, AnyExt)); } // Lower a node with an EXTRACT_SUBVECTOR opcode. This may result in // a simple subregister reference or explicit instructions to grab // upper bits of a vector. static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc dl(Op); SDValue In = Op.getOperand(0); SDValue Idx = Op.getOperand(1); unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); MVT ResVT = Op.getSimpleValueType(); MVT InVT = In.getSimpleValueType(); if (Subtarget->hasFp256()) { if (ResVT.is128BitVector() && (InVT.is256BitVector() || InVT.is512BitVector()) && isa<ConstantSDNode>(Idx)) { return Extract128BitVector(In, IdxVal, DAG, dl); } if (ResVT.is256BitVector() && InVT.is512BitVector() && isa<ConstantSDNode>(Idx)) { return Extract256BitVector(In, IdxVal, DAG, dl); } } return SDValue(); } // Lower a node with an INSERT_SUBVECTOR opcode. This may result in a // simple superregister reference or explicit instructions to insert // the upper bits of a vector. static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { if (!Subtarget->hasAVX()) return SDValue(); SDLoc dl(Op); SDValue Vec = Op.getOperand(0); SDValue SubVec = Op.getOperand(1); SDValue Idx = Op.getOperand(2); if (!isa<ConstantSDNode>(Idx)) return SDValue(); unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); MVT OpVT = Op.getSimpleValueType(); MVT SubVecVT = SubVec.getSimpleValueType(); // Fold two 16-byte subvector loads into one 32-byte load: // (insert_subvector (insert_subvector undef, (load addr), 0), // (load addr + 16), Elts/2) // --> load32 addr if ((IdxVal == OpVT.getVectorNumElements() / 2) && Vec.getOpcode() == ISD::INSERT_SUBVECTOR && OpVT.is256BitVector() && SubVecVT.is128BitVector()) { auto *Idx2 = dyn_cast<ConstantSDNode>(Vec.getOperand(2)); if (Idx2 && Idx2->getZExtValue() == 0) { SDValue SubVec2 = Vec.getOperand(1); // If needed, look through a bitcast to get to the load. if (SubVec2.getNode() && SubVec2.getOpcode() == ISD::BITCAST) SubVec2 = SubVec2.getOperand(0); if (auto *FirstLd = dyn_cast<LoadSDNode>(SubVec2)) { bool Fast; unsigned Alignment = FirstLd->getAlignment(); unsigned AS = FirstLd->getAddressSpace(); const X86TargetLowering *TLI = Subtarget->getTargetLowering(); if (TLI->allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), OpVT, AS, Alignment, &Fast) && Fast) { SDValue Ops[] = { SubVec2, SubVec }; if (SDValue Ld = EltsFromConsecutiveLoads(OpVT, Ops, dl, DAG, false)) return Ld; } } } } if ((OpVT.is256BitVector() || OpVT.is512BitVector()) && SubVecVT.is128BitVector()) return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl); if (OpVT.is512BitVector() && SubVecVT.is256BitVector()) return Insert256BitVector(Vec, SubVec, IdxVal, DAG, dl); if (OpVT.getVectorElementType() == MVT::i1) return Insert1BitVector(Op, DAG); return SDValue(); } // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is // one of the above mentioned nodes. It has to be wrapped because otherwise // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only // be used to form addressing mode. These wrapped nodes will be selected // into MOV32ri. SDValue X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the // global base reg. unsigned char OpFlag = 0; unsigned WrapperKind = X86ISD::Wrapper; CodeModel::Model M = DAG.getTarget().getCodeModel(); if (Subtarget->isPICStyleRIPRel() && (M == CodeModel::Small || M == CodeModel::Kernel)) WrapperKind = X86ISD::WrapperRIP; else if (Subtarget->isPICStyleGOT()) OpFlag = X86II::MO_GOTOFF; else if (Subtarget->isPICStyleStubPIC()) OpFlag = X86II::MO_PIC_BASE_OFFSET; auto PtrVT = getPointerTy(DAG.getDataLayout()); SDValue Result = DAG.getTargetConstantPool( CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), OpFlag); SDLoc DL(CP); Result = DAG.getNode(WrapperKind, DL, PtrVT, Result); // With PIC, the address is actually $g + Offset. if (OpFlag) { Result = DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result); } return Result; } SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the // global base reg. unsigned char OpFlag = 0; unsigned WrapperKind = X86ISD::Wrapper; CodeModel::Model M = DAG.getTarget().getCodeModel(); if (Subtarget->isPICStyleRIPRel() && (M == CodeModel::Small || M == CodeModel::Kernel)) WrapperKind = X86ISD::WrapperRIP; else if (Subtarget->isPICStyleGOT()) OpFlag = X86II::MO_GOTOFF; else if (Subtarget->isPICStyleStubPIC()) OpFlag = X86II::MO_PIC_BASE_OFFSET; auto PtrVT = getPointerTy(DAG.getDataLayout()); SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag); SDLoc DL(JT); Result = DAG.getNode(WrapperKind, DL, PtrVT, Result); // With PIC, the address is actually $g + Offset. if (OpFlag) Result = DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result); return Result; } SDValue X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const { const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the // global base reg. unsigned char OpFlag = 0; unsigned WrapperKind = X86ISD::Wrapper; CodeModel::Model M = DAG.getTarget().getCodeModel(); if (Subtarget->isPICStyleRIPRel() && (M == CodeModel::Small || M == CodeModel::Kernel)) { if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF()) OpFlag = X86II::MO_GOTPCREL; WrapperKind = X86ISD::WrapperRIP; } else if (Subtarget->isPICStyleGOT()) { OpFlag = X86II::MO_GOT; } else if (Subtarget->isPICStyleStubPIC()) { OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE; } else if (Subtarget->isPICStyleStubNoDynamic()) { OpFlag = X86II::MO_DARWIN_NONLAZY; } auto PtrVT = getPointerTy(DAG.getDataLayout()); SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT, OpFlag); SDLoc DL(Op); Result = DAG.getNode(WrapperKind, DL, PtrVT, Result); // With PIC, the address is actually $g + Offset. if (DAG.getTarget().getRelocationModel() == Reloc::PIC_ && !Subtarget->is64Bit()) { Result = DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result); } // For symbols that require a load from a stub to get the address, emit the // load. if (isGlobalStubReference(OpFlag)) Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, MachinePointerInfo::getGOT(DAG.getMachineFunction()), false, false, false, 0); return Result; } SDValue X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { // Create the TargetBlockAddressAddress node. unsigned char OpFlags = Subtarget->ClassifyBlockAddressReference(); CodeModel::Model M = DAG.getTarget().getCodeModel(); const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset(); SDLoc dl(Op); auto PtrVT = getPointerTy(DAG.getDataLayout()); SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset, OpFlags); if (Subtarget->isPICStyleRIPRel() && (M == CodeModel::Small || M == CodeModel::Kernel)) Result = DAG.getNode(X86ISD::WrapperRIP, dl, PtrVT, Result); else Result = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, Result); // With PIC, the address is actually $g + Offset. if (isGlobalRelativeToPICBase(OpFlags)) { Result = DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result); } return Result; } SDValue X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl, int64_t Offset, SelectionDAG &DAG) const { // Create the TargetGlobalAddress node, folding in the constant // offset if it is legal. unsigned char OpFlags = Subtarget->ClassifyGlobalReference(GV, DAG.getTarget()); CodeModel::Model M = DAG.getTarget().getCodeModel(); auto PtrVT = getPointerTy(DAG.getDataLayout()); SDValue Result; if (OpFlags == X86II::MO_NO_FLAG && X86::isOffsetSuitableForCodeModel(Offset, M)) { // A direct static reference to a global. Result = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset); Offset = 0; } else { Result = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, OpFlags); } if (Subtarget->isPICStyleRIPRel() && (M == CodeModel::Small || M == CodeModel::Kernel)) Result = DAG.getNode(X86ISD::WrapperRIP, dl, PtrVT, Result); else Result = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, Result); // With PIC, the address is actually $g + Offset. if (isGlobalRelativeToPICBase(OpFlags)) { Result = DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result); } // For globals that require a load from a stub to get the address, emit the // load. if (isGlobalStubReference(OpFlags)) Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result, MachinePointerInfo::getGOT(DAG.getMachineFunction()), false, false, false, 0); // If there was a non-zero offset that we didn't fold, create an explicit // addition for it. if (Offset != 0) Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, DAG.getConstant(Offset, dl, PtrVT)); return Result; } SDValue X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG); } static SDValue GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA, SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg, unsigned char OperandFlags, bool LocalDynamic = false) { MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SDLoc dl(GA); SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0), GA->getOffset(), OperandFlags); X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR : X86ISD::TLSADDR; if (InFlag) { SDValue Ops[] = { Chain, TGA, *InFlag }; Chain = DAG.getNode(CallType, dl, NodeTys, Ops); } else { SDValue Ops[] = { Chain, TGA }; Chain = DAG.getNode(CallType, dl, NodeTys, Ops); } // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. MFI->setAdjustsStack(true); MFI->setHasCalls(true); SDValue Flag = Chain.getValue(1); return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag); } // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit static SDValue LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG, const EVT PtrVT) { SDValue InFlag; SDLoc dl(GA); // ? function entry point might be better SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag); InFlag = Chain.getValue(1); return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD); } // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit static SDValue LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG, const EVT PtrVT) { return GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, X86::RAX, X86II::MO_TLSGD); } static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, const EVT PtrVT, bool is64Bit) { SDLoc dl(GA); // Get the start address of the TLS block for this module. X86MachineFunctionInfo* MFI = DAG.getMachineFunction() .getInfo<X86MachineFunctionInfo>(); MFI->incNumLocalDynamicTLSAccesses(); SDValue Base; if (is64Bit) { Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, X86::RAX, X86II::MO_TLSLD, /*LocalDynamic=*/true); } else { SDValue InFlag; SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag); InFlag = Chain.getValue(1); Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSLDM, /*LocalDynamic=*/true); } // Note: the CleanupLocalDynamicTLSPass will remove redundant computations // of Base. // Build x@dtpoff. unsigned char OperandFlags = X86II::MO_DTPOFF; unsigned WrapperKind = X86ISD::Wrapper; SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0), GA->getOffset(), OperandFlags); SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); // Add x@dtpoff with the base. return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base); } // Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model. static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, const EVT PtrVT, TLSModel::Model model, bool is64Bit, bool isPIC) { SDLoc dl(GA); // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit). Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(), is64Bit ? 257 : 256)); SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0, dl), MachinePointerInfo(Ptr), false, false, false, 0); unsigned char OperandFlags = 0; // Most TLS accesses are not RIP relative, even on x86-64. One exception is // initialexec. unsigned WrapperKind = X86ISD::Wrapper; if (model == TLSModel::LocalExec) { OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF; } else if (model == TLSModel::InitialExec) { if (is64Bit) { OperandFlags = X86II::MO_GOTTPOFF; WrapperKind = X86ISD::WrapperRIP; } else { OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF; } } else { llvm_unreachable("Unexpected model"); } // emit "addl x@ntpoff,%eax" (local exec) // or "addl x@indntpoff,%eax" (initial exec) // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic) SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0), GA->getOffset(), OperandFlags); SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); if (model == TLSModel::InitialExec) { if (isPIC && !is64Bit) { Offset = DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Offset); } Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset, MachinePointerInfo::getGOT(DAG.getMachineFunction()), false, false, false, 0); } // The address of the thread local variable is the add of the thread // pointer with the offset of the variable. return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); } SDValue X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); // Cygwin uses emutls. // FIXME: It may be EmulatedTLS-generic also for X86-Android. if (Subtarget->isTargetWindowsCygwin()) return LowerToTLSEmulatedModel(GA, DAG); const GlobalValue *GV = GA->getGlobal(); auto PtrVT = getPointerTy(DAG.getDataLayout()); if (Subtarget->isTargetELF()) { if (DAG.getTarget().Options.EmulatedTLS) return LowerToTLSEmulatedModel(GA, DAG); TLSModel::Model model = DAG.getTarget().getTLSModel(GV); switch (model) { case TLSModel::GeneralDynamic: if (Subtarget->is64Bit()) return LowerToTLSGeneralDynamicModel64(GA, DAG, PtrVT); return LowerToTLSGeneralDynamicModel32(GA, DAG, PtrVT); case TLSModel::LocalDynamic: return LowerToTLSLocalDynamicModel(GA, DAG, PtrVT, Subtarget->is64Bit()); case TLSModel::InitialExec: case TLSModel::LocalExec: return LowerToTLSExecModel(GA, DAG, PtrVT, model, Subtarget->is64Bit(), DAG.getTarget().getRelocationModel() == Reloc::PIC_); } llvm_unreachable("Unknown TLS model."); } if (Subtarget->isTargetDarwin()) { // Darwin only has one model of TLS. Lower to that. unsigned char OpFlag = 0; unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ? X86ISD::WrapperRIP : X86ISD::Wrapper; // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the // global base reg. bool PIC32 = (DAG.getTarget().getRelocationModel() == Reloc::PIC_) && !Subtarget->is64Bit(); if (PIC32) OpFlag = X86II::MO_TLVP_PIC_BASE; else OpFlag = X86II::MO_TLVP; SDLoc DL(Op); SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, GA->getValueType(0), GA->getOffset(), OpFlag); SDValue Offset = DAG.getNode(WrapperKind, DL, PtrVT, Result); // With PIC32, the address is actually $g + Offset. if (PIC32) Offset = DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Offset); // Lowering the machine isd will make sure everything is in the right // location. SDValue Chain = DAG.getEntryNode(); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Args[] = { Chain, Offset }; Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args); // TLSCALL will be codegen'ed as call. Inform MFI that function has calls. MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); MFI->setAdjustsStack(true); // And our return value (tls address) is in the standard call return value // location. unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; return DAG.getCopyFromReg(Chain, DL, Reg, PtrVT, Chain.getValue(1)); } if (Subtarget->isTargetKnownWindowsMSVC() || Subtarget->isTargetWindowsGNU()) { // Just use the implicit TLS architecture // Need to generate someting similar to: // mov rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage // ; from TEB // mov ecx, dword [rel _tls_index]: Load index (from C runtime) // mov rcx, qword [rdx+rcx*8] // mov eax, .tls$:tlsvar // [rax+rcx] contains the address // Windows 64bit: gs:0x58 // Windows 32bit: fs:__tls_array SDLoc dl(GA); SDValue Chain = DAG.getEntryNode(); // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly // use its literal value of 0x2C. Value *Ptr = Constant::getNullValue(Subtarget->is64Bit() ? Type::getInt8PtrTy(*DAG.getContext(), 256) : Type::getInt32PtrTy(*DAG.getContext(), 257)); SDValue TlsArray = Subtarget->is64Bit() ? DAG.getIntPtrConstant(0x58, dl) : (Subtarget->isTargetWindowsGNU() ? DAG.getIntPtrConstant(0x2C, dl) : DAG.getExternalSymbol("_tls_array", PtrVT)); SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, Chain, TlsArray, MachinePointerInfo(Ptr), false, false, false, 0); SDValue res; if (GV->getThreadLocalMode() == GlobalVariable::LocalExecTLSModel) { res = ThreadPointer; } else { // Load the _tls_index variable SDValue IDX = DAG.getExternalSymbol("_tls_index", PtrVT); if (Subtarget->is64Bit()) IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, IDX, MachinePointerInfo(), MVT::i32, false, false, false, 0); else IDX = DAG.getLoad(PtrVT, dl, Chain, IDX, MachinePointerInfo(), false, false, false, 0); auto &DL = DAG.getDataLayout(); SDValue Scale = DAG.getConstant(Log2_64_Ceil(DL.getPointerSize()), dl, PtrVT); IDX = DAG.getNode(ISD::SHL, dl, PtrVT, IDX, Scale); res = DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, IDX); } res = DAG.getLoad(PtrVT, dl, Chain, res, MachinePointerInfo(), false, false, false, 0); // Get the offset of start of .tls section SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0), GA->getOffset(), X86II::MO_SECREL); SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, TGA); // The address of the thread local variable is the add of the thread // pointer with the offset of the variable. return DAG.getNode(ISD::ADD, dl, PtrVT, res, Offset); } llvm_unreachable("TLS not implemented for this target."); } /// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values /// and take a 2 x i32 value to shift plus a shift amount. static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) { assert(Op.getNumOperands() == 3 && "Not a double-shift!"); MVT VT = Op.getSimpleValueType(); unsigned VTBits = VT.getSizeInBits(); SDLoc dl(Op); bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; SDValue ShOpLo = Op.getOperand(0); SDValue ShOpHi = Op.getOperand(1); SDValue ShAmt = Op.getOperand(2); // X86ISD::SHLD and X86ISD::SHRD have defined overflow behavior but the // generic ISD nodes haven't. Insert an AND to be safe, it's optimized away // during isel. SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt, DAG.getConstant(VTBits - 1, dl, MVT::i8)); SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, DAG.getConstant(VTBits - 1, dl, MVT::i8)) : DAG.getConstant(0, dl, VT); SDValue Tmp2, Tmp3; if (Op.getOpcode() == ISD::SHL_PARTS) { Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt); Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); } else { Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt); Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); } // If the shift amount is larger or equal than the width of a part we can't // rely on the results of shld/shrd. Insert a test and select the appropriate // values for large shift amounts. SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt, DAG.getConstant(VTBits, dl, MVT::i8)); SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32, AndNode, DAG.getConstant(0, dl, MVT::i8)); SDValue Hi, Lo; SDValue CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8); SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond }; SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond }; if (Op.getOpcode() == ISD::SHL_PARTS) { Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0); Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1); } else { Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0); Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1); } SDValue Ops[2] = { Lo, Hi }; return DAG.getMergeValues(Ops, dl); } SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { SDValue Src = Op.getOperand(0); MVT SrcVT = Src.getSimpleValueType(); MVT VT = Op.getSimpleValueType(); SDLoc dl(Op); if (SrcVT.isVector()) { if (SrcVT == MVT::v2i32 && VT == MVT::v2f64) { return DAG.getNode(X86ISD::CVTDQ2PD, dl, VT, DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i32, Src, DAG.getUNDEF(SrcVT))); } if (SrcVT.getVectorElementType() == MVT::i1) { MVT IntegerVT = MVT::getVectorVT(MVT::i32, SrcVT.getVectorNumElements()); return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), DAG.getNode(ISD::SIGN_EXTEND, dl, IntegerVT, Src)); } return SDValue(); } assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 && "Unknown SINT_TO_FP to lower!"); // These are really Legal; return the operand so the caller accepts it as // Legal. if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType())) return Op; if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) && Subtarget->is64Bit()) { return Op; } unsigned Size = SrcVT.getSizeInBits()/8; MachineFunction &MF = DAG.getMachineFunction(); auto PtrVT = getPointerTy(MF.getDataLayout()); int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false); SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); SDValue Chain = DAG.getStore( DAG.getEntryNode(), dl, Op.getOperand(0), StackSlot, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), false, false, 0); return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG); } SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot, SelectionDAG &DAG) const { // Build the FILD SDLoc DL(Op); SDVTList Tys; bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType()); if (useSSE) Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue); else Tys = DAG.getVTList(Op.getValueType(), MVT::Other); unsigned ByteSize = SrcVT.getSizeInBits()/8; FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot); MachineMemOperand *MMO; if (FI) { int SSFI = FI->getIndex(); MMO = DAG.getMachineFunction().getMachineMemOperand( MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), MachineMemOperand::MOLoad, ByteSize, ByteSize); } else { MMO = cast<LoadSDNode>(StackSlot)->getMemOperand(); StackSlot = StackSlot.getOperand(1); } SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) }; SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, DL, Tys, Ops, SrcVT, MMO); if (useSSE) { Chain = Result.getValue(1); SDValue InFlag = Result.getValue(2); // FIXME: Currently the FST is flagged to the FILD_FLAG. This // shouldn't be necessary except that RFP cannot be live across // multiple blocks. When stackifier is fixed, they can be uncoupled. MachineFunction &MF = DAG.getMachineFunction(); unsigned SSFISize = Op.getValueType().getSizeInBits()/8; int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false); auto PtrVT = getPointerTy(MF.getDataLayout()); SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); Tys = DAG.getVTList(MVT::Other); SDValue Ops[] = { Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag }; MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), MachineMemOperand::MOStore, SSFISize, SSFISize); Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys, Ops, Op.getValueType(), MMO); Result = DAG.getLoad( Op.getValueType(), DL, Chain, StackSlot, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), false, false, false, 0); } return Result; } // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion. SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const { // This algorithm is not obvious. Here it is what we're trying to output: /* movq %rax, %xmm0 punpckldq (c0), %xmm0 // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U } subpd (c1), %xmm0 // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 } #ifdef __SSE3__ haddpd %xmm0, %xmm0 #else pshufd $0x4e, %xmm0, %xmm1 addpd %xmm1, %xmm0 #endif */ SDLoc dl(Op); LLVMContext *Context = DAG.getContext(); // Build some magic constants. static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 }; Constant *C0 = ConstantDataVector::get(*Context, CV0); auto PtrVT = getPointerTy(DAG.getDataLayout()); SDValue CPIdx0 = DAG.getConstantPool(C0, PtrVT, 16); SmallVector<Constant*,2> CV1; CV1.push_back( ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble, APInt(64, 0x4330000000000000ULL)))); CV1.push_back( ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble, APInt(64, 0x4530000000000000ULL)))); Constant *C1 = ConstantVector::get(CV1); SDValue CPIdx1 = DAG.getConstantPool(C1, PtrVT, 16); // Load the 64-bit value into an XMM register. SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Op.getOperand(0)); SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0, MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, false, false, 16); SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, DAG.getBitcast(MVT::v4i32, XR1), CLod0); SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1, MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, false, false, 16); SDValue XR2F = DAG.getBitcast(MVT::v2f64, Unpck1); // TODO: Are there any fast-math-flags to propagate here? SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1); SDValue Result; if (Subtarget->hasSSE3()) { // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'. Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub); } else { SDValue S2F = DAG.getBitcast(MVT::v4i32, Sub); SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32, S2F, 0x4E, DAG); Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64, DAG.getBitcast(MVT::v2f64, Shuffle), Sub); } return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result, DAG.getIntPtrConstant(0, dl)); } // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion. SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); // FP constant to bias correct the final result. SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl, MVT::f64); // Load the 32-bit value into an XMM register. SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Op.getOperand(0)); // Zero out the upper parts of the register. Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG); Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, DAG.getBitcast(MVT::v2f64, Load), DAG.getIntPtrConstant(0, dl)); // Or the load with the bias. SDValue Or = DAG.getNode( ISD::OR, dl, MVT::v2i64, DAG.getBitcast(MVT::v2i64, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Load)), DAG.getBitcast(MVT::v2i64, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Bias))); Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, DAG.getBitcast(MVT::v2f64, Or), DAG.getIntPtrConstant(0, dl)); // Subtract the bias. // TODO: Are there any fast-math-flags to propagate here? SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias); // Handle final rounding. MVT DestVT = Op.getSimpleValueType(); if (DestVT.bitsLT(MVT::f64)) return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, DAG.getIntPtrConstant(0, dl)); if (DestVT.bitsGT(MVT::f64)) return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); // Handle final rounding. return Sub; } static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, SelectionDAG &DAG, const X86Subtarget &Subtarget) { // The algorithm is the following: // #ifdef __SSE4_1__ // uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa); // uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16), // (uint4) 0x53000000, 0xaa); // #else // uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000; // uint4 hi = (v >> 16) | (uint4) 0x53000000; // #endif // float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f); // return (float4) lo + fhi; // We shouldn't use it when unsafe-fp-math is enabled though: we might later // reassociate the two FADDs, and if we do that, the algorithm fails // spectacularly (PR24512). // FIXME: If we ever have some kind of Machine FMF, this should be marked // as non-fast and always be enabled. Why isn't SDAG FMF enough? Because // there's also the MachineCombiner reassociations happening on Machine IR. if (DAG.getTarget().Options.UnsafeFPMath) return SDValue(); SDLoc DL(Op); SDValue V = Op->getOperand(0); MVT VecIntVT = V.getSimpleValueType(); bool Is128 = VecIntVT == MVT::v4i32; MVT VecFloatVT = Is128 ? MVT::v4f32 : MVT::v8f32; // If we convert to something else than the supported type, e.g., to v4f64, // abort early. if (VecFloatVT != Op->getSimpleValueType(0)) return SDValue(); unsigned NumElts = VecIntVT.getVectorNumElements(); assert((VecIntVT == MVT::v4i32 || VecIntVT == MVT::v8i32) && "Unsupported custom type"); assert(NumElts <= 8 && "The size of the constant array must be fixed"); // In the #idef/#else code, we have in common: // - The vector of constants: // -- 0x4b000000 // -- 0x53000000 // - A shift: // -- v >> 16 // Create the splat vector for 0x4b000000. SDValue CstLow = DAG.getConstant(0x4b000000, DL, MVT::i32); SDValue CstLowArray[] = {CstLow, CstLow, CstLow, CstLow, CstLow, CstLow, CstLow, CstLow}; SDValue VecCstLow = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT, makeArrayRef(&CstLowArray[0], NumElts)); // Create the splat vector for 0x53000000. SDValue CstHigh = DAG.getConstant(0x53000000, DL, MVT::i32); SDValue CstHighArray[] = {CstHigh, CstHigh, CstHigh, CstHigh, CstHigh, CstHigh, CstHigh, CstHigh}; SDValue VecCstHigh = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT, makeArrayRef(&CstHighArray[0], NumElts)); // Create the right shift. SDValue CstShift = DAG.getConstant(16, DL, MVT::i32); SDValue CstShiftArray[] = {CstShift, CstShift, CstShift, CstShift, CstShift, CstShift, CstShift, CstShift}; SDValue VecCstShift = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT, makeArrayRef(&CstShiftArray[0], NumElts)); SDValue HighShift = DAG.getNode(ISD::SRL, DL, VecIntVT, V, VecCstShift); SDValue Low, High; if (Subtarget.hasSSE41()) { MVT VecI16VT = Is128 ? MVT::v8i16 : MVT::v16i16; // uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa); SDValue VecCstLowBitcast = DAG.getBitcast(VecI16VT, VecCstLow); SDValue VecBitcast = DAG.getBitcast(VecI16VT, V); // Low will be bitcasted right away, so do not bother bitcasting back to its // original type. Low = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecBitcast, VecCstLowBitcast, DAG.getConstant(0xaa, DL, MVT::i32)); // uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16), // (uint4) 0x53000000, 0xaa); SDValue VecCstHighBitcast = DAG.getBitcast(VecI16VT, VecCstHigh); SDValue VecShiftBitcast = DAG.getBitcast(VecI16VT, HighShift); // High will be bitcasted right away, so do not bother bitcasting back to // its original type. High = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecShiftBitcast, VecCstHighBitcast, DAG.getConstant(0xaa, DL, MVT::i32)); } else { SDValue CstMask = DAG.getConstant(0xffff, DL, MVT::i32); SDValue VecCstMask = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT, CstMask, CstMask, CstMask, CstMask); // uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000; SDValue LowAnd = DAG.getNode(ISD::AND, DL, VecIntVT, V, VecCstMask); Low = DAG.getNode(ISD::OR, DL, VecIntVT, LowAnd, VecCstLow); // uint4 hi = (v >> 16) | (uint4) 0x53000000; High = DAG.getNode(ISD::OR, DL, VecIntVT, HighShift, VecCstHigh); } // Create the vector constant for -(0x1.0p39f + 0x1.0p23f). SDValue CstFAdd = DAG.getConstantFP( APFloat(APFloat::IEEEsingle, APInt(32, 0xD3000080)), DL, MVT::f32); SDValue CstFAddArray[] = {CstFAdd, CstFAdd, CstFAdd, CstFAdd, CstFAdd, CstFAdd, CstFAdd, CstFAdd}; SDValue VecCstFAdd = DAG.getNode(ISD::BUILD_VECTOR, DL, VecFloatVT, makeArrayRef(&CstFAddArray[0], NumElts)); // float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f); SDValue HighBitcast = DAG.getBitcast(VecFloatVT, High); // TODO: Are there any fast-math-flags to propagate here? SDValue FHigh = DAG.getNode(ISD::FADD, DL, VecFloatVT, HighBitcast, VecCstFAdd); // return (float4) lo + fhi; SDValue LowBitcast = DAG.getBitcast(VecFloatVT, Low); return DAG.getNode(ISD::FADD, DL, VecFloatVT, LowBitcast, FHigh); } SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG) const { SDValue N0 = Op.getOperand(0); MVT SVT = N0.getSimpleValueType(); SDLoc dl(Op); switch (SVT.SimpleTy) { default: llvm_unreachable("Custom UINT_TO_FP is not supported!"); case MVT::v4i8: case MVT::v4i16: case MVT::v8i8: case MVT::v8i16: { MVT NVT = MVT::getVectorVT(MVT::i32, SVT.getVectorNumElements()); return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0)); } case MVT::v4i32: case MVT::v8i32: return lowerUINT_TO_FP_vXi32(Op, DAG, *Subtarget); case MVT::v16i8: case MVT::v16i16: assert(Subtarget->hasAVX512()); return DAG.getNode(ISD::UINT_TO_FP, dl, Op.getValueType(), DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v16i32, N0)); } } SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { SDValue N0 = Op.getOperand(0); SDLoc dl(Op); auto PtrVT = getPointerTy(DAG.getDataLayout()); if (Op.getSimpleValueType().isVector()) return lowerUINT_TO_FP_vec(Op, DAG); // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform // the optimization here. if (DAG.SignBitIsZero(N0)) return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0); MVT SrcVT = N0.getSimpleValueType(); MVT DstVT = Op.getSimpleValueType(); if (Subtarget->hasAVX512() && isScalarFPTypeInSSEReg(DstVT) && (SrcVT == MVT::i32 || (SrcVT == MVT::i64 && Subtarget->is64Bit()))) { // Conversions from unsigned i32 to f32/f64 are legal, // using VCVTUSI2SS/SD. Same for i64 in 64-bit mode. return Op; } if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64) return LowerUINT_TO_FP_i64(Op, DAG); if (SrcVT == MVT::i32 && X86ScalarSSEf64) return LowerUINT_TO_FP_i32(Op, DAG); if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32) return SDValue(); // Make a 64-bit buffer, and use it to build an FILD. SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64); if (SrcVT == MVT::i32) { SDValue WordOff = DAG.getConstant(4, dl, PtrVT); SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, WordOff); SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), StackSlot, MachinePointerInfo(), false, false, 0); SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, dl, MVT::i32), OffsetSlot, MachinePointerInfo(), false, false, 0); SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG); return Fild; } assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP"); SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), StackSlot, MachinePointerInfo(), false, false, 0); // For i64 source, we need to add the appropriate power of 2 if the input // was negative. This is the same as the optimization in // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here, // we must be careful to do the computation in x87 extended precision, not // in SSE. (The generic code can't know it's OK to do this, or how to.) int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex(); MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), MachineMemOperand::MOLoad, 8, 8); SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other); SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) }; SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, MVT::i64, MMO); APInt FF(32, 0x5F800000ULL); // Check whether the sign bit is set. SDValue SignSet = DAG.getSetCC( dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), Op.getOperand(0), DAG.getConstant(0, dl, MVT::i64), ISD::SETLT); // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits. SDValue FudgePtr = DAG.getConstantPool( ConstantInt::get(*DAG.getContext(), FF.zext(64)), PtrVT); // Get a pointer to FF if the sign bit was set, or to 0 otherwise. SDValue Zero = DAG.getIntPtrConstant(0, dl); SDValue Four = DAG.getIntPtrConstant(4, dl); SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet, Zero, Four); FudgePtr = DAG.getNode(ISD::ADD, dl, PtrVT, FudgePtr, Offset); // Load the value out, extending it from f32 to f80. // FIXME: Avoid the extend by constructing the right constant pool? SDValue Fudge = DAG.getExtLoad( ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(), FudgePtr, MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, false, false, false, 4); // Extend everything to 80 bits to force it to be done on x87. // TODO: Are there any fast-math-flags to propagate here? SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge); return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0, dl)); } // If the given FP_TO_SINT (IsSigned) or FP_TO_UINT (!IsSigned) operation // is legal, or has an fp128 or f16 source (which needs to be promoted to f32), // just return an <SDValue(), SDValue()> pair. // Otherwise it is assumed to be a conversion from one of f32, f64 or f80 // to i16, i32 or i64, and we lower it to a legal sequence. // If lowered to the final integer result we return a <result, SDValue()> pair. // Otherwise we lower it to a sequence ending with a FIST, return a // <FIST, StackSlot> pair, and the caller is responsible for loading // the final integer result from StackSlot. std::pair<SDValue,SDValue> X86TargetLowering::FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const { SDLoc DL(Op); EVT DstTy = Op.getValueType(); EVT TheVT = Op.getOperand(0).getValueType(); auto PtrVT = getPointerTy(DAG.getDataLayout()); if (TheVT != MVT::f32 && TheVT != MVT::f64 && TheVT != MVT::f80) { // f16 must be promoted before using the lowering in this routine. // fp128 does not use this lowering. return std::make_pair(SDValue(), SDValue()); } // If using FIST to compute an unsigned i64, we'll need some fixup // to handle values above the maximum signed i64. A FIST is always // used for the 32-bit subtarget, but also for f80 on a 64-bit target. bool UnsignedFixup = !IsSigned && DstTy == MVT::i64 && (!Subtarget->is64Bit() || !isScalarFPTypeInSSEReg(TheVT)); if (!IsSigned && DstTy != MVT::i64 && !Subtarget->hasAVX512()) { // Replace the fp-to-uint32 operation with an fp-to-sint64 FIST. // The low 32 bits of the fist result will have the correct uint32 result. assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT"); DstTy = MVT::i64; } assert(DstTy.getSimpleVT() <= MVT::i64 && DstTy.getSimpleVT() >= MVT::i16 && "Unknown FP_TO_INT to lower!"); // These are really Legal. if (DstTy == MVT::i32 && isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) return std::make_pair(SDValue(), SDValue()); if (Subtarget->is64Bit() && DstTy == MVT::i64 && isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) return std::make_pair(SDValue(), SDValue()); // We lower FP->int64 into FISTP64 followed by a load from a temporary // stack slot. MachineFunction &MF = DAG.getMachineFunction(); unsigned MemSize = DstTy.getSizeInBits()/8; int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); unsigned Opc; switch (DstTy.getSimpleVT().SimpleTy) { default: llvm_unreachable("Invalid FP_TO_SINT to lower!"); case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; } SDValue Chain = DAG.getEntryNode(); SDValue Value = Op.getOperand(0); SDValue Adjust; // 0x0 or 0x80000000, for result sign bit adjustment. if (UnsignedFixup) { // // Conversion to unsigned i64 is implemented with a select, // depending on whether the source value fits in the range // of a signed i64. Let Thresh be the FP equivalent of // 0x8000000000000000ULL. // // Adjust i32 = (Value < Thresh) ? 0 : 0x80000000; // FistSrc = (Value < Thresh) ? Value : (Value - Thresh); // Fist-to-mem64 FistSrc // Add 0 or 0x800...0ULL to the 64-bit result, which is equivalent // to XOR'ing the high 32 bits with Adjust. // // Being a power of 2, Thresh is exactly representable in all FP formats. // For X87 we'd like to use the smallest FP type for this constant, but // for DAG type consistency we have to match the FP operand type. APFloat Thresh(APFloat::IEEEsingle, APInt(32, 0x5f000000)); LLVM_ATTRIBUTE_UNUSED APFloat::opStatus Status = APFloat::opOK; bool LosesInfo = false; if (TheVT == MVT::f64) // The rounding mode is irrelevant as the conversion should be exact. Status = Thresh.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &LosesInfo); else if (TheVT == MVT::f80) Status = Thresh.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven, &LosesInfo); assert(Status == APFloat::opOK && !LosesInfo && "FP conversion should have been exact"); SDValue ThreshVal = DAG.getConstantFP(Thresh, DL, TheVT); SDValue Cmp = DAG.getSetCC(DL, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), TheVT), Value, ThreshVal, ISD::SETLT); Adjust = DAG.getSelect(DL, MVT::i32, Cmp, DAG.getConstant(0, DL, MVT::i32), DAG.getConstant(0x80000000, DL, MVT::i32)); SDValue Sub = DAG.getNode(ISD::FSUB, DL, TheVT, Value, ThreshVal); Cmp = DAG.getSetCC(DL, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), TheVT), Value, ThreshVal, ISD::SETLT); Value = DAG.getSelect(DL, TheVT, Cmp, Value, Sub); } // FIXME This causes a redundant load/store if the SSE-class value is already // in memory, such as if it is on the callstack. if (isScalarFPTypeInSSEReg(TheVT)) { assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!"); Chain = DAG.getStore(Chain, DL, Value, StackSlot, MachinePointerInfo::getFixedStack(MF, SSFI), false, false, 0); SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other); SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(TheVT) }; MachineMemOperand *MMO = MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI), MachineMemOperand::MOLoad, MemSize, MemSize); Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, DstTy, MMO); Chain = Value.getValue(1); SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); StackSlot = DAG.getFrameIndex(SSFI, PtrVT); } MachineMemOperand *MMO = MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI), MachineMemOperand::MOStore, MemSize, MemSize); if (UnsignedFixup) { // Insert the FIST, load its result as two i32's, // and XOR the high i32 with Adjust. SDValue FistOps[] = { Chain, Value, StackSlot }; SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other), FistOps, DstTy, MMO); SDValue Low32 = DAG.getLoad(MVT::i32, DL, FIST, StackSlot, MachinePointerInfo(), false, false, false, 0); SDValue HighAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackSlot, DAG.getConstant(4, DL, PtrVT)); SDValue High32 = DAG.getLoad(MVT::i32, DL, FIST, HighAddr, MachinePointerInfo(), false, false, false, 0); High32 = DAG.getNode(ISD::XOR, DL, MVT::i32, High32, Adjust); if (Subtarget->is64Bit()) { // Join High32 and Low32 into a 64-bit result. // (High32 << 32) | Low32 Low32 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Low32); High32 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, High32); High32 = DAG.getNode(ISD::SHL, DL, MVT::i64, High32, DAG.getConstant(32, DL, MVT::i8)); SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i64, High32, Low32); return std::make_pair(Result, SDValue()); } SDValue ResultOps[] = { Low32, High32 }; SDValue pair = IsReplace ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResultOps) : DAG.getMergeValues(ResultOps, DL); return std::make_pair(pair, SDValue()); } else { // Build the FP_TO_INT*_IN_MEM SDValue Ops[] = { Chain, Value, StackSlot }; SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other), Ops, DstTy, MMO); return std::make_pair(FIST, StackSlot); } } static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG, const X86Subtarget *Subtarget) { MVT VT = Op->getSimpleValueType(0); SDValue In = Op->getOperand(0); MVT InVT = In.getSimpleValueType(); SDLoc dl(Op); if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1) return DAG.getNode(ISD::ZERO_EXTEND, dl, VT, In); // Optimize vectors in AVX mode: // // v8i16 -> v8i32 // Use vpunpcklwd for 4 lower elements v8i16 -> v4i32. // Use vpunpckhwd for 4 upper elements v8i16 -> v4i32. // Concat upper and lower parts. // // v4i32 -> v4i64 // Use vpunpckldq for 4 lower elements v4i32 -> v2i64. // Use vpunpckhdq for 4 upper elements v4i32 -> v2i64. // Concat upper and lower parts. // if (((VT != MVT::v16i16) || (InVT != MVT::v16i8)) && ((VT != MVT::v8i32) || (InVT != MVT::v8i16)) && ((VT != MVT::v4i64) || (InVT != MVT::v4i32))) return SDValue(); if (Subtarget->hasInt256()) return DAG.getNode(X86ISD::VZEXT, dl, VT, In); SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl); SDValue Undef = DAG.getUNDEF(InVT); bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND; SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef); SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef); MVT HVT = MVT::getVectorVT(VT.getVectorElementType(), VT.getVectorNumElements()/2); OpLo = DAG.getBitcast(HVT, OpLo); OpHi = DAG.getBitcast(HVT, OpHi); return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi); } static SDValue LowerZERO_EXTEND_AVX512(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT VT = Op->getSimpleValueType(0); SDValue In = Op->getOperand(0); MVT InVT = In.getSimpleValueType(); SDLoc DL(Op); unsigned int NumElts = VT.getVectorNumElements(); if (NumElts != 8 && NumElts != 16 && !Subtarget->hasBWI()) return SDValue(); if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1) return DAG.getNode(X86ISD::VZEXT, DL, VT, In); assert(InVT.getVectorElementType() == MVT::i1); MVT ExtVT = NumElts == 8 ? MVT::v8i64 : MVT::v16i32; SDValue One = DAG.getConstant(APInt(ExtVT.getScalarSizeInBits(), 1), DL, ExtVT); SDValue Zero = DAG.getConstant(APInt::getNullValue(ExtVT.getScalarSizeInBits()), DL, ExtVT); SDValue V = DAG.getNode(ISD::VSELECT, DL, ExtVT, In, One, Zero); if (VT.is512BitVector()) return V; return DAG.getNode(X86ISD::VTRUNC, DL, VT, V); } static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { if (Subtarget->hasFp256()) if (SDValue Res = LowerAVXExtend(Op, DAG, Subtarget)) return Res; return SDValue(); } static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); SDValue In = Op.getOperand(0); MVT SVT = In.getSimpleValueType(); if (VT.is512BitVector() || SVT.getVectorElementType() == MVT::i1) return LowerZERO_EXTEND_AVX512(Op, Subtarget, DAG); if (Subtarget->hasFp256()) if (SDValue Res = LowerAVXExtend(Op, DAG, Subtarget)) return Res; assert(!VT.is256BitVector() || !SVT.is128BitVector() || VT.getVectorNumElements() != SVT.getVectorNumElements()); return SDValue(); } SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); SDValue In = Op.getOperand(0); MVT InVT = In.getSimpleValueType(); if (VT == MVT::i1) { assert((InVT.isInteger() && (InVT.getSizeInBits() <= 64)) && "Invalid scalar TRUNCATE operation"); if (InVT.getSizeInBits() >= 32) return SDValue(); In = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, In); return DAG.getNode(ISD::TRUNCATE, DL, VT, In); } assert(VT.getVectorNumElements() == InVT.getVectorNumElements() && "Invalid TRUNCATE operation"); // move vector to mask - truncate solution for SKX if (VT.getVectorElementType() == MVT::i1) { if (InVT.is512BitVector() && InVT.getScalarSizeInBits() <= 16 && Subtarget->hasBWI()) return Op; // legal, will go to VPMOVB2M, VPMOVW2M if ((InVT.is256BitVector() || InVT.is128BitVector()) && InVT.getScalarSizeInBits() <= 16 && Subtarget->hasBWI() && Subtarget->hasVLX()) return Op; // legal, will go to VPMOVB2M, VPMOVW2M if (InVT.is512BitVector() && InVT.getScalarSizeInBits() >= 32 && Subtarget->hasDQI()) return Op; // legal, will go to VPMOVD2M, VPMOVQ2M if ((InVT.is256BitVector() || InVT.is128BitVector()) && InVT.getScalarSizeInBits() >= 32 && Subtarget->hasDQI() && Subtarget->hasVLX()) return Op; // legal, will go to VPMOVB2M, VPMOVQ2M } if (VT.getVectorElementType() == MVT::i1) { assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type"); unsigned NumElts = InVT.getVectorNumElements(); assert ((NumElts == 8 || NumElts == 16) && "Unexpected vector type"); if (InVT.getSizeInBits() < 512) { MVT ExtVT = (NumElts == 16)? MVT::v16i32 : MVT::v8i64; In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In); InVT = ExtVT; } SDValue OneV = DAG.getConstant(APInt::getSignBit(InVT.getScalarSizeInBits()), DL, InVT); SDValue And = DAG.getNode(ISD::AND, DL, InVT, OneV, In); return DAG.getNode(X86ISD::TESTM, DL, VT, And, And); } // vpmovqb/w/d, vpmovdb/w, vpmovwb if (Subtarget->hasAVX512()) { // word to byte only under BWI if (InVT == MVT::v16i16 && !Subtarget->hasBWI()) // v16i16 -> v16i8 return DAG.getNode(X86ISD::VTRUNC, DL, VT, DAG.getNode(X86ISD::VSEXT, DL, MVT::v16i32, In)); return DAG.getNode(X86ISD::VTRUNC, DL, VT, In); } if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) { // On AVX2, v4i64 -> v4i32 becomes VPERMD. if (Subtarget->hasInt256()) { static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1}; In = DAG.getBitcast(MVT::v8i32, In); In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32), ShufMask); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In, DAG.getIntPtrConstant(0, DL)); } SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, DAG.getIntPtrConstant(0, DL)); SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, DAG.getIntPtrConstant(2, DL)); OpLo = DAG.getBitcast(MVT::v4i32, OpLo); OpHi = DAG.getBitcast(MVT::v4i32, OpHi); static const int ShufMask[] = {0, 2, 4, 6}; return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask); } if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) { // On AVX2, v8i32 -> v8i16 becomed PSHUFB. if (Subtarget->hasInt256()) { In = DAG.getBitcast(MVT::v32i8, In); SmallVector<SDValue,32> pshufbMask; for (unsigned i = 0; i < 2; ++i) { pshufbMask.push_back(DAG.getConstant(0x0, DL, MVT::i8)); pshufbMask.push_back(DAG.getConstant(0x1, DL, MVT::i8)); pshufbMask.push_back(DAG.getConstant(0x4, DL, MVT::i8)); pshufbMask.push_back(DAG.getConstant(0x5, DL, MVT::i8)); pshufbMask.push_back(DAG.getConstant(0x8, DL, MVT::i8)); pshufbMask.push_back(DAG.getConstant(0x9, DL, MVT::i8)); pshufbMask.push_back(DAG.getConstant(0xc, DL, MVT::i8)); pshufbMask.push_back(DAG.getConstant(0xd, DL, MVT::i8)); for (unsigned j = 0; j < 8; ++j) pshufbMask.push_back(DAG.getConstant(0x80, DL, MVT::i8)); } SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, pshufbMask); In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV); In = DAG.getBitcast(MVT::v4i64, In); static const int ShufMask[] = {0, 2, -1, -1}; In = DAG.getVectorShuffle(MVT::v4i64, DL, In, DAG.getUNDEF(MVT::v4i64), &ShufMask[0]); In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, DAG.getIntPtrConstant(0, DL)); return DAG.getBitcast(VT, In); } SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In, DAG.getIntPtrConstant(0, DL)); SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In, DAG.getIntPtrConstant(4, DL)); OpLo = DAG.getBitcast(MVT::v16i8, OpLo); OpHi = DAG.getBitcast(MVT::v16i8, OpHi); // The PSHUFB mask: static const int ShufMask1[] = {0, 1, 4, 5, 8, 9, 12, 13, -1, -1, -1, -1, -1, -1, -1, -1}; SDValue Undef = DAG.getUNDEF(MVT::v16i8); OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1); OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1); OpLo = DAG.getBitcast(MVT::v4i32, OpLo); OpHi = DAG.getBitcast(MVT::v4i32, OpHi); // The MOVLHPS Mask: static const int ShufMask2[] = {0, 1, 4, 5}; SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2); return DAG.getBitcast(MVT::v8i16, res); } // Handle truncation of V256 to V128 using shuffles. if (!VT.is128BitVector() || !InVT.is256BitVector()) return SDValue(); assert(Subtarget->hasFp256() && "256-bit vector without AVX!"); unsigned NumElems = VT.getVectorNumElements(); MVT NVT = MVT::getVectorVT(VT.getVectorElementType(), NumElems * 2); SmallVector<int, 16> MaskVec(NumElems * 2, -1); // Prepare truncation shuffle mask for (unsigned i = 0; i != NumElems; ++i) MaskVec[i] = i * 2; SDValue V = DAG.getVectorShuffle(NVT, DL, DAG.getBitcast(NVT, In), DAG.getUNDEF(NVT), &MaskVec[0]); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, DAG.getIntPtrConstant(0, DL)); } SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const { assert(!Op.getSimpleValueType().isVector()); std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, /*IsSigned=*/ true, /*IsReplace=*/ false); SDValue FIST = Vals.first, StackSlot = Vals.second; // If FP_TO_INTHelper failed, the node is actually supposed to be Legal. if (!FIST.getNode()) return Op; if (StackSlot.getNode()) // Load the result. return DAG.getLoad(Op.getValueType(), SDLoc(Op), FIST, StackSlot, MachinePointerInfo(), false, false, false, 0); // The node is the result. return FIST; } SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const { std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, /*IsSigned=*/ false, /*IsReplace=*/ false); SDValue FIST = Vals.first, StackSlot = Vals.second; // If FP_TO_INTHelper failed, the node is actually supposed to be Legal. if (!FIST.getNode()) return Op; if (StackSlot.getNode()) // Load the result. return DAG.getLoad(Op.getValueType(), SDLoc(Op), FIST, StackSlot, MachinePointerInfo(), false, false, false, 0); // The node is the result. return FIST; } static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) { SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); SDValue In = Op.getOperand(0); MVT SVT = In.getSimpleValueType(); assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!"); return DAG.getNode(X86ISD::VFPEXT, DL, VT, DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32, In, DAG.getUNDEF(SVT))); } /// The only differences between FABS and FNEG are the mask and the logic op. /// FNEG also has a folding opportunity for FNEG(FABS(x)). static SDValue LowerFABSorFNEG(SDValue Op, SelectionDAG &DAG) { assert((Op.getOpcode() == ISD::FABS || Op.getOpcode() == ISD::FNEG) && "Wrong opcode for lowering FABS or FNEG."); bool IsFABS = (Op.getOpcode() == ISD::FABS); // If this is a FABS and it has an FNEG user, bail out to fold the combination // into an FNABS. We'll lower the FABS after that if it is still in use. if (IsFABS) for (SDNode *User : Op->uses()) if (User->getOpcode() == ISD::FNEG) return Op; SDLoc dl(Op); MVT VT = Op.getSimpleValueType(); bool IsF128 = (VT == MVT::f128); // FIXME: Use function attribute "OptimizeForSize" and/or CodeGenOpt::Level to // decide if we should generate a 16-byte constant mask when we only need 4 or // 8 bytes for the scalar case. MVT LogicVT; MVT EltVT; unsigned NumElts; if (VT.isVector()) { LogicVT = VT; EltVT = VT.getVectorElementType(); NumElts = VT.getVectorNumElements(); } else if (IsF128) { // SSE instructions are used for optimized f128 logical operations. LogicVT = MVT::f128; EltVT = VT; NumElts = 1; } else { // There are no scalar bitwise logical SSE/AVX instructions, so we // generate a 16-byte vector constant and logic op even for the scalar case. // Using a 16-byte mask allows folding the load of the mask with // the logic op, so it can save (~4 bytes) on code size. LogicVT = (VT == MVT::f64) ? MVT::v2f64 : MVT::v4f32; EltVT = VT; NumElts = (VT == MVT::f64) ? 2 : 4; } unsigned EltBits = EltVT.getSizeInBits(); LLVMContext *Context = DAG.getContext(); // For FABS, mask is 0x7f...; for FNEG, mask is 0x80... APInt MaskElt = IsFABS ? APInt::getSignedMaxValue(EltBits) : APInt::getSignBit(EltBits); Constant *C = ConstantInt::get(*Context, MaskElt); C = ConstantVector::getSplat(NumElts, C); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(DAG.getDataLayout())); unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); SDValue Mask = DAG.getLoad(LogicVT, dl, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, false, false, Alignment); SDValue Op0 = Op.getOperand(0); bool IsFNABS = !IsFABS && (Op0.getOpcode() == ISD::FABS); unsigned LogicOp = IsFABS ? X86ISD::FAND : IsFNABS ? X86ISD::FOR : X86ISD::FXOR; SDValue Operand = IsFNABS ? Op0.getOperand(0) : Op0; if (VT.isVector() || IsF128) return DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask); // For the scalar case extend to a 128-bit vector, perform the logic op, // and extract the scalar result back out. Operand = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Operand); SDValue LogicNode = DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, LogicNode, DAG.getIntPtrConstant(0, dl)); } static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); LLVMContext *Context = DAG.getContext(); SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDLoc dl(Op); MVT VT = Op.getSimpleValueType(); MVT SrcVT = Op1.getSimpleValueType(); bool IsF128 = (VT == MVT::f128); // If second operand is smaller, extend it first. if (SrcVT.bitsLT(VT)) { Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1); SrcVT = VT; } // And if it is bigger, shrink it first. if (SrcVT.bitsGT(VT)) { Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1, dl)); SrcVT = VT; } // At this point the operands and the result should have the same // type, and that won't be f80 since that is not custom lowered. assert((VT == MVT::f64 || VT == MVT::f32 || IsF128) && "Unexpected type in LowerFCOPYSIGN"); const fltSemantics &Sem = VT == MVT::f64 ? APFloat::IEEEdouble : (IsF128 ? APFloat::IEEEquad : APFloat::IEEEsingle); const unsigned SizeInBits = VT.getSizeInBits(); SmallVector<Constant *, 4> CV( VT == MVT::f64 ? 2 : (IsF128 ? 1 : 4), ConstantFP::get(*Context, APFloat(Sem, APInt(SizeInBits, 0)))); // First, clear all bits but the sign bit from the second operand (sign). CV[0] = ConstantFP::get(*Context, APFloat(Sem, APInt::getHighBitsSet(SizeInBits, 1))); Constant *C = ConstantVector::get(CV); auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); SDValue CPIdx = DAG.getConstantPool(C, PtrVT, 16); // Perform all logic operations as 16-byte vectors because there are no // scalar FP logic instructions in SSE. This allows load folding of the // constants into the logic instructions. MVT LogicVT = (VT == MVT::f64) ? MVT::v2f64 : (IsF128 ? MVT::f128 : MVT::v4f32); SDValue Mask1 = DAG.getLoad(LogicVT, dl, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, false, false, 16); if (!IsF128) Op1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Op1); SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, LogicVT, Op1, Mask1); // Next, clear the sign bit from the first operand (magnitude). // If it's a constant, we can clear it here. if (ConstantFPSDNode *Op0CN = dyn_cast<ConstantFPSDNode>(Op0)) { APFloat APF = Op0CN->getValueAPF(); // If the magnitude is a positive zero, the sign bit alone is enough. if (APF.isPosZero()) return IsF128 ? SignBit : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SrcVT, SignBit, DAG.getIntPtrConstant(0, dl)); APF.clearSign(); CV[0] = ConstantFP::get(*Context, APF); } else { CV[0] = ConstantFP::get( *Context, APFloat(Sem, APInt::getLowBitsSet(SizeInBits, SizeInBits - 1))); } C = ConstantVector::get(CV); CPIdx = DAG.getConstantPool(C, PtrVT, 16); SDValue Val = DAG.getLoad(LogicVT, dl, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, false, false, 16); // If the magnitude operand wasn't a constant, we need to AND out the sign. if (!isa<ConstantFPSDNode>(Op0)) { if (!IsF128) Op0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Op0); Val = DAG.getNode(X86ISD::FAND, dl, LogicVT, Op0, Val); } // OR the magnitude value with the sign bit. Val = DAG.getNode(X86ISD::FOR, dl, LogicVT, Val, SignBit); return IsF128 ? Val : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SrcVT, Val, DAG.getIntPtrConstant(0, dl)); } static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) { SDValue N0 = Op.getOperand(0); SDLoc dl(Op); MVT VT = Op.getSimpleValueType(); // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1). SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0, DAG.getConstant(1, dl, VT)); return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, dl, VT)); } // Check whether an OR'd tree is PTEST-able. static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree."); if (!Subtarget->hasSSE41()) return SDValue(); if (!Op->hasOneUse()) return SDValue(); SDNode *N = Op.getNode(); SDLoc DL(N); SmallVector<SDValue, 8> Opnds; DenseMap<SDValue, unsigned> VecInMap; SmallVector<SDValue, 8> VecIns; EVT VT = MVT::Other; // Recognize a special case where a vector is casted into wide integer to // test all 0s. Opnds.push_back(N->getOperand(0)); Opnds.push_back(N->getOperand(1)); for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) { SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot; // BFS traverse all OR'd operands. if (I->getOpcode() == ISD::OR) { Opnds.push_back(I->getOperand(0)); Opnds.push_back(I->getOperand(1)); // Re-evaluate the number of nodes to be traversed. e += 2; // 2 more nodes (LHS and RHS) are pushed. continue; } // Quit if a non-EXTRACT_VECTOR_ELT if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT) return SDValue(); // Quit if without a constant index. SDValue Idx = I->getOperand(1); if (!isa<ConstantSDNode>(Idx)) return SDValue(); SDValue ExtractedFromVec = I->getOperand(0); DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec); if (M == VecInMap.end()) { VT = ExtractedFromVec.getValueType(); // Quit if not 128/256-bit vector. if (!VT.is128BitVector() && !VT.is256BitVector()) return SDValue(); // Quit if not the same type. if (VecInMap.begin() != VecInMap.end() && VT != VecInMap.begin()->first.getValueType()) return SDValue(); M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first; VecIns.push_back(ExtractedFromVec); } M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue(); } assert((VT.is128BitVector() || VT.is256BitVector()) && "Not extracted from 128-/256-bit vector."); unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U; for (DenseMap<SDValue, unsigned>::const_iterator I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) { // Quit if not all elements are used. if (I->second != FullMask) return SDValue(); } MVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64; // Cast all vectors into TestVT for PTEST. for (unsigned i = 0, e = VecIns.size(); i < e; ++i) VecIns[i] = DAG.getBitcast(TestVT, VecIns[i]); // If more than one full vectors are evaluated, OR them first before PTEST. for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) { // Each iteration will OR 2 nodes and append the result until there is only // 1 node left, i.e. the final OR'd value of all vectors. SDValue LHS = VecIns[Slot]; SDValue RHS = VecIns[Slot + 1]; VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS)); } return DAG.getNode(X86ISD::PTEST, DL, MVT::i32, VecIns.back(), VecIns.back()); } /// \brief return true if \c Op has a use that doesn't just read flags. static bool hasNonFlagsUse(SDValue Op) { for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE; ++UI) { SDNode *User = *UI; unsigned UOpNo = UI.getOperandNo(); if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) { // Look pass truncate. UOpNo = User->use_begin().getOperandNo(); User = *User->use_begin(); } if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC && !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) return true; } return false; } /// Emit nodes that will be selected as "test Op0,Op0", or something /// equivalent. SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, SDLoc dl, SelectionDAG &DAG) const { if (Op.getValueType() == MVT::i1) { SDValue ExtOp = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i8, Op); return DAG.getNode(X86ISD::CMP, dl, MVT::i32, ExtOp, DAG.getConstant(0, dl, MVT::i8)); } // CF and OF aren't always set the way we want. Determine which // of these we need. bool NeedCF = false; bool NeedOF = false; switch (X86CC) { default: break; case X86::COND_A: case X86::COND_AE: case X86::COND_B: case X86::COND_BE: NeedCF = true; break; case X86::COND_G: case X86::COND_GE: case X86::COND_L: case X86::COND_LE: case X86::COND_O: case X86::COND_NO: { // Check if we really need to set the // Overflow flag. If NoSignedWrap is present // that is not actually needed. switch (Op->getOpcode()) { case ISD::ADD: case ISD::SUB: case ISD::MUL: case ISD::SHL: { const auto *BinNode = cast<BinaryWithFlagsSDNode>(Op.getNode()); if (BinNode->Flags.hasNoSignedWrap()) break; } default: NeedOF = true; break; } break; } } // See if we can use the EFLAGS value from the operand instead of // doing a separate TEST. TEST always sets OF and CF to 0, so unless // we prove that the arithmetic won't overflow, we can't use OF or CF. if (Op.getResNo() != 0 || NeedOF || NeedCF) { // Emit a CMP with 0, which is the TEST pattern. //if (Op.getValueType() == MVT::i1) // return DAG.getNode(X86ISD::CMP, dl, MVT::i1, Op, // DAG.getConstant(0, MVT::i1)); return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, DAG.getConstant(0, dl, Op.getValueType())); } unsigned Opcode = 0; unsigned NumOperands = 0; // Truncate operations may prevent the merge of the SETCC instruction // and the arithmetic instruction before it. Attempt to truncate the operands // of the arithmetic instruction and use a reduced bit-width instruction. bool NeedTruncation = false; SDValue ArithOp = Op; if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) { SDValue Arith = Op->getOperand(0); // Both the trunc and the arithmetic op need to have one user each. if (Arith->hasOneUse()) switch (Arith.getOpcode()) { default: break; case ISD::ADD: case ISD::SUB: case ISD::AND: case ISD::OR: case ISD::XOR: { NeedTruncation = true; ArithOp = Arith; } } } // NOTICE: In the code below we use ArithOp to hold the arithmetic operation // which may be the result of a CAST. We use the variable 'Op', which is the // non-casted variable when we check for possible users. switch (ArithOp.getOpcode()) { case ISD::ADD: // Due to an isel shortcoming, be conservative if this add is likely to be // selected as part of a load-modify-store instruction. When the root node // in a match is a store, isel doesn't know how to remap non-chain non-flag // uses of other nodes in the match, such as the ADD in this case. This // leads to the ADD being left around and reselected, with the result being // two adds in the output. Alas, even if none our users are stores, that // doesn't prove we're O.K. Ergo, if we have any parents that aren't // CopyToReg or SETCC, eschew INC/DEC. A better fix seems to require // climbing the DAG back to the root, and it doesn't seem to be worth the // effort. for (SDNode::use_iterator UI = Op.getNode()->use_begin(), UE = Op.getNode()->use_end(); UI != UE; ++UI) if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC && UI->getOpcode() != ISD::STORE) goto default_case; if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) { // An add of one will be selected as an INC. if (C->isOne() && !Subtarget->slowIncDec()) { Opcode = X86ISD::INC; NumOperands = 1; break; } // An add of negative one (subtract of one) will be selected as a DEC. if (C->isAllOnesValue() && !Subtarget->slowIncDec()) { Opcode = X86ISD::DEC; NumOperands = 1; break; } } // Otherwise use a regular EFLAGS-setting add. Opcode = X86ISD::ADD; NumOperands = 2; break; case ISD::SHL: case ISD::SRL: // If we have a constant logical shift that's only used in a comparison // against zero turn it into an equivalent AND. This allows turning it into // a TEST instruction later. if ((X86CC == X86::COND_E || X86CC == X86::COND_NE) && Op->hasOneUse() && isa<ConstantSDNode>(Op->getOperand(1)) && !hasNonFlagsUse(Op)) { EVT VT = Op.getValueType(); unsigned BitWidth = VT.getSizeInBits(); unsigned ShAmt = Op->getConstantOperandVal(1); if (ShAmt >= BitWidth) // Avoid undefined shifts. break; APInt Mask = ArithOp.getOpcode() == ISD::SRL ? APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt) : APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt); if (!Mask.isSignedIntN(32)) // Avoid large immediates. break; SDValue New = DAG.getNode(ISD::AND, dl, VT, Op->getOperand(0), DAG.getConstant(Mask, dl, VT)); DAG.ReplaceAllUsesWith(Op, New); Op = New; } break; case ISD::AND: // If the primary and result isn't used, don't bother using X86ISD::AND, // because a TEST instruction will be better. if (!hasNonFlagsUse(Op)) break; // FALL THROUGH case ISD::SUB: case ISD::OR: case ISD::XOR: // Due to the ISEL shortcoming noted above, be conservative if this op is // likely to be selected as part of a load-modify-store instruction. for (SDNode::use_iterator UI = Op.getNode()->use_begin(), UE = Op.getNode()->use_end(); UI != UE; ++UI) if (UI->getOpcode() == ISD::STORE) goto default_case; // Otherwise use a regular EFLAGS-setting instruction. switch (ArithOp.getOpcode()) { default: llvm_unreachable("unexpected operator!"); case ISD::SUB: Opcode = X86ISD::SUB; break; case ISD::XOR: Opcode = X86ISD::XOR; break; case ISD::AND: Opcode = X86ISD::AND; break; case ISD::OR: { if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) { SDValue EFLAGS = LowerVectorAllZeroTest(Op, Subtarget, DAG); if (EFLAGS.getNode()) return EFLAGS; } Opcode = X86ISD::OR; break; } } NumOperands = 2; break; case X86ISD::ADD: case X86ISD::SUB: case X86ISD::INC: case X86ISD::DEC: case X86ISD::OR: case X86ISD::XOR: case X86ISD::AND: return SDValue(Op.getNode(), 1); default: default_case: break; } // If we found that truncation is beneficial, perform the truncation and // update 'Op'. if (NeedTruncation) { EVT VT = Op.getValueType(); SDValue WideVal = Op->getOperand(0); EVT WideVT = WideVal.getValueType(); unsigned ConvertedOp = 0; // Use a target machine opcode to prevent further DAGCombine // optimizations that may separate the arithmetic operations // from the setcc node. switch (WideVal.getOpcode()) { default: break; case ISD::ADD: ConvertedOp = X86ISD::ADD; break; case ISD::SUB: ConvertedOp = X86ISD::SUB; break; case ISD::AND: ConvertedOp = X86ISD::AND; break; case ISD::OR: ConvertedOp = X86ISD::OR; break; case ISD::XOR: ConvertedOp = X86ISD::XOR; break; } if (ConvertedOp) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) { SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0)); SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1)); Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1); } } } if (Opcode == 0) // Emit a CMP with 0, which is the TEST pattern. return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, DAG.getConstant(0, dl, Op.getValueType())); SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); SmallVector<SDValue, 4> Ops(Op->op_begin(), Op->op_begin() + NumOperands); SDValue New = DAG.getNode(Opcode, dl, VTs, Ops); DAG.ReplaceAllUsesWith(Op, New); return SDValue(New.getNode(), 1); } /// Emit nodes that will be selected as "cmp Op0,Op1", or something /// equivalent. SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, SDLoc dl, SelectionDAG &DAG) const { if (isNullConstant(Op1)) return EmitTest(Op0, X86CC, dl, DAG); assert(!(isa<ConstantSDNode>(Op1) && Op0.getValueType() == MVT::i1) && "Unexpected comparison operation for MVT::i1 operands"); if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 || Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) { // Do the comparison at i32 if it's smaller, besides the Atom case. // This avoids subregister aliasing issues. Keep the smaller reference // if we're optimizing for size, however, as that'll allow better folding // of memory operations. if (Op0.getValueType() != MVT::i32 && Op0.getValueType() != MVT::i64 && !DAG.getMachineFunction().getFunction()->optForMinSize() && !Subtarget->isAtom()) { unsigned ExtendOp = isX86CCUnsigned(X86CC) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; Op0 = DAG.getNode(ExtendOp, dl, MVT::i32, Op0); Op1 = DAG.getNode(ExtendOp, dl, MVT::i32, Op1); } // Use SUB instead of CMP to enable CSE between SUB and CMP. SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32); SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs, Op0, Op1); return SDValue(Sub.getNode(), 1); } return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1); } /// Convert a comparison if required by the subtarget. SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const { // If the subtarget does not support the FUCOMI instruction, floating-point // comparisons have to be converted. if (Subtarget->hasCMov() || Cmp.getOpcode() != X86ISD::CMP || !Cmp.getOperand(0).getValueType().isFloatingPoint() || !Cmp.getOperand(1).getValueType().isFloatingPoint()) return Cmp; // The instruction selector will select an FUCOM instruction instead of // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence // build an SDNode sequence that transfers the result from FPSW into EFLAGS: // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8)))) SDLoc dl(Cmp); SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp); SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW); SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW, DAG.getConstant(8, dl, MVT::i8)); SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl); // Some 64-bit targets lack SAHF support, but they do support FCOMI. assert(Subtarget->hasLAHFSAHF() && "Target doesn't support SAHF or FCOMI?"); return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl); } /// The minimum architected relative accuracy is 2^-12. We need one /// Newton-Raphson step to have a good float result (24 bits of precision). SDValue X86TargetLowering::getRsqrtEstimate(SDValue Op, DAGCombinerInfo &DCI, unsigned &RefinementSteps, bool &UseOneConstNR) const { EVT VT = Op.getValueType(); const char *RecipOp; // SSE1 has rsqrtss and rsqrtps. AVX adds a 256-bit variant for rsqrtps. // TODO: Add support for AVX512 (v16f32). // It is likely not profitable to do this for f64 because a double-precision // rsqrt estimate with refinement on x86 prior to FMA requires at least 16 // instructions: convert to single, rsqrtss, convert back to double, refine // (3 steps = at least 13 insts). If an 'rsqrtsd' variant was added to the ISA // along with FMA, this could be a throughput win. if (VT == MVT::f32 && Subtarget->hasSSE1()) RecipOp = "sqrtf"; else if ((VT == MVT::v4f32 && Subtarget->hasSSE1()) || (VT == MVT::v8f32 && Subtarget->hasAVX())) RecipOp = "vec-sqrtf"; else return SDValue(); TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; if (!Recips.isEnabled(RecipOp)) return SDValue(); RefinementSteps = Recips.getRefinementSteps(RecipOp); UseOneConstNR = false; return DCI.DAG.getNode(X86ISD::FRSQRT, SDLoc(Op), VT, Op); } /// The minimum architected relative accuracy is 2^-12. We need one /// Newton-Raphson step to have a good float result (24 bits of precision). SDValue X86TargetLowering::getRecipEstimate(SDValue Op, DAGCombinerInfo &DCI, unsigned &RefinementSteps) const { EVT VT = Op.getValueType(); const char *RecipOp; // SSE1 has rcpss and rcpps. AVX adds a 256-bit variant for rcpps. // TODO: Add support for AVX512 (v16f32). // It is likely not profitable to do this for f64 because a double-precision // reciprocal estimate with refinement on x86 prior to FMA requires // 15 instructions: convert to single, rcpss, convert back to double, refine // (3 steps = 12 insts). If an 'rcpsd' variant was added to the ISA // along with FMA, this could be a throughput win. if (VT == MVT::f32 && Subtarget->hasSSE1()) RecipOp = "divf"; else if ((VT == MVT::v4f32 && Subtarget->hasSSE1()) || (VT == MVT::v8f32 && Subtarget->hasAVX())) RecipOp = "vec-divf"; else return SDValue(); TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; if (!Recips.isEnabled(RecipOp)) return SDValue(); RefinementSteps = Recips.getRefinementSteps(RecipOp); return DCI.DAG.getNode(X86ISD::FRCP, SDLoc(Op), VT, Op); } /// If we have at least two divisions that use the same divisor, convert to /// multplication by a reciprocal. This may need to be adjusted for a given /// CPU if a division's cost is not at least twice the cost of a multiplication. /// This is because we still need one division to calculate the reciprocal and /// then we need two multiplies by that reciprocal as replacements for the /// original divisions. unsigned X86TargetLowering::combineRepeatedFPDivisors() const { return 2; } /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node /// if it's possible. SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC, SDLoc dl, SelectionDAG &DAG) const { SDValue Op0 = And.getOperand(0); SDValue Op1 = And.getOperand(1); if (Op0.getOpcode() == ISD::TRUNCATE) Op0 = Op0.getOperand(0); if (Op1.getOpcode() == ISD::TRUNCATE) Op1 = Op1.getOperand(0); SDValue LHS, RHS; if (Op1.getOpcode() == ISD::SHL) std::swap(Op0, Op1); if (Op0.getOpcode() == ISD::SHL) { if (isOneConstant(Op0.getOperand(0))) { // If we looked past a truncate, check that it's only truncating away // known zeros. unsigned BitWidth = Op0.getValueSizeInBits(); unsigned AndBitWidth = And.getValueSizeInBits(); if (BitWidth > AndBitWidth) { APInt Zeros, Ones; DAG.computeKnownBits(Op0, Zeros, Ones); if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth) return SDValue(); } LHS = Op1; RHS = Op0.getOperand(1); } } else if (Op1.getOpcode() == ISD::Constant) { ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1); uint64_t AndRHSVal = AndRHS->getZExtValue(); SDValue AndLHS = Op0; if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) { LHS = AndLHS.getOperand(0); RHS = AndLHS.getOperand(1); } // Use BT if the immediate can't be encoded in a TEST instruction. if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) { LHS = AndLHS; RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), dl, LHS.getValueType()); } } if (LHS.getNode()) { // If LHS is i8, promote it to i32 with any_extend. There is no i8 BT // instruction. Since the shift amount is in-range-or-undefined, we know // that doing a bittest on the i32 value is ok. We extend to i32 because // the encoding for the i16 version is larger than the i32 version. // Also promote i16 to i32 for performance / code size reason. if (LHS.getValueType() == MVT::i8 || LHS.getValueType() == MVT::i16) LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS); // If the operand types disagree, extend the shift amount to match. Since // BT ignores high bits (like shifts) we can use anyextend. if (LHS.getValueType() != RHS.getValueType()) RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS); SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS); X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B; return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(Cond, dl, MVT::i8), BT); } return SDValue(); } /// \brief - Turns an ISD::CondCode into a value suitable for SSE floating point /// mask CMPs. static int translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0, SDValue &Op1) { unsigned SSECC; bool Swap = false; // SSE Condition code mapping: // 0 - EQ // 1 - LT // 2 - LE // 3 - UNORD // 4 - NEQ // 5 - NLT // 6 - NLE // 7 - ORD switch (SetCCOpcode) { default: llvm_unreachable("Unexpected SETCC condition"); case ISD::SETOEQ: case ISD::SETEQ: SSECC = 0; break; case ISD::SETOGT: case ISD::SETGT: Swap = true; // Fallthrough case ISD::SETLT: case ISD::SETOLT: SSECC = 1; break; case ISD::SETOGE: case ISD::SETGE: Swap = true; // Fallthrough case ISD::SETLE: case ISD::SETOLE: SSECC = 2; break; case ISD::SETUO: SSECC = 3; break; case ISD::SETUNE: case ISD::SETNE: SSECC = 4; break; case ISD::SETULE: Swap = true; // Fallthrough case ISD::SETUGE: SSECC = 5; break; case ISD::SETULT: Swap = true; // Fallthrough case ISD::SETUGT: SSECC = 6; break; case ISD::SETO: SSECC = 7; break; case ISD::SETUEQ: case ISD::SETONE: SSECC = 8; break; } if (Swap) std::swap(Op0, Op1); return SSECC; } // Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128 // ones, and then concatenate the result back. static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) { MVT VT = Op.getSimpleValueType(); assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC && "Unsupported value type for operation"); unsigned NumElems = VT.getVectorNumElements(); SDLoc dl(Op); SDValue CC = Op.getOperand(2); // Extract the LHS vectors SDValue LHS = Op.getOperand(0); SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl); SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl); // Extract the RHS vectors SDValue RHS = Op.getOperand(1); SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl); SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl); // Issue the operation on the smaller types and concatenate the result back MVT EltVT = VT.getVectorElementType(); MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC), DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC)); } static SDValue LowerBoolVSETCC_AVX512(SDValue Op, SelectionDAG &DAG) { SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDValue CC = Op.getOperand(2); MVT VT = Op.getSimpleValueType(); SDLoc dl(Op); assert(Op0.getSimpleValueType().getVectorElementType() == MVT::i1 && "Unexpected type for boolean compare operation"); ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); SDValue NotOp0 = DAG.getNode(ISD::XOR, dl, VT, Op0, DAG.getConstant(-1, dl, VT)); SDValue NotOp1 = DAG.getNode(ISD::XOR, dl, VT, Op1, DAG.getConstant(-1, dl, VT)); switch (SetCCOpcode) { default: llvm_unreachable("Unexpected SETCC condition"); case ISD::SETEQ: // (x == y) -> ~(x ^ y) return DAG.getNode(ISD::XOR, dl, VT, DAG.getNode(ISD::XOR, dl, VT, Op0, Op1), DAG.getConstant(-1, dl, VT)); case ISD::SETNE: // (x != y) -> (x ^ y) return DAG.getNode(ISD::XOR, dl, VT, Op0, Op1); case ISD::SETUGT: case ISD::SETGT: // (x > y) -> (x & ~y) return DAG.getNode(ISD::AND, dl, VT, Op0, NotOp1); case ISD::SETULT: case ISD::SETLT: // (x < y) -> (~x & y) return DAG.getNode(ISD::AND, dl, VT, NotOp0, Op1); case ISD::SETULE: case ISD::SETLE: // (x <= y) -> (~x | y) return DAG.getNode(ISD::OR, dl, VT, NotOp0, Op1); case ISD::SETUGE: case ISD::SETGE: // (x >=y) -> (x | ~y) return DAG.getNode(ISD::OR, dl, VT, Op0, NotOp1); } } static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG, const X86Subtarget *Subtarget) { SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDValue CC = Op.getOperand(2); MVT VT = Op.getSimpleValueType(); SDLoc dl(Op); assert(Op0.getSimpleValueType().getVectorElementType().getSizeInBits() >= 8 && Op.getSimpleValueType().getVectorElementType() == MVT::i1 && "Cannot set masked compare for this operation"); ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); unsigned Opc = 0; bool Unsigned = false; bool Swap = false; unsigned SSECC; switch (SetCCOpcode) { default: llvm_unreachable("Unexpected SETCC condition"); case ISD::SETNE: SSECC = 4; break; case ISD::SETEQ: Opc = X86ISD::PCMPEQM; break; case ISD::SETUGT: SSECC = 6; Unsigned = true; break; case ISD::SETLT: Swap = true; //fall-through case ISD::SETGT: Opc = X86ISD::PCMPGTM; break; case ISD::SETULT: SSECC = 1; Unsigned = true; break; case ISD::SETUGE: SSECC = 5; Unsigned = true; break; //NLT case ISD::SETGE: Swap = true; SSECC = 2; break; // LE + swap case ISD::SETULE: Unsigned = true; //fall-through case ISD::SETLE: SSECC = 2; break; } if (Swap) std::swap(Op0, Op1); if (Opc) return DAG.getNode(Opc, dl, VT, Op0, Op1); Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM; return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, dl, MVT::i8)); } /// \brief Try to turn a VSETULT into a VSETULE by modifying its second /// operand \p Op1. If non-trivial (for example because it's not constant) /// return an empty value. static SDValue ChangeVSETULTtoVSETULE(SDLoc dl, SDValue Op1, SelectionDAG &DAG) { BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op1.getNode()); if (!BV) return SDValue(); MVT VT = Op1.getSimpleValueType(); MVT EVT = VT.getVectorElementType(); unsigned n = VT.getVectorNumElements(); SmallVector<SDValue, 8> ULTOp1; for (unsigned i = 0; i < n; ++i) { ConstantSDNode *Elt = dyn_cast<ConstantSDNode>(BV->getOperand(i)); if (!Elt || Elt->isOpaque() || Elt->getSimpleValueType(0) != EVT) return SDValue(); // Avoid underflow. APInt Val = Elt->getAPIntValue(); if (Val == 0) return SDValue(); ULTOp1.push_back(DAG.getConstant(Val - 1, dl, EVT)); } return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, ULTOp1); } static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDValue CC = Op.getOperand(2); MVT VT = Op.getSimpleValueType(); ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint(); SDLoc dl(Op); if (isFP) { #ifndef NDEBUG MVT EltVT = Op0.getSimpleValueType().getVectorElementType(); assert(EltVT == MVT::f32 || EltVT == MVT::f64); #endif unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1); unsigned Opc = X86ISD::CMPP; if (Subtarget->hasAVX512() && VT.getVectorElementType() == MVT::i1) { assert(VT.getVectorNumElements() <= 16); Opc = X86ISD::CMPM; } // In the two special cases we can't handle, emit two comparisons. if (SSECC == 8) { unsigned CC0, CC1; unsigned CombineOpc; if (SetCCOpcode == ISD::SETUEQ) { CC0 = 3; CC1 = 0; CombineOpc = ISD::OR; } else { assert(SetCCOpcode == ISD::SETONE); CC0 = 7; CC1 = 4; CombineOpc = ISD::AND; } SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(CC0, dl, MVT::i8)); SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(CC1, dl, MVT::i8)); return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1); } // Handle all other FP comparisons here. return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, dl, MVT::i8)); } MVT VTOp0 = Op0.getSimpleValueType(); assert(VTOp0 == Op1.getSimpleValueType() && "Expected operands with same type!"); assert(VT.getVectorNumElements() == VTOp0.getVectorNumElements() && "Invalid number of packed elements for source and destination!"); if (VT.is128BitVector() && VTOp0.is256BitVector()) { // On non-AVX512 targets, a vector of MVT::i1 is promoted by the type // legalizer to a wider vector type. In the case of 'vsetcc' nodes, the // legalizer firstly checks if the first operand in input to the setcc has // a legal type. If so, then it promotes the return type to that same type. // Otherwise, the return type is promoted to the 'next legal type' which, // for a vector of MVT::i1 is always a 128-bit integer vector type. // // We reach this code only if the following two conditions are met: // 1. Both return type and operand type have been promoted to wider types // by the type legalizer. // 2. The original operand type has been promoted to a 256-bit vector. // // Note that condition 2. only applies for AVX targets. SDValue NewOp = DAG.getSetCC(dl, VTOp0, Op0, Op1, SetCCOpcode); return DAG.getZExtOrTrunc(NewOp, dl, VT); } // The non-AVX512 code below works under the assumption that source and // destination types are the same. assert((Subtarget->hasAVX512() || (VT == VTOp0)) && "Value types for source and destination must be the same!"); // Break 256-bit integer vector compare into smaller ones. if (VT.is256BitVector() && !Subtarget->hasInt256()) return Lower256IntVSETCC(Op, DAG); MVT OpVT = Op1.getSimpleValueType(); if (OpVT.getVectorElementType() == MVT::i1) return LowerBoolVSETCC_AVX512(Op, DAG); bool MaskResult = (VT.getVectorElementType() == MVT::i1); if (Subtarget->hasAVX512()) { if (Op1.getSimpleValueType().is512BitVector() || (Subtarget->hasBWI() && Subtarget->hasVLX()) || (MaskResult && OpVT.getVectorElementType().getSizeInBits() >= 32)) return LowerIntVSETCC_AVX512(Op, DAG, Subtarget); // In AVX-512 architecture setcc returns mask with i1 elements, // But there is no compare instruction for i8 and i16 elements in KNL. // We are not talking about 512-bit operands in this case, these // types are illegal. if (MaskResult && (OpVT.getVectorElementType().getSizeInBits() < 32 && OpVT.getVectorElementType().getSizeInBits() >= 8)) return DAG.getNode(ISD::TRUNCATE, dl, VT, DAG.getNode(ISD::SETCC, dl, OpVT, Op0, Op1, CC)); } // Lower using XOP integer comparisons. if ((VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) && Subtarget->hasXOP()) { // Translate compare code to XOP PCOM compare mode. unsigned CmpMode = 0; switch (SetCCOpcode) { default: llvm_unreachable("Unexpected SETCC condition"); case ISD::SETULT: case ISD::SETLT: CmpMode = 0x00; break; case ISD::SETULE: case ISD::SETLE: CmpMode = 0x01; break; case ISD::SETUGT: case ISD::SETGT: CmpMode = 0x02; break; case ISD::SETUGE: case ISD::SETGE: CmpMode = 0x03; break; case ISD::SETEQ: CmpMode = 0x04; break; case ISD::SETNE: CmpMode = 0x05; break; } // Are we comparing unsigned or signed integers? unsigned Opc = ISD::isUnsignedIntSetCC(SetCCOpcode) ? X86ISD::VPCOMU : X86ISD::VPCOM; return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(CmpMode, dl, MVT::i8)); } // We are handling one of the integer comparisons here. Since SSE only has // GT and EQ comparisons for integer, swapping operands and multiple // operations may be required for some comparisons. unsigned Opc; bool Swap = false, Invert = false, FlipSigns = false, MinMax = false; bool Subus = false; switch (SetCCOpcode) { default: llvm_unreachable("Unexpected SETCC condition"); case ISD::SETNE: Invert = true; case ISD::SETEQ: Opc = X86ISD::PCMPEQ; break; case ISD::SETLT: Swap = true; case ISD::SETGT: Opc = X86ISD::PCMPGT; break; case ISD::SETGE: Swap = true; case ISD::SETLE: Opc = X86ISD::PCMPGT; Invert = true; break; case ISD::SETULT: Swap = true; case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break; case ISD::SETUGE: Swap = true; case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break; } // Special case: Use min/max operations for SETULE/SETUGE MVT VET = VT.getVectorElementType(); bool hasMinMax = (Subtarget->hasSSE41() && (VET >= MVT::i8 && VET <= MVT::i32)) || (Subtarget->hasSSE2() && (VET == MVT::i8)); if (hasMinMax) { switch (SetCCOpcode) { default: break; case ISD::SETULE: Opc = ISD::UMIN; MinMax = true; break; case ISD::SETUGE: Opc = ISD::UMAX; MinMax = true; break; } if (MinMax) { Swap = false; Invert = false; FlipSigns = false; } } bool hasSubus = Subtarget->hasSSE2() && (VET == MVT::i8 || VET == MVT::i16); if (!MinMax && hasSubus) { // As another special case, use PSUBUS[BW] when it's profitable. E.g. for // Op0 u<= Op1: // t = psubus Op0, Op1 // pcmpeq t, <0..0> switch (SetCCOpcode) { default: break; case ISD::SETULT: { // If the comparison is against a constant we can turn this into a // setule. With psubus, setule does not require a swap. This is // beneficial because the constant in the register is no longer // destructed as the destination so it can be hoisted out of a loop. // Only do this pre-AVX since vpcmp* is no longer destructive. if (Subtarget->hasAVX()) break; SDValue ULEOp1 = ChangeVSETULTtoVSETULE(dl, Op1, DAG); if (ULEOp1.getNode()) { Op1 = ULEOp1; Subus = true; Invert = false; Swap = false; } break; } // Psubus is better than flip-sign because it requires no inversion. case ISD::SETUGE: Subus = true; Invert = false; Swap = true; break; case ISD::SETULE: Subus = true; Invert = false; Swap = false; break; } if (Subus) { Opc = X86ISD::SUBUS; FlipSigns = false; } } if (Swap) std::swap(Op0, Op1); // Check that the operation in question is available (most are plain SSE2, // but PCMPGTQ and PCMPEQQ have different requirements). if (VT == MVT::v2i64) { if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) { assert(Subtarget->hasSSE2() && "Don't know how to lower!"); // First cast everything to the right type. Op0 = DAG.getBitcast(MVT::v4i32, Op0); Op1 = DAG.getBitcast(MVT::v4i32, Op1); // Since SSE has no unsigned integer comparisons, we need to flip the sign // bits of the inputs before performing those operations. The lower // compare is always unsigned. SDValue SB; if (FlipSigns) { SB = DAG.getConstant(0x80000000U, dl, MVT::v4i32); } else { SDValue Sign = DAG.getConstant(0x80000000U, dl, MVT::i32); SDValue Zero = DAG.getConstant(0x00000000U, dl, MVT::i32); SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Sign, Zero, Sign, Zero); } Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB); Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB); // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2)) SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1); SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1); // Create masks for only the low parts/high parts of the 64 bit integers. static const int MaskHi[] = { 1, 1, 3, 3 }; static const int MaskLo[] = { 0, 0, 2, 2 }; SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi); SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo); SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi); SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo); Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi); if (Invert) Result = DAG.getNOT(dl, Result, MVT::v4i32); return DAG.getBitcast(VT, Result); } if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) { // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with // pcmpeqd + pshufd + pand. assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!"); // First cast everything to the right type. Op0 = DAG.getBitcast(MVT::v4i32, Op0); Op1 = DAG.getBitcast(MVT::v4i32, Op1); // Do the compare. SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1); // Make sure the lower and upper halves are both all-ones. static const int Mask[] = { 1, 0, 3, 2 }; SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask); Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf); if (Invert) Result = DAG.getNOT(dl, Result, MVT::v4i32); return DAG.getBitcast(VT, Result); } } // Since SSE has no unsigned integer comparisons, we need to flip the sign // bits of the inputs before performing those operations. if (FlipSigns) { MVT EltVT = VT.getVectorElementType(); SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), dl, VT); Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB); Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB); } SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1); // If the logical-not of the result is required, perform that now. if (Invert) Result = DAG.getNOT(dl, Result, VT); if (MinMax) Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result); if (Subus) Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Result, getZeroVector(VT, Subtarget, DAG, dl)); return Result; } SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { MVT VT = Op.getSimpleValueType(); if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG); assert(((!Subtarget->hasAVX512() && VT == MVT::i8) || (VT == MVT::i1)) && "SetCC type must be 8-bit or 1-bit integer"); SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDLoc dl(Op); ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); // Optimize to BT if possible. // Lower (X & (1 << N)) == 0 to BT(X, N). // Lower ((X >>u N) & 1) != 0 to BT(X, N). // Lower ((X >>s N) & 1) != 0 to BT(X, N). if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() && isNullConstant(Op1) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { if (SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG)) { if (VT == MVT::i1) return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewSetCC); return NewSetCC; } } // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of // these. if ((isOneConstant(Op1) || isNullConstant(Op1)) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { // If the input is a setcc, then reuse the input setcc or use a new one with // the inverted condition. if (Op0.getOpcode() == X86ISD::SETCC) { X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0); bool Invert = (CC == ISD::SETNE) ^ isNullConstant(Op1); if (!Invert) return Op0; CCode = X86::GetOppositeBranchCondition(CCode); SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(CCode, dl, MVT::i8), Op0.getOperand(1)); if (VT == MVT::i1) return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC); return SetCC; } } if ((Op0.getValueType() == MVT::i1) && isOneConstant(Op1) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { ISD::CondCode NewCC = ISD::getSetCCInverse(CC, true); return DAG.getSetCC(dl, VT, Op0, DAG.getConstant(0, dl, MVT::i1), NewCC); } bool isFP = Op1.getSimpleValueType().isFloatingPoint(); unsigned X86CC = TranslateX86CC(CC, dl, isFP, Op0, Op1, DAG); if (X86CC == X86::COND_INVALID) return SDValue(); SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, dl, DAG); EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG); SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(X86CC, dl, MVT::i8), EFLAGS); if (VT == MVT::i1) return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC); return SetCC; } SDValue X86TargetLowering::LowerSETCCE(SDValue Op, SelectionDAG &DAG) const { SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDValue Carry = Op.getOperand(2); SDValue Cond = Op.getOperand(3); SDLoc DL(Op); assert(LHS.getSimpleValueType().isInteger() && "SETCCE is integer only."); X86::CondCode CC = TranslateIntegerX86CC(cast<CondCodeSDNode>(Cond)->get()); assert(Carry.getOpcode() != ISD::CARRY_FALSE); SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); SDValue Cmp = DAG.getNode(X86ISD::SBB, DL, VTs, LHS, RHS, Carry); return DAG.getNode(X86ISD::SETCC, DL, Op.getValueType(), DAG.getConstant(CC, DL, MVT::i8), Cmp.getValue(1)); } // isX86LogicalCmp - Return true if opcode is a X86 logical comparison. static bool isX86LogicalCmp(SDValue Op) { unsigned Opc = Op.getNode()->getOpcode(); if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI || Opc == X86ISD::SAHF) return true; if (Op.getResNo() == 1 && (Opc == X86ISD::ADD || Opc == X86ISD::SUB || Opc == X86ISD::ADC || Opc == X86ISD::SBB || Opc == X86ISD::SMUL || Opc == X86ISD::UMUL || Opc == X86ISD::INC || Opc == X86ISD::DEC || Opc == X86ISD::OR || Opc == X86ISD::XOR || Opc == X86ISD::AND)) return true; if (Op.getResNo() == 2 && Opc == X86ISD::UMUL) return true; return false; } static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) { if (V.getOpcode() != ISD::TRUNCATE) return false; SDValue VOp0 = V.getOperand(0); unsigned InBits = VOp0.getValueSizeInBits(); unsigned Bits = V.getValueSizeInBits(); return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits)); } SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { bool addTest = true; SDValue Cond = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDValue Op2 = Op.getOperand(2); SDLoc DL(Op); MVT VT = Op1.getSimpleValueType(); SDValue CC; // Lower FP selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops // are available or VBLENDV if AVX is available. // Otherwise FP cmovs get lowered into a less efficient branch sequence later. if (Cond.getOpcode() == ISD::SETCC && ((Subtarget->hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) || (Subtarget->hasSSE1() && VT == MVT::f32)) && VT == Cond.getOperand(0).getSimpleValueType() && Cond->hasOneUse()) { SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1); int SSECC = translateX86FSETCC( cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1); if (SSECC != 8) { if (Subtarget->hasAVX512()) { SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CondOp0, CondOp1, DAG.getConstant(SSECC, DL, MVT::i8)); return DAG.getNode(X86ISD::SELECT, DL, VT, Cmp, Op1, Op2); } SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, VT, CondOp0, CondOp1, DAG.getConstant(SSECC, DL, MVT::i8)); // If we have AVX, we can use a variable vector select (VBLENDV) instead // of 3 logic instructions for size savings and potentially speed. // Unfortunately, there is no scalar form of VBLENDV. // If either operand is a constant, don't try this. We can expect to // optimize away at least one of the logic instructions later in that // case, so that sequence would be faster than a variable blend. // BLENDV was introduced with SSE 4.1, but the 2 register form implicitly // uses XMM0 as the selection register. That may need just as many // instructions as the AND/ANDN/OR sequence due to register moves, so // don't bother. if (Subtarget->hasAVX() && !isa<ConstantFPSDNode>(Op1) && !isa<ConstantFPSDNode>(Op2)) { // Convert to vectors, do a VSELECT, and convert back to scalar. // All of the conversions should be optimized away. MVT VecVT = VT == MVT::f32 ? MVT::v4f32 : MVT::v2f64; SDValue VOp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op1); SDValue VOp2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op2); SDValue VCmp = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Cmp); MVT VCmpVT = VT == MVT::f32 ? MVT::v4i32 : MVT::v2i64; VCmp = DAG.getBitcast(VCmpVT, VCmp); SDValue VSel = DAG.getNode(ISD::VSELECT, DL, VecVT, VCmp, VOp1, VOp2); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, VSel, DAG.getIntPtrConstant(0, DL)); } SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2); SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1); return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And); } } if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { SDValue Op1Scalar; if (ISD::isBuildVectorOfConstantSDNodes(Op1.getNode())) Op1Scalar = ConvertI1VectorToInteger(Op1, DAG); else if (Op1.getOpcode() == ISD::BITCAST && Op1.getOperand(0)) Op1Scalar = Op1.getOperand(0); SDValue Op2Scalar; if (ISD::isBuildVectorOfConstantSDNodes(Op2.getNode())) Op2Scalar = ConvertI1VectorToInteger(Op2, DAG); else if (Op2.getOpcode() == ISD::BITCAST && Op2.getOperand(0)) Op2Scalar = Op2.getOperand(0); if (Op1Scalar.getNode() && Op2Scalar.getNode()) { SDValue newSelect = DAG.getNode(ISD::SELECT, DL, Op1Scalar.getValueType(), Cond, Op1Scalar, Op2Scalar); if (newSelect.getValueSizeInBits() == VT.getSizeInBits()) return DAG.getBitcast(VT, newSelect); SDValue ExtVec = DAG.getBitcast(MVT::v8i1, newSelect); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, ExtVec, DAG.getIntPtrConstant(0, DL)); } } if (VT == MVT::v4i1 || VT == MVT::v2i1) { SDValue zeroConst = DAG.getIntPtrConstant(0, DL); Op1 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i1, DAG.getUNDEF(MVT::v8i1), Op1, zeroConst); Op2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i1, DAG.getUNDEF(MVT::v8i1), Op2, zeroConst); SDValue newSelect = DAG.getNode(ISD::SELECT, DL, MVT::v8i1, Cond, Op1, Op2); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, newSelect, zeroConst); } if (Cond.getOpcode() == ISD::SETCC) { SDValue NewCond = LowerSETCC(Cond, DAG); if (NewCond.getNode()) Cond = NewCond; } // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y if (Cond.getOpcode() == X86ISD::SETCC && Cond.getOperand(1).getOpcode() == X86ISD::CMP && isNullConstant(Cond.getOperand(1).getOperand(1))) { SDValue Cmp = Cond.getOperand(1); unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue(); if ((isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) && (CondCode == X86::COND_E || CondCode == X86::COND_NE)) { SDValue Y = isAllOnesConstant(Op2) ? Op1 : Op2; SDValue CmpOp0 = Cmp.getOperand(0); // Apply further optimizations for special cases // (select (x != 0), -1, 0) -> neg & sbb // (select (x == 0), 0, -1) -> neg & sbb if (isNullConstant(Y) && (isAllOnesConstant(Op1) == (CondCode == X86::COND_NE))) { SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32); SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs, DAG.getConstant(0, DL, CmpOp0.getValueType()), CmpOp0); SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), DAG.getConstant(X86::COND_B, DL, MVT::i8), SDValue(Neg.getNode(), 1)); return Res; } Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0, DAG.getConstant(1, DL, CmpOp0.getValueType())); Cmp = ConvertCmpIfNecessary(Cmp, DAG); SDValue Res = // Res = 0 or -1. DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), DAG.getConstant(X86::COND_B, DL, MVT::i8), Cmp); if (isAllOnesConstant(Op1) != (CondCode == X86::COND_E)) Res = DAG.getNOT(DL, Res, Res.getValueType()); if (!isNullConstant(Op2)) Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y); return Res; } } // Look past (and (setcc_carry (cmp ...)), 1). if (Cond.getOpcode() == ISD::AND && Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY && isOneConstant(Cond.getOperand(1))) Cond = Cond.getOperand(0); // If condition flag is set by a X86ISD::CMP, then use it as the condition // setting operand in place of the X86ISD::SETCC. unsigned CondOpcode = Cond.getOpcode(); if (CondOpcode == X86ISD::SETCC || CondOpcode == X86ISD::SETCC_CARRY) { CC = Cond.getOperand(0); SDValue Cmp = Cond.getOperand(1); unsigned Opc = Cmp.getOpcode(); MVT VT = Op.getSimpleValueType(); bool IllegalFPCMov = false; if (VT.isFloatingPoint() && !VT.isVector() && !isScalarFPTypeInSSEReg(VT)) // FPStack? IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue()); if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) || Opc == X86ISD::BT) { // FIXME Cond = Cmp; addTest = false; } } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO || CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO || ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) && Cond.getOperand(0).getValueType() != MVT::i8)) { SDValue LHS = Cond.getOperand(0); SDValue RHS = Cond.getOperand(1); unsigned X86Opcode; unsigned X86Cond; SDVTList VTs; switch (CondOpcode) { case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break; case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break; case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break; case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break; case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break; case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break; default: llvm_unreachable("unexpected overflowing operator"); } if (CondOpcode == ISD::UMULO) VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(), MVT::i32); else VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS); if (CondOpcode == ISD::UMULO) Cond = X86Op.getValue(2); else Cond = X86Op.getValue(1); CC = DAG.getConstant(X86Cond, DL, MVT::i8); addTest = false; } if (addTest) { // Look past the truncate if the high bits are known zero. if (isTruncWithZeroHighBitsInput(Cond, DAG)) Cond = Cond.getOperand(0); // We know the result of AND is compared against zero. Try to match // it to BT. if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { if (SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG)) { CC = NewSetCC.getOperand(0); Cond = NewSetCC.getOperand(1); addTest = false; } } } if (addTest) { CC = DAG.getConstant(X86::COND_NE, DL, MVT::i8); Cond = EmitTest(Cond, X86::COND_NE, DL, DAG); } // a < b ? -1 : 0 -> RES = ~setcc_carry // a < b ? 0 : -1 -> RES = setcc_carry // a >= b ? -1 : 0 -> RES = setcc_carry // a >= b ? 0 : -1 -> RES = ~setcc_carry if (Cond.getOpcode() == X86ISD::SUB) { Cond = ConvertCmpIfNecessary(Cond, DAG); unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue(); if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) && (isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) && (isNullConstant(Op1) || isNullConstant(Op2))) { SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), DAG.getConstant(X86::COND_B, DL, MVT::i8), Cond); if (isAllOnesConstant(Op1) != (CondCode == X86::COND_B)) return DAG.getNOT(DL, Res, Res.getValueType()); return Res; } } // X86 doesn't have an i8 cmov. If both operands are the result of a truncate // widen the cmov and push the truncate through. This avoids introducing a new // branch during isel and doesn't add any extensions. if (Op.getValueType() == MVT::i8 && Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) { SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0); if (T1.getValueType() == T2.getValueType() && // Blacklist CopyFromReg to avoid partial register stalls. T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){ SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue); SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond); return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov); } } // X86ISD::CMOV means set the result (which is operand 1) to the RHS if // condition is true. SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); SDValue Ops[] = { Op2, Op1, CC, Cond }; return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops); } static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT VT = Op->getSimpleValueType(0); SDValue In = Op->getOperand(0); MVT InVT = In.getSimpleValueType(); MVT VTElt = VT.getVectorElementType(); MVT InVTElt = InVT.getVectorElementType(); SDLoc dl(Op); // SKX processor if ((InVTElt == MVT::i1) && (((Subtarget->hasBWI() && Subtarget->hasVLX() && VT.getSizeInBits() <= 256 && VTElt.getSizeInBits() <= 16)) || ((Subtarget->hasBWI() && VT.is512BitVector() && VTElt.getSizeInBits() <= 16)) || ((Subtarget->hasDQI() && Subtarget->hasVLX() && VT.getSizeInBits() <= 256 && VTElt.getSizeInBits() >= 32)) || ((Subtarget->hasDQI() && VT.is512BitVector() && VTElt.getSizeInBits() >= 32)))) return DAG.getNode(X86ISD::VSEXT, dl, VT, In); unsigned int NumElts = VT.getVectorNumElements(); if (NumElts != 8 && NumElts != 16 && !Subtarget->hasBWI()) return SDValue(); if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1) { if (In.getOpcode() == X86ISD::VSEXT || In.getOpcode() == X86ISD::VZEXT) return DAG.getNode(In.getOpcode(), dl, VT, In.getOperand(0)); return DAG.getNode(X86ISD::VSEXT, dl, VT, In); } assert (InVT.getVectorElementType() == MVT::i1 && "Unexpected vector type"); MVT ExtVT = NumElts == 8 ? MVT::v8i64 : MVT::v16i32; SDValue NegOne = DAG.getConstant(APInt::getAllOnesValue(ExtVT.getScalarSizeInBits()), dl, ExtVT); SDValue Zero = DAG.getConstant(APInt::getNullValue(ExtVT.getScalarSizeInBits()), dl, ExtVT); SDValue V = DAG.getNode(ISD::VSELECT, dl, ExtVT, In, NegOne, Zero); if (VT.is512BitVector()) return V; return DAG.getNode(X86ISD::VTRUNC, dl, VT, V); } static SDValue LowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDValue In = Op->getOperand(0); MVT VT = Op->getSimpleValueType(0); MVT InVT = In.getSimpleValueType(); assert(VT.getSizeInBits() == InVT.getSizeInBits()); MVT InSVT = InVT.getVectorElementType(); assert(VT.getVectorElementType().getSizeInBits() > InSVT.getSizeInBits()); if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16) return SDValue(); if (InSVT != MVT::i32 && InSVT != MVT::i16 && InSVT != MVT::i8) return SDValue(); SDLoc dl(Op); // SSE41 targets can use the pmovsx* instructions directly. if (Subtarget->hasSSE41()) return DAG.getNode(X86ISD::VSEXT, dl, VT, In); // pre-SSE41 targets unpack lower lanes and then sign-extend using SRAI. SDValue Curr = In; MVT CurrVT = InVT; // As SRAI is only available on i16/i32 types, we expand only up to i32 // and handle i64 separately. while (CurrVT != VT && CurrVT.getVectorElementType() != MVT::i32) { Curr = DAG.getNode(X86ISD::UNPCKL, dl, CurrVT, DAG.getUNDEF(CurrVT), Curr); MVT CurrSVT = MVT::getIntegerVT(CurrVT.getScalarSizeInBits() * 2); CurrVT = MVT::getVectorVT(CurrSVT, CurrVT.getVectorNumElements() / 2); Curr = DAG.getBitcast(CurrVT, Curr); } SDValue SignExt = Curr; if (CurrVT != InVT) { unsigned SignExtShift = CurrVT.getVectorElementType().getSizeInBits() - InSVT.getSizeInBits(); SignExt = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr, DAG.getConstant(SignExtShift, dl, MVT::i8)); } if (CurrVT == VT) return SignExt; if (VT == MVT::v2i64 && CurrVT == MVT::v4i32) { SDValue Sign = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr, DAG.getConstant(31, dl, MVT::i8)); SDValue Ext = DAG.getVectorShuffle(CurrVT, dl, SignExt, Sign, {0, 4, 1, 5}); return DAG.getBitcast(VT, Ext); } return SDValue(); } static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT VT = Op->getSimpleValueType(0); SDValue In = Op->getOperand(0); MVT InVT = In.getSimpleValueType(); SDLoc dl(Op); if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1) return LowerSIGN_EXTEND_AVX512(Op, Subtarget, DAG); if ((VT != MVT::v4i64 || InVT != MVT::v4i32) && (VT != MVT::v8i32 || InVT != MVT::v8i16) && (VT != MVT::v16i16 || InVT != MVT::v16i8)) return SDValue(); if (Subtarget->hasInt256()) return DAG.getNode(X86ISD::VSEXT, dl, VT, In); // Optimize vectors in AVX mode // Sign extend v8i16 to v8i32 and // v4i32 to v4i64 // // Divide input vector into two parts // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1} // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32 // concat the vectors to original VT unsigned NumElems = InVT.getVectorNumElements(); SDValue Undef = DAG.getUNDEF(InVT); SmallVector<int,8> ShufMask1(NumElems, -1); for (unsigned i = 0; i != NumElems/2; ++i) ShufMask1[i] = i; SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]); SmallVector<int,8> ShufMask2(NumElems, -1); for (unsigned i = 0; i != NumElems/2; ++i) ShufMask2[i] = i + NumElems/2; SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]); MVT HalfVT = MVT::getVectorVT(VT.getVectorElementType(), VT.getVectorNumElements()/2); OpLo = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpLo); OpHi = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpHi); return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi); } // Lower vector extended loads using a shuffle. If SSSE3 is not available we // may emit an illegal shuffle but the expansion is still better than scalar // code. We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise // we'll emit a shuffle and a arithmetic shift. // FIXME: Is the expansion actually better than scalar code? It doesn't seem so. // TODO: It is possible to support ZExt by zeroing the undef values during // the shuffle phase or after the shuffle. static SDValue LowerExtendedLoad(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT RegVT = Op.getSimpleValueType(); assert(RegVT.isVector() && "We only custom lower vector sext loads."); assert(RegVT.isInteger() && "We only custom lower integer vector sext loads."); // Nothing useful we can do without SSE2 shuffles. assert(Subtarget->hasSSE2() && "We only custom lower sext loads with SSE2."); LoadSDNode *Ld = cast<LoadSDNode>(Op.getNode()); SDLoc dl(Ld); EVT MemVT = Ld->getMemoryVT(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); unsigned RegSz = RegVT.getSizeInBits(); ISD::LoadExtType Ext = Ld->getExtensionType(); assert((Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD) && "Only anyext and sext are currently implemented."); assert(MemVT != RegVT && "Cannot extend to the same type"); assert(MemVT.isVector() && "Must load a vector from memory"); unsigned NumElems = RegVT.getVectorNumElements(); unsigned MemSz = MemVT.getSizeInBits(); assert(RegSz > MemSz && "Register size must be greater than the mem size"); if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256()) { // The only way in which we have a legal 256-bit vector result but not the // integer 256-bit operations needed to directly lower a sextload is if we // have AVX1 but not AVX2. In that case, we can always emit a sextload to // a 128-bit vector and a normal sign_extend to 256-bits that should get // correctly legalized. We do this late to allow the canonical form of // sextload to persist throughout the rest of the DAG combiner -- it wants // to fold together any extensions it can, and so will fuse a sign_extend // of an sextload into a sextload targeting a wider value. SDValue Load; if (MemSz == 128) { // Just switch this to a normal load. assert(TLI.isTypeLegal(MemVT) && "If the memory type is a 128-bit type, " "it must be a legal 128-bit vector " "type!"); Load = DAG.getLoad(MemVT, dl, Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), Ld->getAlignment()); } else { assert(MemSz < 128 && "Can't extend a type wider than 128 bits to a 256 bit vector!"); // Do an sext load to a 128-bit vector type. We want to use the same // number of elements, but elements half as wide. This will end up being // recursively lowered by this routine, but will succeed as we definitely // have all the necessary features if we're using AVX1. EVT HalfEltVT = EVT::getIntegerVT(*DAG.getContext(), RegVT.getScalarSizeInBits() / 2); EVT HalfVecVT = EVT::getVectorVT(*DAG.getContext(), HalfEltVT, NumElems); Load = DAG.getExtLoad(Ext, dl, HalfVecVT, Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(), MemVT, Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), Ld->getAlignment()); } // Replace chain users with the new chain. assert(Load->getNumValues() == 2 && "Loads must carry a chain!"); DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1)); // Finally, do a normal sign-extend to the desired register. return DAG.getSExtOrTrunc(Load, dl, RegVT); } // All sizes must be a power of two. assert(isPowerOf2_32(RegSz * MemSz * NumElems) && "Non-power-of-two elements are not custom lowered!"); // Attempt to load the original value using scalar loads. // Find the largest scalar type that divides the total loaded size. MVT SclrLoadTy = MVT::i8; for (MVT Tp : MVT::integer_valuetypes()) { if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) { SclrLoadTy = Tp; } } // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64. if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 && (64 <= MemSz)) SclrLoadTy = MVT::f64; // Calculate the number of scalar loads that we need to perform // in order to load our vector from memory. unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits(); assert((Ext != ISD::SEXTLOAD || NumLoads == 1) && "Can only lower sext loads with a single scalar load!"); unsigned loadRegZize = RegSz; if (Ext == ISD::SEXTLOAD && RegSz >= 256) loadRegZize = 128; // Represent our vector as a sequence of elements which are the // largest scalar that we can load. EVT LoadUnitVecVT = EVT::getVectorVT( *DAG.getContext(), SclrLoadTy, loadRegZize / SclrLoadTy.getSizeInBits()); // Represent the data using the same element type that is stored in // memory. In practice, we ''widen'' MemVT. EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), loadRegZize / MemVT.getScalarSizeInBits()); assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() && "Invalid vector type"); // We can't shuffle using an illegal type. assert(TLI.isTypeLegal(WideVecVT) && "We only lower types that form legal widened vector types"); SmallVector<SDValue, 8> Chains; SDValue Ptr = Ld->getBasePtr(); SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits() / 8, dl, TLI.getPointerTy(DAG.getDataLayout())); SDValue Res = DAG.getUNDEF(LoadUnitVecVT); for (unsigned i = 0; i < NumLoads; ++i) { // Perform a single load. SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), Ld->getAlignment()); Chains.push_back(ScalarLoad.getValue(1)); // Create the first element type using SCALAR_TO_VECTOR in order to avoid // another round of DAGCombining. if (i == 0) Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad); else Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res, ScalarLoad, DAG.getIntPtrConstant(i, dl)); Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); } SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); // Bitcast the loaded value to a vector of the original element type, in // the size of the target vector type. SDValue SlicedVec = DAG.getBitcast(WideVecVT, Res); unsigned SizeRatio = RegSz / MemSz; if (Ext == ISD::SEXTLOAD) { // If we have SSE4.1, we can directly emit a VSEXT node. if (Subtarget->hasSSE41()) { SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec); DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF); return Sext; } // Otherwise we'll use SIGN_EXTEND_VECTOR_INREG to sign extend the lowest // lanes. assert(TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND_VECTOR_INREG, RegVT) && "We can't implement a sext load without SIGN_EXTEND_VECTOR_INREG!"); SDValue Shuff = DAG.getSignExtendVectorInReg(SlicedVec, dl, RegVT); DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF); return Shuff; } // Redistribute the loaded elements into the different locations. SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1); for (unsigned i = 0; i != NumElems; ++i) ShuffleVec[i * SizeRatio] = i; SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec, DAG.getUNDEF(WideVecVT), &ShuffleVec[0]); // Bitcast to the requested type. Shuff = DAG.getBitcast(RegVT, Shuff); DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF); return Shuff; } // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart // from the AND / OR. static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) { Opc = Op.getOpcode(); if (Opc != ISD::OR && Opc != ISD::AND) return false; return (Op.getOperand(0).getOpcode() == X86ISD::SETCC && Op.getOperand(0).hasOneUse() && Op.getOperand(1).getOpcode() == X86ISD::SETCC && Op.getOperand(1).hasOneUse()); } // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and // 1 and that the SETCC node has a single use. static bool isXor1OfSetCC(SDValue Op) { if (Op.getOpcode() != ISD::XOR) return false; if (isOneConstant(Op.getOperand(1))) return Op.getOperand(0).getOpcode() == X86ISD::SETCC && Op.getOperand(0).hasOneUse(); return false; } SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { bool addTest = true; SDValue Chain = Op.getOperand(0); SDValue Cond = Op.getOperand(1); SDValue Dest = Op.getOperand(2); SDLoc dl(Op); SDValue CC; bool Inverted = false; if (Cond.getOpcode() == ISD::SETCC) { // Check for setcc([su]{add,sub,mul}o == 0). if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ && isNullConstant(Cond.getOperand(1)) && Cond.getOperand(0).getResNo() == 1 && (Cond.getOperand(0).getOpcode() == ISD::SADDO || Cond.getOperand(0).getOpcode() == ISD::UADDO || Cond.getOperand(0).getOpcode() == ISD::SSUBO || Cond.getOperand(0).getOpcode() == ISD::USUBO || Cond.getOperand(0).getOpcode() == ISD::SMULO || Cond.getOperand(0).getOpcode() == ISD::UMULO)) { Inverted = true; Cond = Cond.getOperand(0); } else { SDValue NewCond = LowerSETCC(Cond, DAG); if (NewCond.getNode()) Cond = NewCond; } } #if 0 // FIXME: LowerXALUO doesn't handle these!! else if (Cond.getOpcode() == X86ISD::ADD || Cond.getOpcode() == X86ISD::SUB || Cond.getOpcode() == X86ISD::SMUL || Cond.getOpcode() == X86ISD::UMUL) Cond = LowerXALUO(Cond, DAG); #endif // Look pass (and (setcc_carry (cmp ...)), 1). if (Cond.getOpcode() == ISD::AND && Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY && isOneConstant(Cond.getOperand(1))) Cond = Cond.getOperand(0); // If condition flag is set by a X86ISD::CMP, then use it as the condition // setting operand in place of the X86ISD::SETCC. unsigned CondOpcode = Cond.getOpcode(); if (CondOpcode == X86ISD::SETCC || CondOpcode == X86ISD::SETCC_CARRY) { CC = Cond.getOperand(0); SDValue Cmp = Cond.getOperand(1); unsigned Opc = Cmp.getOpcode(); // FIXME: WHY THE SPECIAL CASING OF LogicalCmp?? if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) { Cond = Cmp; addTest = false; } else { switch (cast<ConstantSDNode>(CC)->getZExtValue()) { default: break; case X86::COND_O: case X86::COND_B: // These can only come from an arithmetic instruction with overflow, // e.g. SADDO, UADDO. Cond = Cond.getNode()->getOperand(1); addTest = false; break; } } } CondOpcode = Cond.getOpcode(); if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO || CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO || ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) && Cond.getOperand(0).getValueType() != MVT::i8)) { SDValue LHS = Cond.getOperand(0); SDValue RHS = Cond.getOperand(1); unsigned X86Opcode; unsigned X86Cond; SDVTList VTs; // Keep this in sync with LowerXALUO, otherwise we might create redundant // instructions that can't be removed afterwards (i.e. X86ISD::ADD and // X86ISD::INC). switch (CondOpcode) { case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break; case ISD::SADDO: if (isOneConstant(RHS)) { X86Opcode = X86ISD::INC; X86Cond = X86::COND_O; break; } X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break; case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break; case ISD::SSUBO: if (isOneConstant(RHS)) { X86Opcode = X86ISD::DEC; X86Cond = X86::COND_O; break; } X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break; case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break; case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break; default: llvm_unreachable("unexpected overflowing operator"); } if (Inverted) X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond); if (CondOpcode == ISD::UMULO) VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(), MVT::i32); else VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS); if (CondOpcode == ISD::UMULO) Cond = X86Op.getValue(2); else Cond = X86Op.getValue(1); CC = DAG.getConstant(X86Cond, dl, MVT::i8); addTest = false; } else { unsigned CondOpc; if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) { SDValue Cmp = Cond.getOperand(0).getOperand(1); if (CondOpc == ISD::OR) { // Also, recognize the pattern generated by an FCMP_UNE. We can emit // two branches instead of an explicit OR instruction with a // separate test. if (Cmp == Cond.getOperand(1).getOperand(1) && isX86LogicalCmp(Cmp)) { CC = Cond.getOperand(0).getOperand(0); Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), Chain, Dest, CC, Cmp); CC = Cond.getOperand(1).getOperand(0); Cond = Cmp; addTest = false; } } else { // ISD::AND // Also, recognize the pattern generated by an FCMP_OEQ. We can emit // two branches instead of an explicit AND instruction with a // separate test. However, we only do this if this block doesn't // have a fall-through edge, because this requires an explicit // jmp when the condition is false. if (Cmp == Cond.getOperand(1).getOperand(1) && isX86LogicalCmp(Cmp) && Op.getNode()->hasOneUse()) { X86::CondCode CCode = (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); CCode = X86::GetOppositeBranchCondition(CCode); CC = DAG.getConstant(CCode, dl, MVT::i8); SDNode *User = *Op.getNode()->use_begin(); // Look for an unconditional branch following this conditional branch. // We need this because we need to reverse the successors in order // to implement FCMP_OEQ. if (User->getOpcode() == ISD::BR) { SDValue FalseBB = User->getOperand(1); SDNode *NewBR = DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); assert(NewBR == User); (void)NewBR; Dest = FalseBB; Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), Chain, Dest, CC, Cmp); X86::CondCode CCode = (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0); CCode = X86::GetOppositeBranchCondition(CCode); CC = DAG.getConstant(CCode, dl, MVT::i8); Cond = Cmp; addTest = false; } } } } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) { // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition. // It should be transformed during dag combiner except when the condition // is set by a arithmetics with overflow node. X86::CondCode CCode = (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); CCode = X86::GetOppositeBranchCondition(CCode); CC = DAG.getConstant(CCode, dl, MVT::i8); Cond = Cond.getOperand(0).getOperand(1); addTest = false; } else if (Cond.getOpcode() == ISD::SETCC && cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) { // For FCMP_OEQ, we can emit // two branches instead of an explicit AND instruction with a // separate test. However, we only do this if this block doesn't // have a fall-through edge, because this requires an explicit // jmp when the condition is false. if (Op.getNode()->hasOneUse()) { SDNode *User = *Op.getNode()->use_begin(); // Look for an unconditional branch following this conditional branch. // We need this because we need to reverse the successors in order // to implement FCMP_OEQ. if (User->getOpcode() == ISD::BR) { SDValue FalseBB = User->getOperand(1); SDNode *NewBR = DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); assert(NewBR == User); (void)NewBR; Dest = FalseBB; SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32, Cond.getOperand(0), Cond.getOperand(1)); Cmp = ConvertCmpIfNecessary(Cmp, DAG); CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8); Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), Chain, Dest, CC, Cmp); CC = DAG.getConstant(X86::COND_P, dl, MVT::i8); Cond = Cmp; addTest = false; } } } else if (Cond.getOpcode() == ISD::SETCC && cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) { // For FCMP_UNE, we can emit // two branches instead of an explicit AND instruction with a // separate test. However, we only do this if this block doesn't // have a fall-through edge, because this requires an explicit // jmp when the condition is false. if (Op.getNode()->hasOneUse()) { SDNode *User = *Op.getNode()->use_begin(); // Look for an unconditional branch following this conditional branch. // We need this because we need to reverse the successors in order // to implement FCMP_UNE. if (User->getOpcode() == ISD::BR) { SDValue FalseBB = User->getOperand(1); SDNode *NewBR = DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); assert(NewBR == User); (void)NewBR; SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32, Cond.getOperand(0), Cond.getOperand(1)); Cmp = ConvertCmpIfNecessary(Cmp, DAG); CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8); Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), Chain, Dest, CC, Cmp); CC = DAG.getConstant(X86::COND_NP, dl, MVT::i8); Cond = Cmp; addTest = false; Dest = FalseBB; } } } } if (addTest) { // Look pass the truncate if the high bits are known zero. if (isTruncWithZeroHighBitsInput(Cond, DAG)) Cond = Cond.getOperand(0); // We know the result of AND is compared against zero. Try to match // it to BT. if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { if (SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG)) { CC = NewSetCC.getOperand(0); Cond = NewSetCC.getOperand(1); addTest = false; } } } if (addTest) { X86::CondCode X86Cond = Inverted ? X86::COND_E : X86::COND_NE; CC = DAG.getConstant(X86Cond, dl, MVT::i8); Cond = EmitTest(Cond, X86Cond, dl, DAG); } Cond = ConvertCmpIfNecessary(Cond, DAG); return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), Chain, Dest, CC, Cond); } // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets. // Calls to _alloca are needed to probe the stack when allocating more than 4k // bytes in one go. Touching the stack at 4K increments is necessary to ensure // that the guard pages used by the OS virtual memory manager are allocated in // correct sequence. SDValue X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); bool SplitStack = MF.shouldSplitStack(); bool Lower = (Subtarget->isOSWindows() && !Subtarget->isTargetMachO()) || SplitStack; SDLoc dl(Op); // Get the inputs. SDNode *Node = Op.getNode(); SDValue Chain = Op.getOperand(0); SDValue Size = Op.getOperand(1); unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); EVT VT = Node->getValueType(0); // Chain the dynamic stack allocation so that it doesn't modify the stack // pointer when other instructions are using the stack. Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, dl, true), dl); bool Is64Bit = Subtarget->is64Bit(); MVT SPTy = getPointerTy(DAG.getDataLayout()); SDValue Result; if (!Lower) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" " not tell us which reg is the stack pointer!"); EVT VT = Node->getValueType(0); SDValue Tmp3 = Node->getOperand(2); SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); Chain = SP.getValue(1); unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); unsigned StackAlign = TFI.getStackAlignment(); Result = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value if (Align > StackAlign) Result = DAG.getNode(ISD::AND, dl, VT, Result, DAG.getConstant(-(uint64_t)Align, dl, VT)); Chain = DAG.getCopyToReg(Chain, dl, SPReg, Result); // Output chain } else if (SplitStack) { MachineRegisterInfo &MRI = MF.getRegInfo(); if (Is64Bit) { // The 64 bit implementation of segmented stacks needs to clobber both r10 // r11. This makes it impossible to use it along with nested parameters. const Function *F = MF.getFunction(); for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) if (I->hasNestAttr()) report_fatal_error("Cannot use segmented stacks with functions that " "have nested arguments."); } const TargetRegisterClass *AddrRegClass = getRegClassFor(SPTy); unsigned Vreg = MRI.createVirtualRegister(AddrRegClass); Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size); Result = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain, DAG.getRegister(Vreg, SPTy)); } else { SDValue Flag; const unsigned Reg = (Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX); Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag); Flag = Chain.getValue(1); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag); const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); unsigned SPReg = RegInfo->getStackRegister(); SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy); Chain = SP.getValue(1); if (Align) { SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0), DAG.getConstant(-(uint64_t)Align, dl, VT)); Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP); } Result = SP; } Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); SDValue Ops[2] = {Result, Chain}; return DAG.getMergeValues(Ops, dl); } SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); auto PtrVT = getPointerTy(MF.getDataLayout()); X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); SDLoc DL(Op); if (!Subtarget->is64Bit() || Subtarget->isCallingConvWin64(MF.getFunction()->getCallingConv())) { // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), MachinePointerInfo(SV), false, false, 0); } // __va_list_tag: // gp_offset (0 - 6 * 8) // fp_offset (48 - 48 + 8 * 16) // overflow_arg_area (point to parameters coming in memory). // reg_save_area SmallVector<SDValue, 8> MemOps; SDValue FIN = Op.getOperand(1); // Store gp_offset SDValue Store = DAG.getStore(Op.getOperand(0), DL, DAG.getConstant(FuncInfo->getVarArgsGPOffset(), DL, MVT::i32), FIN, MachinePointerInfo(SV), false, false, 0); MemOps.push_back(Store); // Store fp_offset FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4, DL)); Store = DAG.getStore(Op.getOperand(0), DL, DAG.getConstant(FuncInfo->getVarArgsFPOffset(), DL, MVT::i32), FIN, MachinePointerInfo(SV, 4), false, false, 0); MemOps.push_back(Store); // Store ptr to overflow_arg_area FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4, DL)); SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN, MachinePointerInfo(SV, 8), false, false, 0); MemOps.push_back(Store); // Store ptr to reg_save_area. FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant( Subtarget->isTarget64BitLP64() ? 8 : 4, DL)); SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT); Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN, MachinePointerInfo( SV, Subtarget->isTarget64BitLP64() ? 16 : 12), false, false, 0); MemOps.push_back(Store); return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); } SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->is64Bit() && "LowerVAARG only handles 64-bit va_arg!"); assert(Op.getNode()->getNumOperands() == 4); MachineFunction &MF = DAG.getMachineFunction(); if (Subtarget->isCallingConvWin64(MF.getFunction()->getCallingConv())) // The Win64 ABI uses char* instead of a structure. return DAG.expandVAArg(Op.getNode()); SDValue Chain = Op.getOperand(0); SDValue SrcPtr = Op.getOperand(1); const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); unsigned Align = Op.getConstantOperandVal(3); SDLoc dl(Op); EVT ArgVT = Op.getNode()->getValueType(0); Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); uint32_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy); uint8_t ArgMode; // Decide which area this value should be read from. // TODO: Implement the AMD64 ABI in its entirety. This simple // selection mechanism works only for the basic types. if (ArgVT == MVT::f80) { llvm_unreachable("va_arg for f80 not yet implemented"); } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) { ArgMode = 2; // Argument passed in XMM register. Use fp_offset. } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) { ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset. } else { llvm_unreachable("Unhandled argument type in LowerVAARG"); } if (ArgMode == 2) { // Sanity Check: Make sure using fp_offset makes sense. assert(!Subtarget->useSoftFloat() && !(MF.getFunction()->hasFnAttribute(Attribute::NoImplicitFloat)) && Subtarget->hasSSE1()); } // Insert VAARG_64 node into the DAG // VAARG_64 returns two values: Variable Argument Address, Chain SDValue InstOps[] = {Chain, SrcPtr, DAG.getConstant(ArgSize, dl, MVT::i32), DAG.getConstant(ArgMode, dl, MVT::i8), DAG.getConstant(Align, dl, MVT::i32)}; SDVTList VTs = DAG.getVTList(getPointerTy(DAG.getDataLayout()), MVT::Other); SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl, VTs, InstOps, MVT::i64, MachinePointerInfo(SV), /*Align=*/0, /*Volatile=*/false, /*ReadMem=*/true, /*WriteMem=*/true); Chain = VAARG.getValue(1); // Load the next argument and return it return DAG.getLoad(ArgVT, dl, Chain, VAARG, MachinePointerInfo(), false, false, false, 0); } static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { // X86-64 va_list is a struct { i32, i32, i8*, i8* }, except on Windows, // where a va_list is still an i8*. assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!"); if (Subtarget->isCallingConvWin64( DAG.getMachineFunction().getFunction()->getCallingConv())) // Probably a Win64 va_copy. return DAG.expandVACopy(Op.getNode()); SDValue Chain = Op.getOperand(0); SDValue DstPtr = Op.getOperand(1); SDValue SrcPtr = Op.getOperand(2); const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); SDLoc DL(Op); return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(24, DL), 8, /*isVolatile*/false, false, false, MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); } // getTargetVShiftByConstNode - Handle vector element shifts where the shift // amount is a constant. Takes immediate version of shift as input. static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, MVT VT, SDValue SrcOp, uint64_t ShiftAmt, SelectionDAG &DAG) { MVT ElementType = VT.getVectorElementType(); // Fold this packed shift into its first operand if ShiftAmt is 0. if (ShiftAmt == 0) return SrcOp; // Check for ShiftAmt >= element width if (ShiftAmt >= ElementType.getSizeInBits()) { if (Opc == X86ISD::VSRAI) ShiftAmt = ElementType.getSizeInBits() - 1; else return DAG.getConstant(0, dl, VT); } assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI) && "Unknown target vector shift-by-constant node"); // Fold this packed vector shift into a build vector if SrcOp is a // vector of Constants or UNDEFs, and SrcOp valuetype is the same as VT. if (VT == SrcOp.getSimpleValueType() && ISD::isBuildVectorOfConstantSDNodes(SrcOp.getNode())) { SmallVector<SDValue, 8> Elts; unsigned NumElts = SrcOp->getNumOperands(); ConstantSDNode *ND; switch(Opc) { default: llvm_unreachable(nullptr); case X86ISD::VSHLI: for (unsigned i=0; i!=NumElts; ++i) { SDValue CurrentOp = SrcOp->getOperand(i); if (CurrentOp->getOpcode() == ISD::UNDEF) { Elts.push_back(CurrentOp); continue; } ND = cast<ConstantSDNode>(CurrentOp); const APInt &C = ND->getAPIntValue(); Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), dl, ElementType)); } break; case X86ISD::VSRLI: for (unsigned i=0; i!=NumElts; ++i) { SDValue CurrentOp = SrcOp->getOperand(i); if (CurrentOp->getOpcode() == ISD::UNDEF) { Elts.push_back(CurrentOp); continue; } ND = cast<ConstantSDNode>(CurrentOp); const APInt &C = ND->getAPIntValue(); Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), dl, ElementType)); } break; case X86ISD::VSRAI: for (unsigned i=0; i!=NumElts; ++i) { SDValue CurrentOp = SrcOp->getOperand(i); if (CurrentOp->getOpcode() == ISD::UNDEF) { Elts.push_back(CurrentOp); continue; } ND = cast<ConstantSDNode>(CurrentOp); const APInt &C = ND->getAPIntValue(); Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), dl, ElementType)); } break; } return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts); } return DAG.getNode(Opc, dl, VT, SrcOp, DAG.getConstant(ShiftAmt, dl, MVT::i8)); } // getTargetVShiftNode - Handle vector element shifts where the shift amount // may or may not be a constant. Takes immediate version of shift as input. static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, MVT VT, SDValue SrcOp, SDValue ShAmt, SelectionDAG &DAG) { MVT SVT = ShAmt.getSimpleValueType(); assert((SVT == MVT::i32 || SVT == MVT::i64) && "Unexpected value type!"); // Catch shift-by-constant. if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt)) return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp, CShAmt->getZExtValue(), DAG); // Change opcode to non-immediate version switch (Opc) { default: llvm_unreachable("Unknown target vector shift node"); case X86ISD::VSHLI: Opc = X86ISD::VSHL; break; case X86ISD::VSRLI: Opc = X86ISD::VSRL; break; case X86ISD::VSRAI: Opc = X86ISD::VSRA; break; } const X86Subtarget &Subtarget = static_cast<const X86Subtarget &>(DAG.getSubtarget()); if (Subtarget.hasSSE41() && ShAmt.getOpcode() == ISD::ZERO_EXTEND && ShAmt.getOperand(0).getSimpleValueType() == MVT::i16) { // Let the shuffle legalizer expand this shift amount node. SDValue Op0 = ShAmt.getOperand(0); Op0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(Op0), MVT::v8i16, Op0); ShAmt = getShuffleVectorZeroOrUndef(Op0, 0, true, &Subtarget, DAG); } else { // Need to build a vector containing shift amount. // SSE/AVX packed shifts only use the lower 64-bit of the shift count. SmallVector<SDValue, 4> ShOps; ShOps.push_back(ShAmt); if (SVT == MVT::i32) { ShOps.push_back(DAG.getConstant(0, dl, SVT)); ShOps.push_back(DAG.getUNDEF(SVT)); } ShOps.push_back(DAG.getUNDEF(SVT)); MVT BVT = SVT == MVT::i32 ? MVT::v4i32 : MVT::v2i64; ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, BVT, ShOps); } // The return type has to be a 128-bit type with the same element // type as the input type. MVT EltVT = VT.getVectorElementType(); MVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits()); ShAmt = DAG.getBitcast(ShVT, ShAmt); return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt); } /// \brief Return Mask with the necessary casting or extending /// for \p Mask according to \p MaskVT when lowering masking intrinsics static SDValue getMaskNode(SDValue Mask, MVT MaskVT, const X86Subtarget *Subtarget, SelectionDAG &DAG, SDLoc dl) { if (MaskVT.bitsGT(Mask.getSimpleValueType())) { // Mask should be extended Mask = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::getIntegerVT(MaskVT.getSizeInBits()), Mask); } if (Mask.getSimpleValueType() == MVT::i64 && Subtarget->is32Bit()) { if (MaskVT == MVT::v64i1) { assert(Subtarget->hasBWI() && "Expected AVX512BW target!"); // In case 32bit mode, bitcast i64 is illegal, extend/split it. SDValue Lo, Hi; Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mask, DAG.getConstant(0, dl, MVT::i32)); Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mask, DAG.getConstant(1, dl, MVT::i32)); Lo = DAG.getBitcast(MVT::v32i1, Lo); Hi = DAG.getBitcast(MVT::v32i1, Hi); return DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v64i1, Lo, Hi); } else { // MaskVT require < 64bit. Truncate mask (should succeed in any case), // and bitcast. MVT TruncVT = MVT::getIntegerVT(MaskVT.getSizeInBits()); return DAG.getBitcast(MaskVT, DAG.getNode(ISD::TRUNCATE, dl, TruncVT, Mask)); } } else { MVT BitcastVT = MVT::getVectorVT(MVT::i1, Mask.getSimpleValueType().getSizeInBits()); // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements // are extracted by EXTRACT_SUBVECTOR. return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, DAG.getBitcast(BitcastVT, Mask), DAG.getIntPtrConstant(0, dl)); } } /// \brief Return (and \p Op, \p Mask) for compare instructions or /// (vselect \p Mask, \p Op, \p PreservedSrc) for others along with the /// necessary casting or extending for \p Mask when lowering masking intrinsics static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask, SDValue PreservedSrc, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT VT = Op.getSimpleValueType(); MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements()); unsigned OpcodeSelect = ISD::VSELECT; SDLoc dl(Op); if (isAllOnesConstant(Mask)) return Op; SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl); switch (Op.getOpcode()) { default: break; case X86ISD::PCMPEQM: case X86ISD::PCMPGTM: case X86ISD::CMPM: case X86ISD::CMPMU: return DAG.getNode(ISD::AND, dl, VT, Op, VMask); case X86ISD::VFPCLASS: case X86ISD::VFPCLASSS: return DAG.getNode(ISD::OR, dl, VT, Op, VMask); case X86ISD::VTRUNC: case X86ISD::VTRUNCS: case X86ISD::VTRUNCUS: // We can't use ISD::VSELECT here because it is not always "Legal" // for the destination type. For example vpmovqb require only AVX512 // and vselect that can operate on byte element type require BWI OpcodeSelect = X86ISD::SELECT; break; } if (PreservedSrc.getOpcode() == ISD::UNDEF) PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl); return DAG.getNode(OpcodeSelect, dl, VT, VMask, Op, PreservedSrc); } /// \brief Creates an SDNode for a predicated scalar operation. /// \returns (X86vselect \p Mask, \p Op, \p PreservedSrc). /// The mask is coming as MVT::i8 and it should be truncated /// to MVT::i1 while lowering masking intrinsics. /// The main difference between ScalarMaskingNode and VectorMaskingNode is using /// "X86select" instead of "vselect". We just can't create the "vselect" node /// for a scalar instruction. static SDValue getScalarMaskingNode(SDValue Op, SDValue Mask, SDValue PreservedSrc, const X86Subtarget *Subtarget, SelectionDAG &DAG) { if (isAllOnesConstant(Mask)) return Op; MVT VT = Op.getSimpleValueType(); SDLoc dl(Op); // The mask should be of type MVT::i1 SDValue IMask = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Mask); if (Op.getOpcode() == X86ISD::FSETCC) return DAG.getNode(ISD::AND, dl, VT, Op, IMask); if (Op.getOpcode() == X86ISD::VFPCLASS || Op.getOpcode() == X86ISD::VFPCLASSS) return DAG.getNode(ISD::OR, dl, VT, Op, IMask); if (PreservedSrc.getOpcode() == ISD::UNDEF) PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl); return DAG.getNode(X86ISD::SELECT, dl, VT, IMask, Op, PreservedSrc); } static int getSEHRegistrationNodeSize(const Function *Fn) { if (!Fn->hasPersonalityFn()) report_fatal_error( "querying registration node size for function without personality"); // The RegNodeSize is 6 32-bit words for SEH and 4 for C++ EH. See // WinEHStatePass for the full struct definition. switch (classifyEHPersonality(Fn->getPersonalityFn())) { case EHPersonality::MSVC_X86SEH: return 24; case EHPersonality::MSVC_CXX: return 16; default: break; } report_fatal_error( "can only recover FP for 32-bit MSVC EH personality functions"); } /// When the MSVC runtime transfers control to us, either to an outlined /// function or when returning to a parent frame after catching an exception, we /// recover the parent frame pointer by doing arithmetic on the incoming EBP. /// Here's the math: /// RegNodeBase = EntryEBP - RegNodeSize /// ParentFP = RegNodeBase - ParentFrameOffset /// Subtracting RegNodeSize takes us to the offset of the registration node, and /// subtracting the offset (negative on x86) takes us back to the parent FP. static SDValue recoverFramePointer(SelectionDAG &DAG, const Function *Fn, SDValue EntryEBP) { MachineFunction &MF = DAG.getMachineFunction(); SDLoc dl; const TargetLowering &TLI = DAG.getTargetLoweringInfo(); MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); // It's possible that the parent function no longer has a personality function // if the exceptional code was optimized away, in which case we just return // the incoming EBP. if (!Fn->hasPersonalityFn()) return EntryEBP; // Get an MCSymbol that will ultimately resolve to the frame offset of the EH // registration, or the .set_setframe offset. MCSymbol *OffsetSym = MF.getMMI().getContext().getOrCreateParentFrameOffsetSymbol( GlobalValue::getRealLinkageName(Fn->getName())); SDValue OffsetSymVal = DAG.getMCSymbol(OffsetSym, PtrVT); SDValue ParentFrameOffset = DAG.getNode(ISD::LOCAL_RECOVER, dl, PtrVT, OffsetSymVal); // Return EntryEBP + ParentFrameOffset for x64. This adjusts from RSP after // prologue to RBP in the parent function. const X86Subtarget &Subtarget = static_cast<const X86Subtarget &>(DAG.getSubtarget()); if (Subtarget.is64Bit()) return DAG.getNode(ISD::ADD, dl, PtrVT, EntryEBP, ParentFrameOffset); int RegNodeSize = getSEHRegistrationNodeSize(Fn); // RegNodeBase = EntryEBP - RegNodeSize // ParentFP = RegNodeBase - ParentFrameOffset SDValue RegNodeBase = DAG.getNode(ISD::SUB, dl, PtrVT, EntryEBP, DAG.getConstant(RegNodeSize, dl, PtrVT)); return DAG.getNode(ISD::SUB, dl, PtrVT, RegNodeBase, ParentFrameOffset); } static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc dl(Op); unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); MVT VT = Op.getSimpleValueType(); const IntrinsicData* IntrData = getIntrinsicWithoutChain(IntNo); if (IntrData) { switch(IntrData->Type) { case INTR_TYPE_1OP: return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1)); case INTR_TYPE_2OP: return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case INTR_TYPE_2OP_IMM8: return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1), DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(2))); case INTR_TYPE_3OP: return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case INTR_TYPE_4OP: return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), Op.getOperand(4)); case INTR_TYPE_1OP_MASK_RM: { SDValue Src = Op.getOperand(1); SDValue PassThru = Op.getOperand(2); SDValue Mask = Op.getOperand(3); SDValue RoundingMode; // We allways add rounding mode to the Node. // If the rounding mode is not specified, we add the // "current direction" mode. if (Op.getNumOperands() == 4) RoundingMode = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32); else RoundingMode = Op.getOperand(4); unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; if (IntrWithRoundingModeOpcode != 0) if (cast<ConstantSDNode>(RoundingMode)->getZExtValue() != X86::STATIC_ROUNDING::CUR_DIRECTION) return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, dl, Op.getValueType(), Src, RoundingMode), Mask, PassThru, Subtarget, DAG); return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src, RoundingMode), Mask, PassThru, Subtarget, DAG); } case INTR_TYPE_1OP_MASK: { SDValue Src = Op.getOperand(1); SDValue PassThru = Op.getOperand(2); SDValue Mask = Op.getOperand(3); // We add rounding mode to the Node when // - RM Opcode is specified and // - RM is not "current direction". unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; if (IntrWithRoundingModeOpcode != 0) { SDValue Rnd = Op.getOperand(4); unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue(); if (Round != X86::STATIC_ROUNDING::CUR_DIRECTION) { return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, dl, Op.getValueType(), Src, Rnd), Mask, PassThru, Subtarget, DAG); } } return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src), Mask, PassThru, Subtarget, DAG); } case INTR_TYPE_SCALAR_MASK: { SDValue Src1 = Op.getOperand(1); SDValue Src2 = Op.getOperand(2); SDValue passThru = Op.getOperand(3); SDValue Mask = Op.getOperand(4); return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2), Mask, passThru, Subtarget, DAG); } case INTR_TYPE_SCALAR_MASK_RM: { SDValue Src1 = Op.getOperand(1); SDValue Src2 = Op.getOperand(2); SDValue Src0 = Op.getOperand(3); SDValue Mask = Op.getOperand(4); // There are 2 kinds of intrinsics in this group: // (1) With suppress-all-exceptions (sae) or rounding mode- 6 operands // (2) With rounding mode and sae - 7 operands. if (Op.getNumOperands() == 6) { SDValue Sae = Op.getOperand(5); unsigned Opc = IntrData->Opc1 ? IntrData->Opc1 : IntrData->Opc0; return getScalarMaskingNode(DAG.getNode(Opc, dl, VT, Src1, Src2, Sae), Mask, Src0, Subtarget, DAG); } assert(Op.getNumOperands() == 7 && "Unexpected intrinsic form"); SDValue RoundingMode = Op.getOperand(5); SDValue Sae = Op.getOperand(6); return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2, RoundingMode, Sae), Mask, Src0, Subtarget, DAG); } case INTR_TYPE_2OP_MASK: case INTR_TYPE_2OP_IMM8_MASK: { SDValue Src1 = Op.getOperand(1); SDValue Src2 = Op.getOperand(2); SDValue PassThru = Op.getOperand(3); SDValue Mask = Op.getOperand(4); if (IntrData->Type == INTR_TYPE_2OP_IMM8_MASK) Src2 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Src2); // We specify 2 possible opcodes for intrinsics with rounding modes. // First, we check if the intrinsic may have non-default rounding mode, // (IntrData->Opc1 != 0), then we check the rounding mode operand. unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; if (IntrWithRoundingModeOpcode != 0) { SDValue Rnd = Op.getOperand(5); unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue(); if (Round != X86::STATIC_ROUNDING::CUR_DIRECTION) { return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, dl, Op.getValueType(), Src1, Src2, Rnd), Mask, PassThru, Subtarget, DAG); } } // TODO: Intrinsics should have fast-math-flags to propagate. return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,Src1,Src2), Mask, PassThru, Subtarget, DAG); } case INTR_TYPE_2OP_MASK_RM: { SDValue Src1 = Op.getOperand(1); SDValue Src2 = Op.getOperand(2); SDValue PassThru = Op.getOperand(3); SDValue Mask = Op.getOperand(4); // We specify 2 possible modes for intrinsics, with/without rounding // modes. // First, we check if the intrinsic have rounding mode (6 operands), // if not, we set rounding mode to "current". SDValue Rnd; if (Op.getNumOperands() == 6) Rnd = Op.getOperand(5); else Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32); return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2, Rnd), Mask, PassThru, Subtarget, DAG); } case INTR_TYPE_3OP_SCALAR_MASK_RM: { SDValue Src1 = Op.getOperand(1); SDValue Src2 = Op.getOperand(2); SDValue Src3 = Op.getOperand(3); SDValue PassThru = Op.getOperand(4); SDValue Mask = Op.getOperand(5); SDValue Sae = Op.getOperand(6); return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2, Src3, Sae), Mask, PassThru, Subtarget, DAG); } case INTR_TYPE_3OP_MASK_RM: { SDValue Src1 = Op.getOperand(1); SDValue Src2 = Op.getOperand(2); SDValue Imm = Op.getOperand(3); SDValue PassThru = Op.getOperand(4); SDValue Mask = Op.getOperand(5); // We specify 2 possible modes for intrinsics, with/without rounding // modes. // First, we check if the intrinsic have rounding mode (7 operands), // if not, we set rounding mode to "current". SDValue Rnd; if (Op.getNumOperands() == 7) Rnd = Op.getOperand(6); else Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32); return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2, Imm, Rnd), Mask, PassThru, Subtarget, DAG); } case INTR_TYPE_3OP_IMM8_MASK: case INTR_TYPE_3OP_MASK: case INSERT_SUBVEC: { SDValue Src1 = Op.getOperand(1); SDValue Src2 = Op.getOperand(2); SDValue Src3 = Op.getOperand(3); SDValue PassThru = Op.getOperand(4); SDValue Mask = Op.getOperand(5); if (IntrData->Type == INTR_TYPE_3OP_IMM8_MASK) Src3 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Src3); else if (IntrData->Type == INSERT_SUBVEC) { // imm should be adapted to ISD::INSERT_SUBVECTOR behavior assert(isa<ConstantSDNode>(Src3) && "Expected a ConstantSDNode here!"); unsigned Imm = cast<ConstantSDNode>(Src3)->getZExtValue(); Imm *= Src2.getSimpleValueType().getVectorNumElements(); Src3 = DAG.getTargetConstant(Imm, dl, MVT::i32); } // We specify 2 possible opcodes for intrinsics with rounding modes. // First, we check if the intrinsic may have non-default rounding mode, // (IntrData->Opc1 != 0), then we check the rounding mode operand. unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; if (IntrWithRoundingModeOpcode != 0) { SDValue Rnd = Op.getOperand(6); unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue(); if (Round != X86::STATIC_ROUNDING::CUR_DIRECTION) { return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, dl, Op.getValueType(), Src1, Src2, Src3, Rnd), Mask, PassThru, Subtarget, DAG); } } return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2, Src3), Mask, PassThru, Subtarget, DAG); } case VPERM_3OP_MASKZ: case VPERM_3OP_MASK:{ // Src2 is the PassThru SDValue Src1 = Op.getOperand(1); SDValue Src2 = Op.getOperand(2); SDValue Src3 = Op.getOperand(3); SDValue Mask = Op.getOperand(4); MVT VT = Op.getSimpleValueType(); SDValue PassThru = SDValue(); // set PassThru element if (IntrData->Type == VPERM_3OP_MASKZ) PassThru = getZeroVector(VT, Subtarget, DAG, dl); else PassThru = DAG.getBitcast(VT, Src2); // Swap Src1 and Src2 in the node creation return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Src2, Src1, Src3), Mask, PassThru, Subtarget, DAG); } case FMA_OP_MASK3: case FMA_OP_MASKZ: case FMA_OP_MASK: { SDValue Src1 = Op.getOperand(1); SDValue Src2 = Op.getOperand(2); SDValue Src3 = Op.getOperand(3); SDValue Mask = Op.getOperand(4); MVT VT = Op.getSimpleValueType(); SDValue PassThru = SDValue(); // set PassThru element if (IntrData->Type == FMA_OP_MASKZ) PassThru = getZeroVector(VT, Subtarget, DAG, dl); else if (IntrData->Type == FMA_OP_MASK3) PassThru = Src3; else PassThru = Src1; // We specify 2 possible opcodes for intrinsics with rounding modes. // First, we check if the intrinsic may have non-default rounding mode, // (IntrData->Opc1 != 0), then we check the rounding mode operand. unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; if (IntrWithRoundingModeOpcode != 0) { SDValue Rnd = Op.getOperand(5); if (cast<ConstantSDNode>(Rnd)->getZExtValue() != X86::STATIC_ROUNDING::CUR_DIRECTION) return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, dl, Op.getValueType(), Src1, Src2, Src3, Rnd), Mask, PassThru, Subtarget, DAG); } return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Src1, Src2, Src3), Mask, PassThru, Subtarget, DAG); } case TERLOG_OP_MASK: case TERLOG_OP_MASKZ: { SDValue Src1 = Op.getOperand(1); SDValue Src2 = Op.getOperand(2); SDValue Src3 = Op.getOperand(3); SDValue Src4 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(4)); SDValue Mask = Op.getOperand(5); MVT VT = Op.getSimpleValueType(); SDValue PassThru = Src1; // Set PassThru element. if (IntrData->Type == TERLOG_OP_MASKZ) PassThru = getZeroVector(VT, Subtarget, DAG, dl); return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2, Src3, Src4), Mask, PassThru, Subtarget, DAG); } case FPCLASS: { // FPclass intrinsics with mask SDValue Src1 = Op.getOperand(1); MVT VT = Src1.getSimpleValueType(); MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements()); SDValue Imm = Op.getOperand(2); SDValue Mask = Op.getOperand(3); MVT BitcastVT = MVT::getVectorVT(MVT::i1, Mask.getSimpleValueType().getSizeInBits()); SDValue FPclass = DAG.getNode(IntrData->Opc0, dl, MaskVT, Src1, Imm); SDValue FPclassMask = getVectorMaskingNode(FPclass, Mask, DAG.getTargetConstant(0, dl, MaskVT), Subtarget, DAG); SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT, DAG.getUNDEF(BitcastVT), FPclassMask, DAG.getIntPtrConstant(0, dl)); return DAG.getBitcast(Op.getValueType(), Res); } case FPCLASSS: { SDValue Src1 = Op.getOperand(1); SDValue Imm = Op.getOperand(2); SDValue Mask = Op.getOperand(3); SDValue FPclass = DAG.getNode(IntrData->Opc0, dl, MVT::i1, Src1, Imm); SDValue FPclassMask = getScalarMaskingNode(FPclass, Mask, DAG.getTargetConstant(0, dl, MVT::i1), Subtarget, DAG); return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i8, FPclassMask); } case CMP_MASK: case CMP_MASK_CC: { // Comparison intrinsics with masks. // Example of transformation: // (i8 (int_x86_avx512_mask_pcmpeq_q_128 // (v2i64 %a), (v2i64 %b), (i8 %mask))) -> // (i8 (bitcast // (v8i1 (insert_subvector undef, // (v2i1 (and (PCMPEQM %a, %b), // (extract_subvector // (v8i1 (bitcast %mask)), 0))), 0)))) MVT VT = Op.getOperand(1).getSimpleValueType(); MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements()); SDValue Mask = Op.getOperand((IntrData->Type == CMP_MASK_CC) ? 4 : 3); MVT BitcastVT = MVT::getVectorVT(MVT::i1, Mask.getSimpleValueType().getSizeInBits()); SDValue Cmp; if (IntrData->Type == CMP_MASK_CC) { SDValue CC = Op.getOperand(3); CC = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, CC); // We specify 2 possible opcodes for intrinsics with rounding modes. // First, we check if the intrinsic may have non-default rounding mode, // (IntrData->Opc1 != 0), then we check the rounding mode operand. if (IntrData->Opc1 != 0) { SDValue Rnd = Op.getOperand(5); if (cast<ConstantSDNode>(Rnd)->getZExtValue() != X86::STATIC_ROUNDING::CUR_DIRECTION) Cmp = DAG.getNode(IntrData->Opc1, dl, MaskVT, Op.getOperand(1), Op.getOperand(2), CC, Rnd); } //default rounding mode if(!Cmp.getNode()) Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1), Op.getOperand(2), CC); } else { assert(IntrData->Type == CMP_MASK && "Unexpected intrinsic type!"); Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1), Op.getOperand(2)); } SDValue CmpMask = getVectorMaskingNode(Cmp, Mask, DAG.getTargetConstant(0, dl, MaskVT), Subtarget, DAG); SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT, DAG.getUNDEF(BitcastVT), CmpMask, DAG.getIntPtrConstant(0, dl)); return DAG.getBitcast(Op.getValueType(), Res); } case CMP_MASK_SCALAR_CC: { SDValue Src1 = Op.getOperand(1); SDValue Src2 = Op.getOperand(2); SDValue CC = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(3)); SDValue Mask = Op.getOperand(4); SDValue Cmp; if (IntrData->Opc1 != 0) { SDValue Rnd = Op.getOperand(5); if (cast<ConstantSDNode>(Rnd)->getZExtValue() != X86::STATIC_ROUNDING::CUR_DIRECTION) Cmp = DAG.getNode(IntrData->Opc1, dl, MVT::i1, Src1, Src2, CC, Rnd); } //default rounding mode if(!Cmp.getNode()) Cmp = DAG.getNode(IntrData->Opc0, dl, MVT::i1, Src1, Src2, CC); SDValue CmpMask = getScalarMaskingNode(Cmp, Mask, DAG.getTargetConstant(0, dl, MVT::i1), Subtarget, DAG); return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i8, DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i8, CmpMask), DAG.getValueType(MVT::i1)); } case COMI: { // Comparison intrinsics ISD::CondCode CC = (ISD::CondCode)IntrData->Opc1; SDValue LHS = Op.getOperand(1); SDValue RHS = Op.getOperand(2); unsigned X86CC = TranslateX86CC(CC, dl, true, LHS, RHS, DAG); assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!"); SDValue Cond = DAG.getNode(IntrData->Opc0, dl, MVT::i32, LHS, RHS); SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(X86CC, dl, MVT::i8), Cond); return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); } case COMI_RM: { // Comparison intrinsics with Sae SDValue LHS = Op.getOperand(1); SDValue RHS = Op.getOperand(2); SDValue CC = Op.getOperand(3); SDValue Sae = Op.getOperand(4); auto ComiType = TranslateX86ConstCondToX86CC(CC); // choose between ordered and unordered (comi/ucomi) unsigned comiOp = std::get<0>(ComiType) ? IntrData->Opc0 : IntrData->Opc1; SDValue Cond; if (cast<ConstantSDNode>(Sae)->getZExtValue() != X86::STATIC_ROUNDING::CUR_DIRECTION) Cond = DAG.getNode(comiOp, dl, MVT::i32, LHS, RHS, Sae); else Cond = DAG.getNode(comiOp, dl, MVT::i32, LHS, RHS); SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(std::get<1>(ComiType), dl, MVT::i8), Cond); return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); } case VSHIFT: return getTargetVShiftNode(IntrData->Opc0, dl, Op.getSimpleValueType(), Op.getOperand(1), Op.getOperand(2), DAG); case VSHIFT_MASK: return getVectorMaskingNode(getTargetVShiftNode(IntrData->Opc0, dl, Op.getSimpleValueType(), Op.getOperand(1), Op.getOperand(2), DAG), Op.getOperand(4), Op.getOperand(3), Subtarget, DAG); case COMPRESS_EXPAND_IN_REG: { SDValue Mask = Op.getOperand(3); SDValue DataToCompress = Op.getOperand(1); SDValue PassThru = Op.getOperand(2); if (isAllOnesConstant(Mask)) // return data as is return Op.getOperand(1); return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, DataToCompress), Mask, PassThru, Subtarget, DAG); } case BROADCASTM: { SDValue Mask = Op.getOperand(1); MVT MaskVT = MVT::getVectorVT(MVT::i1, Mask.getSimpleValueType().getSizeInBits()); Mask = DAG.getBitcast(MaskVT, Mask); return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Mask); } case BLEND: { SDValue Mask = Op.getOperand(3); MVT VT = Op.getSimpleValueType(); MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements()); SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl); return DAG.getNode(IntrData->Opc0, dl, VT, VMask, Op.getOperand(1), Op.getOperand(2)); } case KUNPCK: { MVT VT = Op.getSimpleValueType(); MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getSizeInBits()/2); SDValue Src1 = getMaskNode(Op.getOperand(1), MaskVT, Subtarget, DAG, dl); SDValue Src2 = getMaskNode(Op.getOperand(2), MaskVT, Subtarget, DAG, dl); // Arguments should be swapped. SDValue Res = DAG.getNode(IntrData->Opc0, dl, MVT::getVectorVT(MVT::i1, VT.getSizeInBits()), Src2, Src1); return DAG.getBitcast(VT, Res); } default: break; } } switch (IntNo) { default: return SDValue(); // Don't custom lower most intrinsics. case Intrinsic::x86_avx2_permd: case Intrinsic::x86_avx2_permps: // Operands intentionally swapped. Mask is last operand to intrinsic, // but second operand for node/instruction. return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(1)); // ptest and testp intrinsics. The intrinsic these come from are designed to // return an integer value, not just an instruction so lower it to the ptest // or testp pattern and a setcc for the result. case Intrinsic::x86_sse41_ptestz: case Intrinsic::x86_sse41_ptestc: case Intrinsic::x86_sse41_ptestnzc: case Intrinsic::x86_avx_ptestz_256: case Intrinsic::x86_avx_ptestc_256: case Intrinsic::x86_avx_ptestnzc_256: case Intrinsic::x86_avx_vtestz_ps: case Intrinsic::x86_avx_vtestc_ps: case Intrinsic::x86_avx_vtestnzc_ps: case Intrinsic::x86_avx_vtestz_pd: case Intrinsic::x86_avx_vtestc_pd: case Intrinsic::x86_avx_vtestnzc_pd: case Intrinsic::x86_avx_vtestz_ps_256: case Intrinsic::x86_avx_vtestc_ps_256: case Intrinsic::x86_avx_vtestnzc_ps_256: case Intrinsic::x86_avx_vtestz_pd_256: case Intrinsic::x86_avx_vtestc_pd_256: case Intrinsic::x86_avx_vtestnzc_pd_256: { bool IsTestPacked = false; unsigned X86CC; switch (IntNo) { default: llvm_unreachable("Bad fallthrough in Intrinsic lowering."); case Intrinsic::x86_avx_vtestz_ps: case Intrinsic::x86_avx_vtestz_pd: case Intrinsic::x86_avx_vtestz_ps_256: case Intrinsic::x86_avx_vtestz_pd_256: IsTestPacked = true; // Fallthrough case Intrinsic::x86_sse41_ptestz: case Intrinsic::x86_avx_ptestz_256: // ZF = 1 X86CC = X86::COND_E; break; case Intrinsic::x86_avx_vtestc_ps: case Intrinsic::x86_avx_vtestc_pd: case Intrinsic::x86_avx_vtestc_ps_256: case Intrinsic::x86_avx_vtestc_pd_256: IsTestPacked = true; // Fallthrough case Intrinsic::x86_sse41_ptestc: case Intrinsic::x86_avx_ptestc_256: // CF = 1 X86CC = X86::COND_B; break; case Intrinsic::x86_avx_vtestnzc_ps: case Intrinsic::x86_avx_vtestnzc_pd: case Intrinsic::x86_avx_vtestnzc_ps_256: case Intrinsic::x86_avx_vtestnzc_pd_256: IsTestPacked = true; // Fallthrough case Intrinsic::x86_sse41_ptestnzc: case Intrinsic::x86_avx_ptestnzc_256: // ZF and CF = 0 X86CC = X86::COND_A; break; } SDValue LHS = Op.getOperand(1); SDValue RHS = Op.getOperand(2); unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST; SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS); SDValue CC = DAG.getConstant(X86CC, dl, MVT::i8); SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test); return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); } case Intrinsic::x86_avx512_kortestz_w: case Intrinsic::x86_avx512_kortestc_w: { unsigned X86CC = (IntNo == Intrinsic::x86_avx512_kortestz_w)? X86::COND_E: X86::COND_B; SDValue LHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(1)); SDValue RHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(2)); SDValue CC = DAG.getConstant(X86CC, dl, MVT::i8); SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS); SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i1, CC, Test); return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); } case Intrinsic::x86_sse42_pcmpistria128: case Intrinsic::x86_sse42_pcmpestria128: case Intrinsic::x86_sse42_pcmpistric128: case Intrinsic::x86_sse42_pcmpestric128: case Intrinsic::x86_sse42_pcmpistrio128: case Intrinsic::x86_sse42_pcmpestrio128: case Intrinsic::x86_sse42_pcmpistris128: case Intrinsic::x86_sse42_pcmpestris128: case Intrinsic::x86_sse42_pcmpistriz128: case Intrinsic::x86_sse42_pcmpestriz128: { unsigned Opcode; unsigned X86CC; switch (IntNo) { default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. case Intrinsic::x86_sse42_pcmpistria128: Opcode = X86ISD::PCMPISTRI; X86CC = X86::COND_A; break; case Intrinsic::x86_sse42_pcmpestria128: Opcode = X86ISD::PCMPESTRI; X86CC = X86::COND_A; break; case Intrinsic::x86_sse42_pcmpistric128: Opcode = X86ISD::PCMPISTRI; X86CC = X86::COND_B; break; case Intrinsic::x86_sse42_pcmpestric128: Opcode = X86ISD::PCMPESTRI; X86CC = X86::COND_B; break; case Intrinsic::x86_sse42_pcmpistrio128: Opcode = X86ISD::PCMPISTRI; X86CC = X86::COND_O; break; case Intrinsic::x86_sse42_pcmpestrio128: Opcode = X86ISD::PCMPESTRI; X86CC = X86::COND_O; break; case Intrinsic::x86_sse42_pcmpistris128: Opcode = X86ISD::PCMPISTRI; X86CC = X86::COND_S; break; case Intrinsic::x86_sse42_pcmpestris128: Opcode = X86ISD::PCMPESTRI; X86CC = X86::COND_S; break; case Intrinsic::x86_sse42_pcmpistriz128: Opcode = X86ISD::PCMPISTRI; X86CC = X86::COND_E; break; case Intrinsic::x86_sse42_pcmpestriz128: Opcode = X86ISD::PCMPESTRI; X86CC = X86::COND_E; break; } SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end()); SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps); SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(X86CC, dl, MVT::i8), SDValue(PCMP.getNode(), 1)); return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); } case Intrinsic::x86_sse42_pcmpistri128: case Intrinsic::x86_sse42_pcmpestri128: { unsigned Opcode; if (IntNo == Intrinsic::x86_sse42_pcmpistri128) Opcode = X86ISD::PCMPISTRI; else Opcode = X86ISD::PCMPESTRI; SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end()); SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); return DAG.getNode(Opcode, dl, VTs, NewOps); } case Intrinsic::x86_seh_lsda: { // Compute the symbol for the LSDA. We know it'll get emitted later. MachineFunction &MF = DAG.getMachineFunction(); SDValue Op1 = Op.getOperand(1); auto *Fn = cast<Function>(cast<GlobalAddressSDNode>(Op1)->getGlobal()); MCSymbol *LSDASym = MF.getMMI().getContext().getOrCreateLSDASymbol( GlobalValue::getRealLinkageName(Fn->getName())); // Generate a simple absolute symbol reference. This intrinsic is only // supported on 32-bit Windows, which isn't PIC. SDValue Result = DAG.getMCSymbol(LSDASym, VT); return DAG.getNode(X86ISD::Wrapper, dl, VT, Result); } case Intrinsic::x86_seh_recoverfp: { SDValue FnOp = Op.getOperand(1); SDValue IncomingFPOp = Op.getOperand(2); GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp); auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr); if (!Fn) report_fatal_error( "llvm.x86.seh.recoverfp must take a function as the first argument"); return recoverFramePointer(DAG, Fn, IncomingFPOp); } case Intrinsic::localaddress: { // Returns one of the stack, base, or frame pointer registers, depending on // which is used to reference local variables. MachineFunction &MF = DAG.getMachineFunction(); const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); unsigned Reg; if (RegInfo->hasBasePointer(MF)) Reg = RegInfo->getBaseRegister(); else // This function handles the SP or FP case. Reg = RegInfo->getPtrSizedFrameRegister(MF); return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); } } } static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, SDValue Src, SDValue Mask, SDValue Base, SDValue Index, SDValue ScaleOp, SDValue Chain, const X86Subtarget * Subtarget) { SDLoc dl(Op); auto *C = cast<ConstantSDNode>(ScaleOp); SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8); MVT MaskVT = MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements()); SDValue MaskInReg; ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask); if (MaskC) MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), dl, MaskVT); else { MVT BitcastVT = MVT::getVectorVT(MVT::i1, Mask.getSimpleValueType().getSizeInBits()); // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements // are extracted by EXTRACT_SUBVECTOR. MaskInReg = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, DAG.getBitcast(BitcastVT, Mask), DAG.getIntPtrConstant(0, dl)); } SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other); SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32); SDValue Segment = DAG.getRegister(0, MVT::i32); if (Src.getOpcode() == ISD::UNDEF) Src = getZeroVector(Op.getSimpleValueType(), Subtarget, DAG, dl); SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain}; SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops); SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) }; return DAG.getMergeValues(RetOps, dl); } static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, SDValue Src, SDValue Mask, SDValue Base, SDValue Index, SDValue ScaleOp, SDValue Chain) { SDLoc dl(Op); auto *C = cast<ConstantSDNode>(ScaleOp); SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8); SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32); SDValue Segment = DAG.getRegister(0, MVT::i32); MVT MaskVT = MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements()); SDValue MaskInReg; ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask); if (MaskC) MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), dl, MaskVT); else { MVT BitcastVT = MVT::getVectorVT(MVT::i1, Mask.getSimpleValueType().getSizeInBits()); // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements // are extracted by EXTRACT_SUBVECTOR. MaskInReg = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, DAG.getBitcast(BitcastVT, Mask), DAG.getIntPtrConstant(0, dl)); } SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other); SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain}; SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops); return SDValue(Res, 1); } static SDValue getPrefetchNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, SDValue Mask, SDValue Base, SDValue Index, SDValue ScaleOp, SDValue Chain) { SDLoc dl(Op); auto *C = cast<ConstantSDNode>(ScaleOp); SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8); SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32); SDValue Segment = DAG.getRegister(0, MVT::i32); MVT MaskVT = MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements()); SDValue MaskInReg; ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask); if (MaskC) MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), dl, MaskVT); else MaskInReg = DAG.getBitcast(MaskVT, Mask); //SDVTList VTs = DAG.getVTList(MVT::Other); SDValue Ops[] = {MaskInReg, Base, Scale, Index, Disp, Segment, Chain}; SDNode *Res = DAG.getMachineNode(Opc, dl, MVT::Other, Ops); return SDValue(Res, 0); } // getReadPerformanceCounter - Handles the lowering of builtin intrinsics that // read performance monitor counters (x86_rdpmc). static void getReadPerformanceCounter(SDNode *N, SDLoc DL, SelectionDAG &DAG, const X86Subtarget *Subtarget, SmallVectorImpl<SDValue> &Results) { assert(N->getNumOperands() == 3 && "Unexpected number of operands!"); SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); SDValue LO, HI; // The ECX register is used to select the index of the performance counter // to read. SDValue Chain = DAG.getCopyToReg(N->getOperand(0), DL, X86::ECX, N->getOperand(2)); SDValue rd = DAG.getNode(X86ISD::RDPMC_DAG, DL, Tys, Chain); // Reads the content of a 64-bit performance counter and returns it in the // registers EDX:EAX. if (Subtarget->is64Bit()) { LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1)); HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64, LO.getValue(2)); } else { LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1)); HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32, LO.getValue(2)); } Chain = HI.getValue(1); if (Subtarget->is64Bit()) { // The EAX register is loaded with the low-order 32 bits. The EDX register // is loaded with the supported high-order bits of the counter. SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI, DAG.getConstant(32, DL, MVT::i8)); Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp)); Results.push_back(Chain); return; } // Use a buildpair to merge the two 32-bit values into a 64-bit one. SDValue Ops[] = { LO, HI }; SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops); Results.push_back(Pair); Results.push_back(Chain); } // getReadTimeStampCounter - Handles the lowering of builtin intrinsics that // read the time stamp counter (x86_rdtsc and x86_rdtscp). This function is // also used to custom lower READCYCLECOUNTER nodes. static void getReadTimeStampCounter(SDNode *N, SDLoc DL, unsigned Opcode, SelectionDAG &DAG, const X86Subtarget *Subtarget, SmallVectorImpl<SDValue> &Results) { SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); SDValue rd = DAG.getNode(Opcode, DL, Tys, N->getOperand(0)); SDValue LO, HI; // The processor's time-stamp counter (a 64-bit MSR) is stored into the // EDX:EAX registers. EDX is loaded with the high-order 32 bits of the MSR // and the EAX register is loaded with the low-order 32 bits. if (Subtarget->is64Bit()) { LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1)); HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64, LO.getValue(2)); } else { LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1)); HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32, LO.getValue(2)); } SDValue Chain = HI.getValue(1); if (Opcode == X86ISD::RDTSCP_DAG) { assert(N->getNumOperands() == 3 && "Unexpected number of operands!"); // Instruction RDTSCP loads the IA32:TSC_AUX_MSR (address C000_0103H) into // the ECX register. Add 'ecx' explicitly to the chain. SDValue ecx = DAG.getCopyFromReg(Chain, DL, X86::ECX, MVT::i32, HI.getValue(2)); // Explicitly store the content of ECX at the location passed in input // to the 'rdtscp' intrinsic. Chain = DAG.getStore(ecx.getValue(1), DL, ecx, N->getOperand(2), MachinePointerInfo(), false, false, 0); } if (Subtarget->is64Bit()) { // The EDX register is loaded with the high-order 32 bits of the MSR, and // the EAX register is loaded with the low-order 32 bits. SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI, DAG.getConstant(32, DL, MVT::i8)); Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp)); Results.push_back(Chain); return; } // Use a buildpair to merge the two 32-bit values into a 64-bit one. SDValue Ops[] = { LO, HI }; SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops); Results.push_back(Pair); Results.push_back(Chain); } static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SmallVector<SDValue, 2> Results; SDLoc DL(Op); getReadTimeStampCounter(Op.getNode(), DL, X86ISD::RDTSC_DAG, DAG, Subtarget, Results); return DAG.getMergeValues(Results, DL); } static SDValue MarkEHRegistrationNode(SDValue Op, SelectionDAG &DAG) { MachineFunction &MF = DAG.getMachineFunction(); SDValue Chain = Op.getOperand(0); SDValue RegNode = Op.getOperand(2); WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); if (!EHInfo) report_fatal_error("EH registrations only live in functions using WinEH"); // Cast the operand to an alloca, and remember the frame index. auto *FINode = dyn_cast<FrameIndexSDNode>(RegNode); if (!FINode) report_fatal_error("llvm.x86.seh.ehregnode expects a static alloca"); EHInfo->EHRegNodeFrameIndex = FINode->getIndex(); // Return the chain operand without making any DAG nodes. return Chain; } /// \brief Lower intrinsics for TRUNCATE_TO_MEM case /// return truncate Store/MaskedStore Node static SDValue LowerINTRINSIC_TRUNCATE_TO_MEM(const SDValue & Op, SelectionDAG &DAG, MVT ElementType) { SDLoc dl(Op); SDValue Mask = Op.getOperand(4); SDValue DataToTruncate = Op.getOperand(3); SDValue Addr = Op.getOperand(2); SDValue Chain = Op.getOperand(0); MVT VT = DataToTruncate.getSimpleValueType(); MVT SVT = MVT::getVectorVT(ElementType, VT.getVectorNumElements()); if (isAllOnesConstant(Mask)) // return just a truncate store return DAG.getTruncStore(Chain, dl, DataToTruncate, Addr, MachinePointerInfo(), SVT, false, false, SVT.getScalarSizeInBits()/8); MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements()); MVT BitcastVT = MVT::getVectorVT(MVT::i1, Mask.getSimpleValueType().getSizeInBits()); // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements // are extracted by EXTRACT_SUBVECTOR. SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, DAG.getBitcast(BitcastVT, Mask), DAG.getIntPtrConstant(0, dl)); MachineMemOperand *MMO = DAG.getMachineFunction(). getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOStore, SVT.getStoreSize(), SVT.getScalarSizeInBits()/8); return DAG.getMaskedStore(Chain, dl, DataToTruncate, Addr, VMask, SVT, MMO, true); } static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); const IntrinsicData* IntrData = getIntrinsicWithChain(IntNo); if (!IntrData) { if (IntNo == llvm::Intrinsic::x86_seh_ehregnode) return MarkEHRegistrationNode(Op, DAG); return SDValue(); } SDLoc dl(Op); switch(IntrData->Type) { default: llvm_unreachable("Unknown Intrinsic Type"); case RDSEED: case RDRAND: { // Emit the node with the right value type. SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other); SDValue Result = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0)); // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1. // Otherwise return the value from Rand, which is always 0, casted to i32. SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)), DAG.getConstant(1, dl, Op->getValueType(1)), DAG.getConstant(X86::COND_B, dl, MVT::i32), SDValue(Result.getNode(), 1) }; SDValue isValid = DAG.getNode(X86ISD::CMOV, dl, DAG.getVTList(Op->getValueType(1), MVT::Glue), Ops); // Return { result, isValid, chain }. return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid, SDValue(Result.getNode(), 2)); } case GATHER: { //gather(v1, mask, index, base, scale); SDValue Chain = Op.getOperand(0); SDValue Src = Op.getOperand(2); SDValue Base = Op.getOperand(3); SDValue Index = Op.getOperand(4); SDValue Mask = Op.getOperand(5); SDValue Scale = Op.getOperand(6); return getGatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale, Chain, Subtarget); } case SCATTER: { //scatter(base, mask, index, v1, scale); SDValue Chain = Op.getOperand(0); SDValue Base = Op.getOperand(2); SDValue Mask = Op.getOperand(3); SDValue Index = Op.getOperand(4); SDValue Src = Op.getOperand(5); SDValue Scale = Op.getOperand(6); return getScatterNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale, Chain); } case PREFETCH: { SDValue Hint = Op.getOperand(6); unsigned HintVal = cast<ConstantSDNode>(Hint)->getZExtValue(); assert(HintVal < 2 && "Wrong prefetch hint in intrinsic: should be 0 or 1"); unsigned Opcode = (HintVal ? IntrData->Opc1 : IntrData->Opc0); SDValue Chain = Op.getOperand(0); SDValue Mask = Op.getOperand(2); SDValue Index = Op.getOperand(3); SDValue Base = Op.getOperand(4); SDValue Scale = Op.getOperand(5); return getPrefetchNode(Opcode, Op, DAG, Mask, Base, Index, Scale, Chain); } // Read Time Stamp Counter (RDTSC) and Processor ID (RDTSCP). case RDTSC: { SmallVector<SDValue, 2> Results; getReadTimeStampCounter(Op.getNode(), dl, IntrData->Opc0, DAG, Subtarget, Results); return DAG.getMergeValues(Results, dl); } // Read Performance Monitoring Counters. case RDPMC: { SmallVector<SDValue, 2> Results; getReadPerformanceCounter(Op.getNode(), dl, DAG, Subtarget, Results); return DAG.getMergeValues(Results, dl); } // XTEST intrinsics. case XTEST: { SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other); SDValue InTrans = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0)); SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(X86::COND_NE, dl, MVT::i8), InTrans); SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC); return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Ret, SDValue(InTrans.getNode(), 1)); } // ADC/ADCX/SBB case ADX: { SmallVector<SDValue, 2> Results; SDVTList CFVTs = DAG.getVTList(Op->getValueType(0), MVT::Other); SDVTList VTs = DAG.getVTList(Op.getOperand(3)->getValueType(0), MVT::Other); SDValue GenCF = DAG.getNode(X86ISD::ADD, dl, CFVTs, Op.getOperand(2), DAG.getConstant(-1, dl, MVT::i8)); SDValue Res = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(3), Op.getOperand(4), GenCF.getValue(1)); SDValue Store = DAG.getStore(Op.getOperand(0), dl, Res.getValue(0), Op.getOperand(5), MachinePointerInfo(), false, false, 0); SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(X86::COND_B, dl, MVT::i8), Res.getValue(1)); Results.push_back(SetCC); Results.push_back(Store); return DAG.getMergeValues(Results, dl); } case COMPRESS_TO_MEM: { SDLoc dl(Op); SDValue Mask = Op.getOperand(4); SDValue DataToCompress = Op.getOperand(3); SDValue Addr = Op.getOperand(2); SDValue Chain = Op.getOperand(0); MVT VT = DataToCompress.getSimpleValueType(); if (isAllOnesConstant(Mask)) // return just a store return DAG.getStore(Chain, dl, DataToCompress, Addr, MachinePointerInfo(), false, false, VT.getScalarSizeInBits()/8); SDValue Compressed = getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, DataToCompress), Mask, DAG.getUNDEF(VT), Subtarget, DAG); return DAG.getStore(Chain, dl, Compressed, Addr, MachinePointerInfo(), false, false, VT.getScalarSizeInBits()/8); } case TRUNCATE_TO_MEM_VI8: return LowerINTRINSIC_TRUNCATE_TO_MEM(Op, DAG, MVT::i8); case TRUNCATE_TO_MEM_VI16: return LowerINTRINSIC_TRUNCATE_TO_MEM(Op, DAG, MVT::i16); case TRUNCATE_TO_MEM_VI32: return LowerINTRINSIC_TRUNCATE_TO_MEM(Op, DAG, MVT::i32); case EXPAND_FROM_MEM: { SDLoc dl(Op); SDValue Mask = Op.getOperand(4); SDValue PassThru = Op.getOperand(3); SDValue Addr = Op.getOperand(2); SDValue Chain = Op.getOperand(0); MVT VT = Op.getSimpleValueType(); if (isAllOnesConstant(Mask)) // return just a load return DAG.getLoad(VT, dl, Chain, Addr, MachinePointerInfo(), false, false, false, VT.getScalarSizeInBits()/8); SDValue DataToExpand = DAG.getLoad(VT, dl, Chain, Addr, MachinePointerInfo(), false, false, false, VT.getScalarSizeInBits()/8); SDValue Results[] = { getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, DataToExpand), Mask, PassThru, Subtarget, DAG), Chain}; return DAG.getMergeValues(Results, dl); } } } SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); MFI->setReturnAddressIsTaken(true); if (verifyReturnAddressArgumentIsConstant(Op, DAG)) return SDValue(); unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); SDLoc dl(Op); EVT PtrVT = getPointerTy(DAG.getDataLayout()); if (Depth > 0) { SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), dl, PtrVT); return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), MachinePointerInfo(), false, false, false, 0); } // Just load the return address. SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, MachinePointerInfo(), false, false, false, 0); } SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); EVT VT = Op.getValueType(); MFI->setFrameAddressIsTaken(true); if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { // Depth > 0 makes no sense on targets which use Windows unwind codes. It // is not possible to crawl up the stack without looking at the unwind codes // simultaneously. int FrameAddrIndex = FuncInfo->getFAIndex(); if (!FrameAddrIndex) { // Set up a frame object for the return address. unsigned SlotSize = RegInfo->getSlotSize(); FrameAddrIndex = MF.getFrameInfo()->CreateFixedObject( SlotSize, /*Offset=*/0, /*IsImmutable=*/false); FuncInfo->setFAIndex(FrameAddrIndex); } return DAG.getFrameIndex(FrameAddrIndex, VT); } unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction()); SDLoc dl(Op); // FIXME probably not meaningful unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); assert(((FrameReg == X86::RBP && VT == MVT::i64) || (FrameReg == X86::EBP && VT == MVT::i32)) && "Invalid Frame Register!"); SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); while (Depth--) FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, MachinePointerInfo(), false, false, false, 0); return FrameAddr; } // FIXME? Maybe this could be a TableGen attribute on some registers and // this table could be generated automatically from RegInfo. unsigned X86TargetLowering::getRegisterByName(const char* RegName, EVT VT, SelectionDAG &DAG) const { const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); const MachineFunction &MF = DAG.getMachineFunction(); unsigned Reg = StringSwitch<unsigned>(RegName) .Case("esp", X86::ESP) .Case("rsp", X86::RSP) .Case("ebp", X86::EBP) .Case("rbp", X86::RBP) .Default(0); if (Reg == X86::EBP || Reg == X86::RBP) { if (!TFI.hasFP(MF)) report_fatal_error("register " + StringRef(RegName) + " is allocatable: function has no frame pointer"); #ifndef NDEBUG else { const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction()); assert((FrameReg == X86::EBP || FrameReg == X86::RBP) && "Invalid Frame Register!"); } #endif } if (Reg) return Reg; report_fatal_error("Invalid register name global variable"); } SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const { const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize(), SDLoc(Op)); } unsigned X86TargetLowering::getExceptionPointerRegister( const Constant *PersonalityFn) const { if (classifyEHPersonality(PersonalityFn) == EHPersonality::CoreCLR) return Subtarget->isTarget64BitLP64() ? X86::RDX : X86::EDX; return Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX; } unsigned X86TargetLowering::getExceptionSelectorRegister( const Constant *PersonalityFn) const { // Funclet personalities don't use selectors (the runtime does the selection). assert(!isFuncletEHPersonality(classifyEHPersonality(PersonalityFn))); return Subtarget->isTarget64BitLP64() ? X86::RDX : X86::EDX; } SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Offset = Op.getOperand(1); SDValue Handler = Op.getOperand(2); SDLoc dl (Op); EVT PtrVT = getPointerTy(DAG.getDataLayout()); const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction()); assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) || (FrameReg == X86::EBP && PtrVT == MVT::i32)) && "Invalid Frame Register!"); SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT); unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX; SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame, DAG.getIntPtrConstant(RegInfo->getSlotSize(), dl)); StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset); Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(), false, false, 0); Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr); return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain, DAG.getRegister(StoreAddrReg, PtrVT)); } SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL, DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), Op.getOperand(1)); } SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other, Op.getOperand(0), Op.getOperand(1)); } static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) { return Op.getOperand(0); } SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { SDValue Root = Op.getOperand(0); SDValue Trmp = Op.getOperand(1); // trampoline SDValue FPtr = Op.getOperand(2); // nested function SDValue Nest = Op.getOperand(3); // 'nest' parameter value SDLoc dl (Op); const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); if (Subtarget->is64Bit()) { SDValue OutChains[6]; // Large code-model. const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode. const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode. const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7; const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7; const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix // Load the pointer to the nested function into R11. unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11 SDValue Addr = Trmp; OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16), Addr, MachinePointerInfo(TrmpAddr), false, false, 0); Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, DAG.getConstant(2, dl, MVT::i64)); OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 2), false, false, 2); // Load the 'nest' parameter value into R10. // R10 is specified in X86CallingConv.td OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, DAG.getConstant(10, dl, MVT::i64)); OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16), Addr, MachinePointerInfo(TrmpAddr, 10), false, false, 0); Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, DAG.getConstant(12, dl, MVT::i64)); OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12), false, false, 2); // Jump to the nested function. OpCode = (JMP64r << 8) | REX_WB; // jmpq *... Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, DAG.getConstant(20, dl, MVT::i64)); OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16), Addr, MachinePointerInfo(TrmpAddr, 20), false, false, 0); unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, DAG.getConstant(22, dl, MVT::i64)); OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, dl, MVT::i8), Addr, MachinePointerInfo(TrmpAddr, 22), false, false, 0); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); } else { const Function *Func = cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue()); CallingConv::ID CC = Func->getCallingConv(); unsigned NestReg; switch (CC) { default: llvm_unreachable("Unsupported calling convention"); case CallingConv::C: case CallingConv::X86_StdCall: { // Pass 'nest' parameter in ECX. // Must be kept in sync with X86CallingConv.td NestReg = X86::ECX; // Check that ECX wasn't needed by an 'inreg' parameter. FunctionType *FTy = Func->getFunctionType(); const AttributeSet &Attrs = Func->getAttributes(); if (!Attrs.isEmpty() && !Func->isVarArg()) { unsigned InRegCount = 0; unsigned Idx = 1; for (FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); I != E; ++I, ++Idx) if (Attrs.hasAttribute(Idx, Attribute::InReg)) { auto &DL = DAG.getDataLayout(); // FIXME: should only count parameters that are lowered to integers. InRegCount += (DL.getTypeSizeInBits(*I) + 31) / 32; } if (InRegCount > 2) { report_fatal_error("Nest register in use - reduce number of inreg" " parameters!"); } } break; } case CallingConv::X86_FastCall: case CallingConv::X86_ThisCall: case CallingConv::Fast: // Pass 'nest' parameter in EAX. // Must be kept in sync with X86CallingConv.td NestReg = X86::EAX; break; } SDValue OutChains[4]; SDValue Addr, Disp; Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, DAG.getConstant(10, dl, MVT::i32)); Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr); // This is storing the opcode for MOV32ri. const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte. const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7; OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(MOV32ri|N86Reg, dl, MVT::i8), Trmp, MachinePointerInfo(TrmpAddr), false, false, 0); Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, DAG.getConstant(1, dl, MVT::i32)); OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 1), false, false, 1); const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode. Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, DAG.getConstant(5, dl, MVT::i32)); OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, dl, MVT::i8), Addr, MachinePointerInfo(TrmpAddr, 5), false, false, 1); Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, DAG.getConstant(6, dl, MVT::i32)); OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, MachinePointerInfo(TrmpAddr, 6), false, false, 1); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); } } SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const { /* The rounding mode is in bits 11:10 of FPSR, and has the following settings: 00 Round to nearest 01 Round to -inf 10 Round to +inf 11 Round to 0 FLT_ROUNDS, on the other hand, expects the following: -1 Undefined 0 Round to 0 1 Round to nearest 2 Round to +inf 3 Round to -inf To perform the conversion, we do: (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3) */ MachineFunction &MF = DAG.getMachineFunction(); const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); unsigned StackAlignment = TFI.getStackAlignment(); MVT VT = Op.getSimpleValueType(); SDLoc DL(Op); // Save FP Control Word to stack slot int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false); SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy(DAG.getDataLayout())); MachineMemOperand *MMO = MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI), MachineMemOperand::MOStore, 2, 2); SDValue Ops[] = { DAG.getEntryNode(), StackSlot }; SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL, DAG.getVTList(MVT::Other), Ops, MVT::i16, MMO); // Load FP Control Word from stack slot SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot, MachinePointerInfo(), false, false, false, 0); // Transform as necessary SDValue CWD1 = DAG.getNode(ISD::SRL, DL, MVT::i16, DAG.getNode(ISD::AND, DL, MVT::i16, CWD, DAG.getConstant(0x800, DL, MVT::i16)), DAG.getConstant(11, DL, MVT::i8)); SDValue CWD2 = DAG.getNode(ISD::SRL, DL, MVT::i16, DAG.getNode(ISD::AND, DL, MVT::i16, CWD, DAG.getConstant(0x400, DL, MVT::i16)), DAG.getConstant(9, DL, MVT::i8)); SDValue RetVal = DAG.getNode(ISD::AND, DL, MVT::i16, DAG.getNode(ISD::ADD, DL, MVT::i16, DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2), DAG.getConstant(1, DL, MVT::i16)), DAG.getConstant(3, DL, MVT::i16)); return DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal); } /// \brief Lower a vector CTLZ using native supported vector CTLZ instruction. // // 1. i32/i64 128/256-bit vector (native support require VLX) are expended // to 512-bit vector. // 2. i8/i16 vector implemented using dword LZCNT vector instruction // ( sub(trunc(lzcnt(zext32(x)))) ). In case zext32(x) is illegal, // split the vector, perform operation on it's Lo a Hi part and // concatenate the results. static SDValue LowerVectorCTLZ_AVX512(SDValue Op, SelectionDAG &DAG) { SDLoc dl(Op); MVT VT = Op.getSimpleValueType(); MVT EltVT = VT.getVectorElementType(); unsigned NumElems = VT.getVectorNumElements(); if (EltVT == MVT::i64 || EltVT == MVT::i32) { // Extend to 512 bit vector. assert((VT.is256BitVector() || VT.is128BitVector()) && "Unsupported value type for operation"); MVT NewVT = MVT::getVectorVT(EltVT, 512 / VT.getScalarSizeInBits()); SDValue Vec512 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, NewVT, DAG.getUNDEF(NewVT), Op.getOperand(0), DAG.getIntPtrConstant(0, dl)); SDValue CtlzNode = DAG.getNode(ISD::CTLZ, dl, NewVT, Vec512); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CtlzNode, DAG.getIntPtrConstant(0, dl)); } assert((EltVT == MVT::i8 || EltVT == MVT::i16) && "Unsupported element type"); if (16 < NumElems) { // Split vector, it's Lo and Hi parts will be handled in next iteration. SDValue Lo, Hi; std::tie(Lo, Hi) = DAG.SplitVector(Op.getOperand(0), dl); MVT OutVT = MVT::getVectorVT(EltVT, NumElems/2); Lo = DAG.getNode(Op.getOpcode(), dl, OutVT, Lo); Hi = DAG.getNode(Op.getOpcode(), dl, OutVT, Hi); return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lo, Hi); } MVT NewVT = MVT::getVectorVT(MVT::i32, NumElems); assert((NewVT.is256BitVector() || NewVT.is512BitVector()) && "Unsupported value type for operation"); // Use native supported vector instruction vplzcntd. Op = DAG.getNode(ISD::ZERO_EXTEND, dl, NewVT, Op.getOperand(0)); SDValue CtlzNode = DAG.getNode(ISD::CTLZ, dl, NewVT, Op); SDValue TruncNode = DAG.getNode(ISD::TRUNCATE, dl, VT, CtlzNode); SDValue Delta = DAG.getConstant(32 - EltVT.getSizeInBits(), dl, VT); return DAG.getNode(ISD::SUB, dl, VT, TruncNode, Delta); } static SDValue LowerCTLZ(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT VT = Op.getSimpleValueType(); MVT OpVT = VT; unsigned NumBits = VT.getSizeInBits(); SDLoc dl(Op); if (VT.isVector() && Subtarget->hasAVX512()) return LowerVectorCTLZ_AVX512(Op, DAG); Op = Op.getOperand(0); if (VT == MVT::i8) { // Zero extend to i32 since there is not an i8 bsr. OpVT = MVT::i32; Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); } // Issue a bsr (scan bits in reverse) which also sets EFLAGS. SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op); // If src is zero (i.e. bsr sets ZF), returns NumBits. SDValue Ops[] = { Op, DAG.getConstant(NumBits + NumBits - 1, dl, OpVT), DAG.getConstant(X86::COND_E, dl, MVT::i8), Op.getValue(1) }; Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops); // Finally xor with NumBits-1. Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits - 1, dl, OpVT)); if (VT == MVT::i8) Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); return Op; } static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT VT = Op.getSimpleValueType(); EVT OpVT = VT; unsigned NumBits = VT.getSizeInBits(); SDLoc dl(Op); if (VT.isVector() && Subtarget->hasAVX512()) return LowerVectorCTLZ_AVX512(Op, DAG); Op = Op.getOperand(0); if (VT == MVT::i8) { // Zero extend to i32 since there is not an i8 bsr. OpVT = MVT::i32; Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); } // Issue a bsr (scan bits in reverse). SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op); // And xor with NumBits-1. Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits - 1, dl, OpVT)); if (VT == MVT::i8) Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); return Op; } static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) { MVT VT = Op.getSimpleValueType(); unsigned NumBits = VT.getScalarSizeInBits(); SDLoc dl(Op); if (VT.isVector()) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDValue N0 = Op.getOperand(0); SDValue Zero = DAG.getConstant(0, dl, VT); // lsb(x) = (x & -x) SDValue LSB = DAG.getNode(ISD::AND, dl, VT, N0, DAG.getNode(ISD::SUB, dl, VT, Zero, N0)); // cttz_undef(x) = (width - 1) - ctlz(lsb) if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF && TLI.isOperationLegal(ISD::CTLZ, VT)) { SDValue WidthMinusOne = DAG.getConstant(NumBits - 1, dl, VT); return DAG.getNode(ISD::SUB, dl, VT, WidthMinusOne, DAG.getNode(ISD::CTLZ, dl, VT, LSB)); } // cttz(x) = ctpop(lsb - 1) SDValue One = DAG.getConstant(1, dl, VT); return DAG.getNode(ISD::CTPOP, dl, VT, DAG.getNode(ISD::SUB, dl, VT, LSB, One)); } assert(Op.getOpcode() == ISD::CTTZ && "Only scalar CTTZ requires custom lowering"); // Issue a bsf (scan bits forward) which also sets EFLAGS. SDVTList VTs = DAG.getVTList(VT, MVT::i32); Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op.getOperand(0)); // If src is zero (i.e. bsf sets ZF), returns NumBits. SDValue Ops[] = { Op, DAG.getConstant(NumBits, dl, VT), DAG.getConstant(X86::COND_E, dl, MVT::i8), Op.getValue(1) }; return DAG.getNode(X86ISD::CMOV, dl, VT, Ops); } // Lower256IntArith - Break a 256-bit integer operation into two new 128-bit // ones, and then concatenate the result back. static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) { MVT VT = Op.getSimpleValueType(); assert(VT.is256BitVector() && VT.isInteger() && "Unsupported value type for operation"); unsigned NumElems = VT.getVectorNumElements(); SDLoc dl(Op); // Extract the LHS vectors SDValue LHS = Op.getOperand(0); SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl); SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl); // Extract the RHS vectors SDValue RHS = Op.getOperand(1); SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl); SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl); MVT EltVT = VT.getVectorElementType(); MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1), DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2)); } static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) { if (Op.getValueType() == MVT::i1) return DAG.getNode(ISD::XOR, SDLoc(Op), Op.getValueType(), Op.getOperand(0), Op.getOperand(1)); assert(Op.getSimpleValueType().is256BitVector() && Op.getSimpleValueType().isInteger() && "Only handle AVX 256-bit vector integer operation"); return Lower256IntArith(Op, DAG); } static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) { if (Op.getValueType() == MVT::i1) return DAG.getNode(ISD::XOR, SDLoc(Op), Op.getValueType(), Op.getOperand(0), Op.getOperand(1)); assert(Op.getSimpleValueType().is256BitVector() && Op.getSimpleValueType().isInteger() && "Only handle AVX 256-bit vector integer operation"); return Lower256IntArith(Op, DAG); } static SDValue LowerMINMAX(SDValue Op, SelectionDAG &DAG) { assert(Op.getSimpleValueType().is256BitVector() && Op.getSimpleValueType().isInteger() && "Only handle AVX 256-bit vector integer operation"); return Lower256IntArith(Op, DAG); } static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc dl(Op); MVT VT = Op.getSimpleValueType(); if (VT == MVT::i1) return DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), Op.getOperand(1)); // Decompose 256-bit ops into smaller 128-bit ops. if (VT.is256BitVector() && !Subtarget->hasInt256()) return Lower256IntArith(Op, DAG); SDValue A = Op.getOperand(0); SDValue B = Op.getOperand(1); // Lower v16i8/v32i8 mul as promotion to v8i16/v16i16 vector // pairs, multiply and truncate. if (VT == MVT::v16i8 || VT == MVT::v32i8) { if (Subtarget->hasInt256()) { if (VT == MVT::v32i8) { MVT SubVT = MVT::getVectorVT(MVT::i8, VT.getVectorNumElements() / 2); SDValue Lo = DAG.getIntPtrConstant(0, dl); SDValue Hi = DAG.getIntPtrConstant(VT.getVectorNumElements() / 2, dl); SDValue ALo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, A, Lo); SDValue BLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, B, Lo); SDValue AHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, A, Hi); SDValue BHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, B, Hi); return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, DAG.getNode(ISD::MUL, dl, SubVT, ALo, BLo), DAG.getNode(ISD::MUL, dl, SubVT, AHi, BHi)); } MVT ExVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements()); return DAG.getNode( ISD::TRUNCATE, dl, VT, DAG.getNode(ISD::MUL, dl, ExVT, DAG.getNode(ISD::SIGN_EXTEND, dl, ExVT, A), DAG.getNode(ISD::SIGN_EXTEND, dl, ExVT, B))); } assert(VT == MVT::v16i8 && "Pre-AVX2 support only supports v16i8 multiplication"); MVT ExVT = MVT::v8i16; // Extract the lo parts and sign extend to i16 SDValue ALo, BLo; if (Subtarget->hasSSE41()) { ALo = DAG.getNode(X86ISD::VSEXT, dl, ExVT, A); BLo = DAG.getNode(X86ISD::VSEXT, dl, ExVT, B); } else { const int ShufMask[] = {-1, 0, -1, 1, -1, 2, -1, 3, -1, 4, -1, 5, -1, 6, -1, 7}; ALo = DAG.getVectorShuffle(VT, dl, A, A, ShufMask); BLo = DAG.getVectorShuffle(VT, dl, B, B, ShufMask); ALo = DAG.getBitcast(ExVT, ALo); BLo = DAG.getBitcast(ExVT, BLo); ALo = DAG.getNode(ISD::SRA, dl, ExVT, ALo, DAG.getConstant(8, dl, ExVT)); BLo = DAG.getNode(ISD::SRA, dl, ExVT, BLo, DAG.getConstant(8, dl, ExVT)); } // Extract the hi parts and sign extend to i16 SDValue AHi, BHi; if (Subtarget->hasSSE41()) { const int ShufMask[] = {8, 9, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1}; AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask); BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask); AHi = DAG.getNode(X86ISD::VSEXT, dl, ExVT, AHi); BHi = DAG.getNode(X86ISD::VSEXT, dl, ExVT, BHi); } else { const int ShufMask[] = {-1, 8, -1, 9, -1, 10, -1, 11, -1, 12, -1, 13, -1, 14, -1, 15}; AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask); BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask); AHi = DAG.getBitcast(ExVT, AHi); BHi = DAG.getBitcast(ExVT, BHi); AHi = DAG.getNode(ISD::SRA, dl, ExVT, AHi, DAG.getConstant(8, dl, ExVT)); BHi = DAG.getNode(ISD::SRA, dl, ExVT, BHi, DAG.getConstant(8, dl, ExVT)); } // Multiply, mask the lower 8bits of the lo/hi results and pack SDValue RLo = DAG.getNode(ISD::MUL, dl, ExVT, ALo, BLo); SDValue RHi = DAG.getNode(ISD::MUL, dl, ExVT, AHi, BHi); RLo = DAG.getNode(ISD::AND, dl, ExVT, RLo, DAG.getConstant(255, dl, ExVT)); RHi = DAG.getNode(ISD::AND, dl, ExVT, RHi, DAG.getConstant(255, dl, ExVT)); return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi); } // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle. if (VT == MVT::v4i32) { assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() && "Should not custom lower when pmuldq is available!"); // Extract the odd parts. static const int UnpackMask[] = { 1, -1, 3, -1 }; SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask); SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask); // Multiply the even parts. SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B); // Now multiply odd parts. SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds); Evens = DAG.getBitcast(VT, Evens); Odds = DAG.getBitcast(VT, Odds); // Merge the two vectors back together with a shuffle. This expands into 2 // shuffles. static const int ShufMask[] = { 0, 4, 2, 6 }; return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask); } assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) && "Only know how to lower V2I64/V4I64/V8I64 multiply"); // Ahi = psrlqi(a, 32); // Bhi = psrlqi(b, 32); // // AloBlo = pmuludq(a, b); // AloBhi = pmuludq(a, Bhi); // AhiBlo = pmuludq(Ahi, b); // AloBhi = psllqi(AloBhi, 32); // AhiBlo = psllqi(AhiBlo, 32); // return AloBlo + AloBhi + AhiBlo; SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG); SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG); SDValue AhiBlo = Ahi; SDValue AloBhi = Bhi; // Bit cast to 32-bit vectors for MULUDQ MVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : (VT == MVT::v4i64) ? MVT::v8i32 : MVT::v16i32; A = DAG.getBitcast(MulVT, A); B = DAG.getBitcast(MulVT, B); Ahi = DAG.getBitcast(MulVT, Ahi); Bhi = DAG.getBitcast(MulVT, Bhi); SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B); // After shifting right const values the result may be all-zero. if (!ISD::isBuildVectorAllZeros(Ahi.getNode())) { AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B); AhiBlo = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AhiBlo, 32, DAG); } if (!ISD::isBuildVectorAllZeros(Bhi.getNode())) { AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi); AloBhi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AloBhi, 32, DAG); } SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi); return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo); } SDValue X86TargetLowering::LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetWin64() && "Unexpected target"); EVT VT = Op.getValueType(); assert(VT.isInteger() && VT.getSizeInBits() == 128 && "Unexpected return type for lowering"); RTLIB::Libcall LC; bool isSigned; switch (Op->getOpcode()) { default: llvm_unreachable("Unexpected request for libcall!"); case ISD::SDIV: isSigned = true; LC = RTLIB::SDIV_I128; break; case ISD::UDIV: isSigned = false; LC = RTLIB::UDIV_I128; break; case ISD::SREM: isSigned = true; LC = RTLIB::SREM_I128; break; case ISD::UREM: isSigned = false; LC = RTLIB::UREM_I128; break; case ISD::SDIVREM: isSigned = true; LC = RTLIB::SDIVREM_I128; break; case ISD::UDIVREM: isSigned = false; LC = RTLIB::UDIVREM_I128; break; } SDLoc dl(Op); SDValue InChain = DAG.getEntryNode(); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) { EVT ArgVT = Op->getOperand(i).getValueType(); assert(ArgVT.isInteger() && ArgVT.getSizeInBits() == 128 && "Unexpected argument type for lowering"); SDValue StackPtr = DAG.CreateStackTemporary(ArgVT, 16); Entry.Node = StackPtr; InChain = DAG.getStore(InChain, dl, Op->getOperand(i), StackPtr, MachinePointerInfo(), false, false, 16); Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); Entry.Ty = PointerType::get(ArgTy,0); Entry.isSExt = false; Entry.isZExt = false; Args.push_back(Entry); } SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy(DAG.getDataLayout())); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl).setChain(InChain) .setCallee(getLibcallCallingConv(LC), static_cast<EVT>(MVT::v2i64).getTypeForEVT(*DAG.getContext()), Callee, std::move(Args), 0) .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned); std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); return DAG.getBitcast(VT, CallInfo.first); } static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); MVT VT = Op0.getSimpleValueType(); SDLoc dl(Op); assert((VT == MVT::v4i32 && Subtarget->hasSSE2()) || (VT == MVT::v8i32 && Subtarget->hasInt256())); // PMULxD operations multiply each even value (starting at 0) of LHS with // the related value of RHS and produce a widen result. // E.g., PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h> // => <2 x i64> <ae|cg> // // In other word, to have all the results, we need to perform two PMULxD: // 1. one with the even values. // 2. one with the odd values. // To achieve #2, with need to place the odd values at an even position. // // Place the odd value at an even position (basically, shift all values 1 // step to the left): const int Mask[] = {1, -1, 3, -1, 5, -1, 7, -1}; // <a|b|c|d> => <b|undef|d|undef> SDValue Odd0 = DAG.getVectorShuffle(VT, dl, Op0, Op0, Mask); // <e|f|g|h> => <f|undef|h|undef> SDValue Odd1 = DAG.getVectorShuffle(VT, dl, Op1, Op1, Mask); // Emit two multiplies, one for the lower 2 ints and one for the higher 2 // ints. MVT MulVT = VT == MVT::v4i32 ? MVT::v2i64 : MVT::v4i64; bool IsSigned = Op->getOpcode() == ISD::SMUL_LOHI; unsigned Opcode = (!IsSigned || !Subtarget->hasSSE41()) ? X86ISD::PMULUDQ : X86ISD::PMULDQ; // PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h> // => <2 x i64> <ae|cg> SDValue Mul1 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT, Op0, Op1)); // PMULUDQ <4 x i32> <b|undef|d|undef>, <4 x i32> <f|undef|h|undef> // => <2 x i64> <bf|dh> SDValue Mul2 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT, Odd0, Odd1)); // Shuffle it back into the right order. SDValue Highs, Lows; if (VT == MVT::v8i32) { const int HighMask[] = {1, 9, 3, 11, 5, 13, 7, 15}; Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask); const int LowMask[] = {0, 8, 2, 10, 4, 12, 6, 14}; Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask); } else { const int HighMask[] = {1, 5, 3, 7}; Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask); const int LowMask[] = {0, 4, 2, 6}; Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask); } // If we have a signed multiply but no PMULDQ fix up the high parts of a // unsigned multiply. if (IsSigned && !Subtarget->hasSSE41()) { SDValue ShAmt = DAG.getConstant( 31, dl, DAG.getTargetLoweringInfo().getShiftAmountTy(VT, DAG.getDataLayout())); SDValue T1 = DAG.getNode(ISD::AND, dl, VT, DAG.getNode(ISD::SRA, dl, VT, Op0, ShAmt), Op1); SDValue T2 = DAG.getNode(ISD::AND, dl, VT, DAG.getNode(ISD::SRA, dl, VT, Op1, ShAmt), Op0); SDValue Fixup = DAG.getNode(ISD::ADD, dl, VT, T1, T2); Highs = DAG.getNode(ISD::SUB, dl, VT, Highs, Fixup); } // The first result of MUL_LOHI is actually the low value, followed by the // high value. SDValue Ops[] = {Lows, Highs}; return DAG.getMergeValues(Ops, dl); } // Return true if the required (according to Opcode) shift-imm form is natively // supported by the Subtarget static bool SupportedVectorShiftWithImm(MVT VT, const X86Subtarget *Subtarget, unsigned Opcode) { if (VT.getScalarSizeInBits() < 16) return false; if (VT.is512BitVector() && (VT.getScalarSizeInBits() > 16 || Subtarget->hasBWI())) return true; bool LShift = VT.is128BitVector() || (VT.is256BitVector() && Subtarget->hasInt256()); bool AShift = LShift && (Subtarget->hasVLX() || (VT != MVT::v2i64 && VT != MVT::v4i64)); return (Opcode == ISD::SRA) ? AShift : LShift; } // The shift amount is a variable, but it is the same for all vector lanes. // These instructions are defined together with shift-immediate. static bool SupportedVectorShiftWithBaseAmnt(MVT VT, const X86Subtarget *Subtarget, unsigned Opcode) { return SupportedVectorShiftWithImm(VT, Subtarget, Opcode); } // Return true if the required (according to Opcode) variable-shift form is // natively supported by the Subtarget static bool SupportedVectorVarShift(MVT VT, const X86Subtarget *Subtarget, unsigned Opcode) { if (!Subtarget->hasInt256() || VT.getScalarSizeInBits() < 16) return false; // vXi16 supported only on AVX-512, BWI if (VT.getScalarSizeInBits() == 16 && !Subtarget->hasBWI()) return false; if (VT.is512BitVector() || Subtarget->hasVLX()) return true; bool LShift = VT.is128BitVector() || VT.is256BitVector(); bool AShift = LShift && VT != MVT::v2i64 && VT != MVT::v4i64; return (Opcode == ISD::SRA) ? AShift : LShift; } static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG, const X86Subtarget *Subtarget) { MVT VT = Op.getSimpleValueType(); SDLoc dl(Op); SDValue R = Op.getOperand(0); SDValue Amt = Op.getOperand(1); unsigned X86Opc = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHLI : (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRLI : X86ISD::VSRAI; auto ArithmeticShiftRight64 = [&](uint64_t ShiftAmt) { assert((VT == MVT::v2i64 || VT == MVT::v4i64) && "Unexpected SRA type"); MVT ExVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() * 2); SDValue Ex = DAG.getBitcast(ExVT, R); if (ShiftAmt >= 32) { // Splat sign to upper i32 dst, and SRA upper i32 src to lower i32. SDValue Upper = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex, 31, DAG); SDValue Lower = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex, ShiftAmt - 32, DAG); if (VT == MVT::v2i64) Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {5, 1, 7, 3}); if (VT == MVT::v4i64) Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {9, 1, 11, 3, 13, 5, 15, 7}); } else { // SRA upper i32, SHL whole i64 and select lower i32. SDValue Upper = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex, ShiftAmt, DAG); SDValue Lower = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt, DAG); Lower = DAG.getBitcast(ExVT, Lower); if (VT == MVT::v2i64) Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {4, 1, 6, 3}); if (VT == MVT::v4i64) Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {8, 1, 10, 3, 12, 5, 14, 7}); } return DAG.getBitcast(VT, Ex); }; // Optimize shl/srl/sra with constant shift amount. if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) { if (auto *ShiftConst = BVAmt->getConstantSplatNode()) { uint64_t ShiftAmt = ShiftConst->getZExtValue(); if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode())) return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG); // i64 SRA needs to be performed as partial shifts. if ((VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) && Op.getOpcode() == ISD::SRA && !Subtarget->hasXOP()) return ArithmeticShiftRight64(ShiftAmt); if (VT == MVT::v16i8 || (Subtarget->hasInt256() && VT == MVT::v32i8)) { unsigned NumElts = VT.getVectorNumElements(); MVT ShiftVT = MVT::getVectorVT(MVT::i16, NumElts / 2); // Simple i8 add case if (Op.getOpcode() == ISD::SHL && ShiftAmt == 1) return DAG.getNode(ISD::ADD, dl, VT, R, R); // ashr(R, 7) === cmp_slt(R, 0) if (Op.getOpcode() == ISD::SRA && ShiftAmt == 7) { SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl); return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R); } // XOP can shift v16i8 directly instead of as shift v8i16 + mask. if (VT == MVT::v16i8 && Subtarget->hasXOP()) return SDValue(); if (Op.getOpcode() == ISD::SHL) { // Make a large shift. SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, ShiftVT, R, ShiftAmt, DAG); SHL = DAG.getBitcast(VT, SHL); // Zero out the rightmost bits. SmallVector<SDValue, 32> V( NumElts, DAG.getConstant(uint8_t(-1U << ShiftAmt), dl, MVT::i8)); return DAG.getNode(ISD::AND, dl, VT, SHL, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V)); } if (Op.getOpcode() == ISD::SRL) { // Make a large shift. SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ShiftVT, R, ShiftAmt, DAG); SRL = DAG.getBitcast(VT, SRL); // Zero out the leftmost bits. SmallVector<SDValue, 32> V( NumElts, DAG.getConstant(uint8_t(-1U) >> ShiftAmt, dl, MVT::i8)); return DAG.getNode(ISD::AND, dl, VT, SRL, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V)); } if (Op.getOpcode() == ISD::SRA) { // ashr(R, Amt) === sub(xor(lshr(R, Amt), Mask), Mask) SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt); SmallVector<SDValue, 32> V(NumElts, DAG.getConstant(128 >> ShiftAmt, dl, MVT::i8)); SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V); Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask); Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask); return Res; } llvm_unreachable("Unknown shift opcode."); } } } // Special case in 32-bit mode, where i64 is expanded into high and low parts. if (!Subtarget->is64Bit() && !Subtarget->hasXOP() && (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64))) { // Peek through any splat that was introduced for i64 shift vectorization. int SplatIndex = -1; if (ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(Amt.getNode())) if (SVN->isSplat()) { SplatIndex = SVN->getSplatIndex(); Amt = Amt.getOperand(0); assert(SplatIndex < (int)VT.getVectorNumElements() && "Splat shuffle referencing second operand"); } if (Amt.getOpcode() != ISD::BITCAST || Amt.getOperand(0).getOpcode() != ISD::BUILD_VECTOR) return SDValue(); Amt = Amt.getOperand(0); unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() / VT.getVectorNumElements(); unsigned RatioInLog2 = Log2_32_Ceil(Ratio); uint64_t ShiftAmt = 0; unsigned BaseOp = (SplatIndex < 0 ? 0 : SplatIndex * Ratio); for (unsigned i = 0; i != Ratio; ++i) { ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i + BaseOp)); if (!C) return SDValue(); // 6 == Log2(64) ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2))); } // Check remaining shift amounts (if not a splat). if (SplatIndex < 0) { for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) { uint64_t ShAmt = 0; for (unsigned j = 0; j != Ratio; ++j) { ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i + j)); if (!C) return SDValue(); // 6 == Log2(64) ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2))); } if (ShAmt != ShiftAmt) return SDValue(); } } if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode())) return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG); if (Op.getOpcode() == ISD::SRA) return ArithmeticShiftRight64(ShiftAmt); } return SDValue(); } static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG, const X86Subtarget* Subtarget) { MVT VT = Op.getSimpleValueType(); SDLoc dl(Op); SDValue R = Op.getOperand(0); SDValue Amt = Op.getOperand(1); unsigned X86OpcI = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHLI : (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRLI : X86ISD::VSRAI; unsigned X86OpcV = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHL : (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRL : X86ISD::VSRA; if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Op.getOpcode())) { SDValue BaseShAmt; MVT EltVT = VT.getVectorElementType(); if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Amt)) { // Check if this build_vector node is doing a splat. // If so, then set BaseShAmt equal to the splat value. BaseShAmt = BV->getSplatValue(); if (BaseShAmt && BaseShAmt.getOpcode() == ISD::UNDEF) BaseShAmt = SDValue(); } else { if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR) Amt = Amt.getOperand(0); ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(Amt); if (SVN && SVN->isSplat()) { unsigned SplatIdx = (unsigned)SVN->getSplatIndex(); SDValue InVec = Amt.getOperand(0); if (InVec.getOpcode() == ISD::BUILD_VECTOR) { assert((SplatIdx < InVec.getSimpleValueType().getVectorNumElements()) && "Unexpected shuffle index found!"); BaseShAmt = InVec.getOperand(SplatIdx); } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) { if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) { if (C->getZExtValue() == SplatIdx) BaseShAmt = InVec.getOperand(1); } } if (!BaseShAmt) // Avoid introducing an extract element from a shuffle. BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InVec, DAG.getIntPtrConstant(SplatIdx, dl)); } } if (BaseShAmt.getNode()) { assert(EltVT.bitsLE(MVT::i64) && "Unexpected element type!"); if (EltVT != MVT::i64 && EltVT.bitsGT(MVT::i32)) BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, BaseShAmt); else if (EltVT.bitsLT(MVT::i32)) BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt); return getTargetVShiftNode(X86OpcI, dl, VT, R, BaseShAmt, DAG); } } // Special case in 32-bit mode, where i64 is expanded into high and low parts. if (!Subtarget->is64Bit() && VT == MVT::v2i64 && Amt.getOpcode() == ISD::BITCAST && Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { Amt = Amt.getOperand(0); unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() / VT.getVectorNumElements(); std::vector<SDValue> Vals(Ratio); for (unsigned i = 0; i != Ratio; ++i) Vals[i] = Amt.getOperand(i); for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) { for (unsigned j = 0; j != Ratio; ++j) if (Vals[j] != Amt.getOperand(i + j)) return SDValue(); } if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Op.getOpcode())) return DAG.getNode(X86OpcV, dl, VT, R, Op.getOperand(1)); } return SDValue(); } static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget, SelectionDAG &DAG) { MVT VT = Op.getSimpleValueType(); SDLoc dl(Op); SDValue R = Op.getOperand(0); SDValue Amt = Op.getOperand(1); assert(VT.isVector() && "Custom lowering only for vector shifts!"); assert(Subtarget->hasSSE2() && "Only custom lower when we have SSE2!"); if (SDValue V = LowerScalarImmediateShift(Op, DAG, Subtarget)) return V; if (SDValue V = LowerScalarVariableShift(Op, DAG, Subtarget)) return V; if (SupportedVectorVarShift(VT, Subtarget, Op.getOpcode())) return Op; // XOP has 128-bit variable logical/arithmetic shifts. // +ve/-ve Amt = shift left/right. if (Subtarget->hasXOP() && (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || VT == MVT::v16i8)) { if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) { SDValue Zero = getZeroVector(VT, Subtarget, DAG, dl); Amt = DAG.getNode(ISD::SUB, dl, VT, Zero, Amt); } if (Op.getOpcode() == ISD::SHL || Op.getOpcode() == ISD::SRL) return DAG.getNode(X86ISD::VPSHL, dl, VT, R, Amt); if (Op.getOpcode() == ISD::SRA) return DAG.getNode(X86ISD::VPSHA, dl, VT, R, Amt); } // 2i64 vector logical shifts can efficiently avoid scalarization - do the // shifts per-lane and then shuffle the partial results back together. if (VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) { // Splat the shift amounts so the scalar shifts above will catch it. SDValue Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {0, 0}); SDValue Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {1, 1}); SDValue R0 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt0); SDValue R1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt1); return DAG.getVectorShuffle(VT, dl, R0, R1, {0, 3}); } // i64 vector arithmetic shift can be emulated with the transform: // M = lshr(SIGN_BIT, Amt) // ashr(R, Amt) === sub(xor(lshr(R, Amt), M), M) if ((VT == MVT::v2i64 || (VT == MVT::v4i64 && Subtarget->hasInt256())) && Op.getOpcode() == ISD::SRA) { SDValue S = DAG.getConstant(APInt::getSignBit(64), dl, VT); SDValue M = DAG.getNode(ISD::SRL, dl, VT, S, Amt); R = DAG.getNode(ISD::SRL, dl, VT, R, Amt); R = DAG.getNode(ISD::XOR, dl, VT, R, M); R = DAG.getNode(ISD::SUB, dl, VT, R, M); return R; } // If possible, lower this packed shift into a vector multiply instead of // expanding it into a sequence of scalar shifts. // Do this only if the vector shift count is a constant build_vector. if (Op.getOpcode() == ISD::SHL && (VT == MVT::v8i16 || VT == MVT::v4i32 || (Subtarget->hasInt256() && VT == MVT::v16i16)) && ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) { SmallVector<SDValue, 8> Elts; MVT SVT = VT.getVectorElementType(); unsigned SVTBits = SVT.getSizeInBits(); APInt One(SVTBits, 1); unsigned NumElems = VT.getVectorNumElements(); for (unsigned i=0; i !=NumElems; ++i) { SDValue Op = Amt->getOperand(i); if (Op->getOpcode() == ISD::UNDEF) { Elts.push_back(Op); continue; } ConstantSDNode *ND = cast<ConstantSDNode>(Op); APInt C(SVTBits, ND->getAPIntValue().getZExtValue()); uint64_t ShAmt = C.getZExtValue(); if (ShAmt >= SVTBits) { Elts.push_back(DAG.getUNDEF(SVT)); continue; } Elts.push_back(DAG.getConstant(One.shl(ShAmt), dl, SVT)); } SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts); return DAG.getNode(ISD::MUL, dl, VT, R, BV); } // Lower SHL with variable shift amount. if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) { Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, dl, VT)); Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, dl, VT)); Op = DAG.getBitcast(MVT::v4f32, Op); Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op); return DAG.getNode(ISD::MUL, dl, VT, Op, R); } // If possible, lower this shift as a sequence of two shifts by // constant plus a MOVSS/MOVSD instead of scalarizing it. // Example: // (v4i32 (srl A, (build_vector < X, Y, Y, Y>))) // // Could be rewritten as: // (v4i32 (MOVSS (srl A, <Y,Y,Y,Y>), (srl A, <X,X,X,X>))) // // The advantage is that the two shifts from the example would be // lowered as X86ISD::VSRLI nodes. This would be cheaper than scalarizing // the vector shift into four scalar shifts plus four pairs of vector // insert/extract. if ((VT == MVT::v8i16 || VT == MVT::v4i32) && ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) { unsigned TargetOpcode = X86ISD::MOVSS; bool CanBeSimplified; // The splat value for the first packed shift (the 'X' from the example). SDValue Amt1 = Amt->getOperand(0); // The splat value for the second packed shift (the 'Y' from the example). SDValue Amt2 = (VT == MVT::v4i32) ? Amt->getOperand(1) : Amt->getOperand(2); // See if it is possible to replace this node with a sequence of // two shifts followed by a MOVSS/MOVSD if (VT == MVT::v4i32) { // Check if it is legal to use a MOVSS. CanBeSimplified = Amt2 == Amt->getOperand(2) && Amt2 == Amt->getOperand(3); if (!CanBeSimplified) { // Otherwise, check if we can still simplify this node using a MOVSD. CanBeSimplified = Amt1 == Amt->getOperand(1) && Amt->getOperand(2) == Amt->getOperand(3); TargetOpcode = X86ISD::MOVSD; Amt2 = Amt->getOperand(2); } } else { // Do similar checks for the case where the machine value type // is MVT::v8i16. CanBeSimplified = Amt1 == Amt->getOperand(1); for (unsigned i=3; i != 8 && CanBeSimplified; ++i) CanBeSimplified = Amt2 == Amt->getOperand(i); if (!CanBeSimplified) { TargetOpcode = X86ISD::MOVSD; CanBeSimplified = true; Amt2 = Amt->getOperand(4); for (unsigned i=0; i != 4 && CanBeSimplified; ++i) CanBeSimplified = Amt1 == Amt->getOperand(i); for (unsigned j=4; j != 8 && CanBeSimplified; ++j) CanBeSimplified = Amt2 == Amt->getOperand(j); } } if (CanBeSimplified && isa<ConstantSDNode>(Amt1) && isa<ConstantSDNode>(Amt2)) { // Replace this node with two shifts followed by a MOVSS/MOVSD. MVT CastVT = MVT::v4i32; SDValue Splat1 = DAG.getConstant(cast<ConstantSDNode>(Amt1)->getAPIntValue(), dl, VT); SDValue Shift1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat1); SDValue Splat2 = DAG.getConstant(cast<ConstantSDNode>(Amt2)->getAPIntValue(), dl, VT); SDValue Shift2 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat2); if (TargetOpcode == X86ISD::MOVSD) CastVT = MVT::v2i64; SDValue BitCast1 = DAG.getBitcast(CastVT, Shift1); SDValue BitCast2 = DAG.getBitcast(CastVT, Shift2); SDValue Result = getTargetShuffleNode(TargetOpcode, dl, CastVT, BitCast2, BitCast1, DAG); return DAG.getBitcast(VT, Result); } } // v4i32 Non Uniform Shifts. // If the shift amount is constant we can shift each lane using the SSE2 // immediate shifts, else we need to zero-extend each lane to the lower i64 // and shift using the SSE2 variable shifts. // The separate results can then be blended together. if (VT == MVT::v4i32) { unsigned Opc = Op.getOpcode(); SDValue Amt0, Amt1, Amt2, Amt3; if (ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) { Amt0 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {0, 0, 0, 0}); Amt1 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {1, 1, 1, 1}); Amt2 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {2, 2, 2, 2}); Amt3 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {3, 3, 3, 3}); } else { // ISD::SHL is handled above but we include it here for completeness. switch (Opc) { default: llvm_unreachable("Unknown target vector shift node"); case ISD::SHL: Opc = X86ISD::VSHL; break; case ISD::SRL: Opc = X86ISD::VSRL; break; case ISD::SRA: Opc = X86ISD::VSRA; break; } // The SSE2 shifts use the lower i64 as the same shift amount for // all lanes and the upper i64 is ignored. These shuffle masks // optimally zero-extend each lanes on SSE2/SSE41/AVX targets. SDValue Z = getZeroVector(VT, Subtarget, DAG, dl); Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Z, {0, 4, -1, -1}); Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Z, {1, 5, -1, -1}); Amt2 = DAG.getVectorShuffle(VT, dl, Amt, Z, {2, 6, -1, -1}); Amt3 = DAG.getVectorShuffle(VT, dl, Amt, Z, {3, 7, -1, -1}); } SDValue R0 = DAG.getNode(Opc, dl, VT, R, Amt0); SDValue R1 = DAG.getNode(Opc, dl, VT, R, Amt1); SDValue R2 = DAG.getNode(Opc, dl, VT, R, Amt2); SDValue R3 = DAG.getNode(Opc, dl, VT, R, Amt3); SDValue R02 = DAG.getVectorShuffle(VT, dl, R0, R2, {0, -1, 6, -1}); SDValue R13 = DAG.getVectorShuffle(VT, dl, R1, R3, {-1, 1, -1, 7}); return DAG.getVectorShuffle(VT, dl, R02, R13, {0, 5, 2, 7}); } if (VT == MVT::v16i8 || (VT == MVT::v32i8 && Subtarget->hasInt256() && !Subtarget->hasXOP())) { MVT ExtVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements() / 2); unsigned ShiftOpcode = Op->getOpcode(); auto SignBitSelect = [&](MVT SelVT, SDValue Sel, SDValue V0, SDValue V1) { // On SSE41 targets we make use of the fact that VSELECT lowers // to PBLENDVB which selects bytes based just on the sign bit. if (Subtarget->hasSSE41()) { V0 = DAG.getBitcast(VT, V0); V1 = DAG.getBitcast(VT, V1); Sel = DAG.getBitcast(VT, Sel); return DAG.getBitcast(SelVT, DAG.getNode(ISD::VSELECT, dl, VT, Sel, V0, V1)); } // On pre-SSE41 targets we test for the sign bit by comparing to // zero - a negative value will set all bits of the lanes to true // and VSELECT uses that in its OR(AND(V0,C),AND(V1,~C)) lowering. SDValue Z = getZeroVector(SelVT, Subtarget, DAG, dl); SDValue C = DAG.getNode(X86ISD::PCMPGT, dl, SelVT, Z, Sel); return DAG.getNode(ISD::VSELECT, dl, SelVT, C, V0, V1); }; // Turn 'a' into a mask suitable for VSELECT: a = a << 5; // We can safely do this using i16 shifts as we're only interested in // the 3 lower bits of each byte. Amt = DAG.getBitcast(ExtVT, Amt); Amt = DAG.getNode(ISD::SHL, dl, ExtVT, Amt, DAG.getConstant(5, dl, ExtVT)); Amt = DAG.getBitcast(VT, Amt); if (Op->getOpcode() == ISD::SHL || Op->getOpcode() == ISD::SRL) { // r = VSELECT(r, shift(r, 4), a); SDValue M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(4, dl, VT)); R = SignBitSelect(VT, Amt, M, R); // a += a Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); // r = VSELECT(r, shift(r, 2), a); M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(2, dl, VT)); R = SignBitSelect(VT, Amt, M, R); // a += a Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); // return VSELECT(r, shift(r, 1), a); M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(1, dl, VT)); R = SignBitSelect(VT, Amt, M, R); return R; } if (Op->getOpcode() == ISD::SRA) { // For SRA we need to unpack each byte to the higher byte of a i16 vector // so we can correctly sign extend. We don't care what happens to the // lower byte. SDValue ALo = DAG.getNode(X86ISD::UNPCKL, dl, VT, DAG.getUNDEF(VT), Amt); SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, DAG.getUNDEF(VT), Amt); SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, DAG.getUNDEF(VT), R); SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, DAG.getUNDEF(VT), R); ALo = DAG.getBitcast(ExtVT, ALo); AHi = DAG.getBitcast(ExtVT, AHi); RLo = DAG.getBitcast(ExtVT, RLo); RHi = DAG.getBitcast(ExtVT, RHi); // r = VSELECT(r, shift(r, 4), a); SDValue MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo, DAG.getConstant(4, dl, ExtVT)); SDValue MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi, DAG.getConstant(4, dl, ExtVT)); RLo = SignBitSelect(ExtVT, ALo, MLo, RLo); RHi = SignBitSelect(ExtVT, AHi, MHi, RHi); // a += a ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo); AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi); // r = VSELECT(r, shift(r, 2), a); MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo, DAG.getConstant(2, dl, ExtVT)); MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi, DAG.getConstant(2, dl, ExtVT)); RLo = SignBitSelect(ExtVT, ALo, MLo, RLo); RHi = SignBitSelect(ExtVT, AHi, MHi, RHi); // a += a ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo); AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi); // r = VSELECT(r, shift(r, 1), a); MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo, DAG.getConstant(1, dl, ExtVT)); MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi, DAG.getConstant(1, dl, ExtVT)); RLo = SignBitSelect(ExtVT, ALo, MLo, RLo); RHi = SignBitSelect(ExtVT, AHi, MHi, RHi); // Logical shift the result back to the lower byte, leaving a zero upper // byte // meaning that we can safely pack with PACKUSWB. RLo = DAG.getNode(ISD::SRL, dl, ExtVT, RLo, DAG.getConstant(8, dl, ExtVT)); RHi = DAG.getNode(ISD::SRL, dl, ExtVT, RHi, DAG.getConstant(8, dl, ExtVT)); return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi); } } // It's worth extending once and using the v8i32 shifts for 16-bit types, but // the extra overheads to get from v16i8 to v8i32 make the existing SSE // solution better. if (Subtarget->hasInt256() && VT == MVT::v8i16) { MVT ExtVT = MVT::v8i32; unsigned ExtOpc = Op.getOpcode() == ISD::SRA ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; R = DAG.getNode(ExtOpc, dl, ExtVT, R); Amt = DAG.getNode(ISD::ANY_EXTEND, dl, ExtVT, Amt); return DAG.getNode(ISD::TRUNCATE, dl, VT, DAG.getNode(Op.getOpcode(), dl, ExtVT, R, Amt)); } if (Subtarget->hasInt256() && !Subtarget->hasXOP() && VT == MVT::v16i16) { MVT ExtVT = MVT::v8i32; SDValue Z = getZeroVector(VT, Subtarget, DAG, dl); SDValue ALo = DAG.getNode(X86ISD::UNPCKL, dl, VT, Amt, Z); SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, Amt, Z); SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, R, R); SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, R, R); ALo = DAG.getBitcast(ExtVT, ALo); AHi = DAG.getBitcast(ExtVT, AHi); RLo = DAG.getBitcast(ExtVT, RLo); RHi = DAG.getBitcast(ExtVT, RHi); SDValue Lo = DAG.getNode(Op.getOpcode(), dl, ExtVT, RLo, ALo); SDValue Hi = DAG.getNode(Op.getOpcode(), dl, ExtVT, RHi, AHi); Lo = DAG.getNode(ISD::SRL, dl, ExtVT, Lo, DAG.getConstant(16, dl, ExtVT)); Hi = DAG.getNode(ISD::SRL, dl, ExtVT, Hi, DAG.getConstant(16, dl, ExtVT)); return DAG.getNode(X86ISD::PACKUS, dl, VT, Lo, Hi); } if (VT == MVT::v8i16) { unsigned ShiftOpcode = Op->getOpcode(); auto SignBitSelect = [&](SDValue Sel, SDValue V0, SDValue V1) { // On SSE41 targets we make use of the fact that VSELECT lowers // to PBLENDVB which selects bytes based just on the sign bit. if (Subtarget->hasSSE41()) { MVT ExtVT = MVT::getVectorVT(MVT::i8, VT.getVectorNumElements() * 2); V0 = DAG.getBitcast(ExtVT, V0); V1 = DAG.getBitcast(ExtVT, V1); Sel = DAG.getBitcast(ExtVT, Sel); return DAG.getBitcast( VT, DAG.getNode(ISD::VSELECT, dl, ExtVT, Sel, V0, V1)); } // On pre-SSE41 targets we splat the sign bit - a negative value will // set all bits of the lanes to true and VSELECT uses that in // its OR(AND(V0,C),AND(V1,~C)) lowering. SDValue C = DAG.getNode(ISD::SRA, dl, VT, Sel, DAG.getConstant(15, dl, VT)); return DAG.getNode(ISD::VSELECT, dl, VT, C, V0, V1); }; // Turn 'a' into a mask suitable for VSELECT: a = a << 12; if (Subtarget->hasSSE41()) { // On SSE41 targets we need to replicate the shift mask in both // bytes for PBLENDVB. Amt = DAG.getNode( ISD::OR, dl, VT, DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(4, dl, VT)), DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(12, dl, VT))); } else { Amt = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(12, dl, VT)); } // r = VSELECT(r, shift(r, 8), a); SDValue M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(8, dl, VT)); R = SignBitSelect(Amt, M, R); // a += a Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); // r = VSELECT(r, shift(r, 4), a); M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(4, dl, VT)); R = SignBitSelect(Amt, M, R); // a += a Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); // r = VSELECT(r, shift(r, 2), a); M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(2, dl, VT)); R = SignBitSelect(Amt, M, R); // a += a Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); // return VSELECT(r, shift(r, 1), a); M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(1, dl, VT)); R = SignBitSelect(Amt, M, R); return R; } // Decompose 256-bit shifts into smaller 128-bit shifts. if (VT.is256BitVector()) { unsigned NumElems = VT.getVectorNumElements(); MVT EltVT = VT.getVectorElementType(); MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); // Extract the two vectors SDValue V1 = Extract128BitVector(R, 0, DAG, dl); SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl); // Recreate the shift amount vectors SDValue Amt1, Amt2; if (Amt.getOpcode() == ISD::BUILD_VECTOR) { // Constant shift amount SmallVector<SDValue, 8> Ops(Amt->op_begin(), Amt->op_begin() + NumElems); ArrayRef<SDValue> Amt1Csts = makeArrayRef(Ops).slice(0, NumElems / 2); ArrayRef<SDValue> Amt2Csts = makeArrayRef(Ops).slice(NumElems / 2); Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt1Csts); Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt2Csts); } else { // Variable shift amount Amt1 = Extract128BitVector(Amt, 0, DAG, dl); Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl); } // Issue new vector shifts for the smaller types V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1); V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2); // Concatenate the result back return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2); } return SDValue(); } static SDValue LowerRotate(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT VT = Op.getSimpleValueType(); SDLoc DL(Op); SDValue R = Op.getOperand(0); SDValue Amt = Op.getOperand(1); assert(VT.isVector() && "Custom lowering only for vector rotates!"); assert(Subtarget->hasXOP() && "XOP support required for vector rotates!"); assert((Op.getOpcode() == ISD::ROTL) && "Only ROTL supported"); // XOP has 128-bit vector variable + immediate rotates. // +ve/-ve Amt = rotate left/right. // Split 256-bit integers. if (VT.is256BitVector()) return Lower256IntArith(Op, DAG); assert(VT.is128BitVector() && "Only rotate 128-bit vectors!"); // Attempt to rotate by immediate. if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) { if (auto *RotateConst = BVAmt->getConstantSplatNode()) { uint64_t RotateAmt = RotateConst->getAPIntValue().getZExtValue(); assert(RotateAmt < VT.getScalarSizeInBits() && "Rotation out of range"); return DAG.getNode(X86ISD::VPROTI, DL, VT, R, DAG.getConstant(RotateAmt, DL, MVT::i8)); } } // Use general rotate by variable (per-element). return DAG.getNode(X86ISD::VPROT, DL, VT, R, Amt); } static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) { // Lower the "add/sub/mul with overflow" instruction into a regular ins plus // a "setcc" instruction that checks the overflow flag. The "brcond" lowering // looks for this combo and may remove the "setcc" instruction if the "setcc" // has only one use. SDNode *N = Op.getNode(); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); unsigned BaseOp = 0; unsigned Cond = 0; SDLoc DL(Op); switch (Op.getOpcode()) { default: llvm_unreachable("Unknown ovf instruction!"); case ISD::SADDO: // A subtract of one will be selected as a INC. Note that INC doesn't // set CF, so we can't do this for UADDO. if (isOneConstant(RHS)) { BaseOp = X86ISD::INC; Cond = X86::COND_O; break; } BaseOp = X86ISD::ADD; Cond = X86::COND_O; break; case ISD::UADDO: BaseOp = X86ISD::ADD; Cond = X86::COND_B; break; case ISD::SSUBO: // A subtract of one will be selected as a DEC. Note that DEC doesn't // set CF, so we can't do this for USUBO. if (isOneConstant(RHS)) { BaseOp = X86ISD::DEC; Cond = X86::COND_O; break; } BaseOp = X86ISD::SUB; Cond = X86::COND_O; break; case ISD::USUBO: BaseOp = X86ISD::SUB; Cond = X86::COND_B; break; case ISD::SMULO: BaseOp = N->getValueType(0) == MVT::i8 ? X86ISD::SMUL8 : X86ISD::SMUL; Cond = X86::COND_O; break; case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs if (N->getValueType(0) == MVT::i8) { BaseOp = X86ISD::UMUL8; Cond = X86::COND_O; break; } SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0), MVT::i32); SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS); SDValue SetCC = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, DAG.getConstant(X86::COND_O, DL, MVT::i32), SDValue(Sum.getNode(), 2)); return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC); } } // Also sets EFLAGS. SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); SDValue SetCC = DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1), DAG.getConstant(Cond, DL, MVT::i32), SDValue(Sum.getNode(), 1)); return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC); } /// Returns true if the operand type is exactly twice the native width, and /// the corresponding cmpxchg8b or cmpxchg16b instruction is available. /// Used to know whether to use cmpxchg8/16b when expanding atomic operations /// (otherwise we leave them alone to become __sync_fetch_and_... calls). bool X86TargetLowering::needsCmpXchgNb(Type *MemType) const { unsigned OpWidth = MemType->getPrimitiveSizeInBits(); if (OpWidth == 64) return !Subtarget->is64Bit(); // FIXME this should be Subtarget.hasCmpxchg8b else if (OpWidth == 128) return Subtarget->hasCmpxchg16b(); else return false; } bool X86TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { return needsCmpXchgNb(SI->getValueOperand()->getType()); } // Note: this turns large loads into lock cmpxchg8b/16b. // FIXME: On 32 bits x86, fild/movq might be faster than lock cmpxchg8b. TargetLowering::AtomicExpansionKind X86TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { auto PTy = cast<PointerType>(LI->getPointerOperand()->getType()); return needsCmpXchgNb(PTy->getElementType()) ? AtomicExpansionKind::CmpXChg : AtomicExpansionKind::None; } TargetLowering::AtomicExpansionKind X86TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { unsigned NativeWidth = Subtarget->is64Bit() ? 64 : 32; Type *MemType = AI->getType(); // If the operand is too big, we must see if cmpxchg8/16b is available // and default to library calls otherwise. if (MemType->getPrimitiveSizeInBits() > NativeWidth) { return needsCmpXchgNb(MemType) ? AtomicExpansionKind::CmpXChg : AtomicExpansionKind::None; } AtomicRMWInst::BinOp Op = AI->getOperation(); switch (Op) { default: llvm_unreachable("Unknown atomic operation"); case AtomicRMWInst::Xchg: case AtomicRMWInst::Add: case AtomicRMWInst::Sub: // It's better to use xadd, xsub or xchg for these in all cases. return AtomicExpansionKind::None; case AtomicRMWInst::Or: case AtomicRMWInst::And: case AtomicRMWInst::Xor: // If the atomicrmw's result isn't actually used, we can just add a "lock" // prefix to a normal instruction for these operations. return !AI->use_empty() ? AtomicExpansionKind::CmpXChg : AtomicExpansionKind::None; case AtomicRMWInst::Nand: case AtomicRMWInst::Max: case AtomicRMWInst::Min: case AtomicRMWInst::UMax: case AtomicRMWInst::UMin: // These always require a non-trivial set of data operations on x86. We must // use a cmpxchg loop. return AtomicExpansionKind::CmpXChg; } } static bool hasMFENCE(const X86Subtarget& Subtarget) { // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for // no-sse2). There isn't any reason to disable it if the target processor // supports it. return Subtarget.hasSSE2() || Subtarget.is64Bit(); } LoadInst * X86TargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const { unsigned NativeWidth = Subtarget->is64Bit() ? 64 : 32; Type *MemType = AI->getType(); // Accesses larger than the native width are turned into cmpxchg/libcalls, so // there is no benefit in turning such RMWs into loads, and it is actually // harmful as it introduces a mfence. if (MemType->getPrimitiveSizeInBits() > NativeWidth) return nullptr; auto Builder = IRBuilder<>(AI); Module *M = Builder.GetInsertBlock()->getParent()->getParent(); auto SynchScope = AI->getSynchScope(); // We must restrict the ordering to avoid generating loads with Release or // ReleaseAcquire orderings. auto Order = AtomicCmpXchgInst::getStrongestFailureOrdering(AI->getOrdering()); auto Ptr = AI->getPointerOperand(); // Before the load we need a fence. Here is an example lifted from // http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf showing why a fence // is required: // Thread 0: // x.store(1, relaxed); // r1 = y.fetch_add(0, release); // Thread 1: // y.fetch_add(42, acquire); // r2 = x.load(relaxed); // r1 = r2 = 0 is impossible, but becomes possible if the idempotent rmw is // lowered to just a load without a fence. A mfence flushes the store buffer, // making the optimization clearly correct. // FIXME: it is required if isAtLeastRelease(Order) but it is not clear // otherwise, we might be able to be more aggressive on relaxed idempotent // rmw. In practice, they do not look useful, so we don't try to be // especially clever. if (SynchScope == SingleThread) // FIXME: we could just insert an X86ISD::MEMBARRIER here, except we are at // the IR level, so we must wrap it in an intrinsic. return nullptr; if (!hasMFENCE(*Subtarget)) // FIXME: it might make sense to use a locked operation here but on a // different cache-line to prevent cache-line bouncing. In practice it // is probably a small win, and x86 processors without mfence are rare // enough that we do not bother. return nullptr; Function *MFence = llvm::Intrinsic::getDeclaration(M, Intrinsic::x86_sse2_mfence); Builder.CreateCall(MFence, {}); // Finally we can emit the atomic load. LoadInst *Loaded = Builder.CreateAlignedLoad(Ptr, AI->getType()->getPrimitiveSizeInBits()); Loaded->setAtomic(Order, SynchScope); AI->replaceAllUsesWith(Loaded); AI->eraseFromParent(); return Loaded; } static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc dl(Op); AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); SynchronizationScope FenceScope = static_cast<SynchronizationScope>( cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); // The only fence that needs an instruction is a sequentially-consistent // cross-thread fence. if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) { if (hasMFENCE(*Subtarget)) return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0)); SDValue Chain = Op.getOperand(0); SDValue Zero = DAG.getConstant(0, dl, MVT::i32); SDValue Ops[] = { DAG.getRegister(X86::ESP, MVT::i32), // Base DAG.getTargetConstant(1, dl, MVT::i8), // Scale DAG.getRegister(0, MVT::i32), // Index DAG.getTargetConstant(0, dl, MVT::i32), // Disp DAG.getRegister(0, MVT::i32), // Segment. Zero, Chain }; SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops); return SDValue(Res, 0); } // MEMBARRIER is a compiler barrier; it codegens to a no-op. return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0)); } static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT T = Op.getSimpleValueType(); SDLoc DL(Op); unsigned Reg = 0; unsigned size = 0; switch(T.SimpleTy) { default: llvm_unreachable("Invalid value type!"); case MVT::i8: Reg = X86::AL; size = 1; break; case MVT::i16: Reg = X86::AX; size = 2; break; case MVT::i32: Reg = X86::EAX; size = 4; break; case MVT::i64: assert(Subtarget->is64Bit() && "Node not type legal!"); Reg = X86::RAX; size = 8; break; } SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg, Op.getOperand(2), SDValue()); SDValue Ops[] = { cpIn.getValue(0), Op.getOperand(1), Op.getOperand(3), DAG.getTargetConstant(size, DL, MVT::i8), cpIn.getValue(1) }; SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand(); SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys, Ops, T, MMO); SDValue cpOut = DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1)); SDValue EFLAGS = DAG.getCopyFromReg(cpOut.getValue(1), DL, X86::EFLAGS, MVT::i32, cpOut.getValue(2)); SDValue Success = DAG.getNode(X86ISD::SETCC, DL, Op->getValueType(1), DAG.getConstant(X86::COND_E, DL, MVT::i8), EFLAGS); DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), cpOut); DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), EFLAGS.getValue(1)); return SDValue(); } static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT SrcVT = Op.getOperand(0).getSimpleValueType(); MVT DstVT = Op.getSimpleValueType(); if (SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8) { assert(Subtarget->hasSSE2() && "Requires at least SSE2!"); if (DstVT != MVT::f64) // This conversion needs to be expanded. return SDValue(); SDValue InVec = Op->getOperand(0); SDLoc dl(Op); unsigned NumElts = SrcVT.getVectorNumElements(); MVT SVT = SrcVT.getVectorElementType(); // Widen the vector in input in the case of MVT::v2i32. // Example: from MVT::v2i32 to MVT::v4i32. SmallVector<SDValue, 16> Elts; for (unsigned i = 0, e = NumElts; i != e; ++i) Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, InVec, DAG.getIntPtrConstant(i, dl))); // Explicitly mark the extra elements as Undef. Elts.append(NumElts, DAG.getUNDEF(SVT)); EVT NewVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2); SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Elts); SDValue ToV2F64 = DAG.getBitcast(MVT::v2f64, BV); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, ToV2F64, DAG.getIntPtrConstant(0, dl)); } assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() && Subtarget->hasMMX() && "Unexpected custom BITCAST"); assert((DstVT == MVT::i64 || (DstVT.isVector() && DstVT.getSizeInBits()==64)) && "Unexpected custom BITCAST"); // i64 <=> MMX conversions are Legal. if (SrcVT==MVT::i64 && DstVT.isVector()) return Op; if (DstVT==MVT::i64 && SrcVT.isVector()) return Op; // MMX <=> MMX conversions are Legal. if (SrcVT.isVector() && DstVT.isVector()) return Op; // All other conversions need to be expanded. return SDValue(); } /// Compute the horizontal sum of bytes in V for the elements of VT. /// /// Requires V to be a byte vector and VT to be an integer vector type with /// wider elements than V's type. The width of the elements of VT determines /// how many bytes of V are summed horizontally to produce each element of the /// result. static SDValue LowerHorizontalByteSum(SDValue V, MVT VT, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(V); MVT ByteVecVT = V.getSimpleValueType(); MVT EltVT = VT.getVectorElementType(); int NumElts = VT.getVectorNumElements(); assert(ByteVecVT.getVectorElementType() == MVT::i8 && "Expected value to have byte element type."); assert(EltVT != MVT::i8 && "Horizontal byte sum only makes sense for wider elements!"); unsigned VecSize = VT.getSizeInBits(); assert(ByteVecVT.getSizeInBits() == VecSize && "Cannot change vector size!"); // PSADBW instruction horizontally add all bytes and leave the result in i64 // chunks, thus directly computes the pop count for v2i64 and v4i64. if (EltVT == MVT::i64) { SDValue Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL); MVT SadVecVT = MVT::getVectorVT(MVT::i64, VecSize / 64); V = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT, V, Zeros); return DAG.getBitcast(VT, V); } if (EltVT == MVT::i32) { // We unpack the low half and high half into i32s interleaved with zeros so // that we can use PSADBW to horizontally sum them. The most useful part of // this is that it lines up the results of two PSADBW instructions to be // two v2i64 vectors which concatenated are the 4 population counts. We can // then use PACKUSWB to shrink and concatenate them into a v4i32 again. SDValue Zeros = getZeroVector(VT, Subtarget, DAG, DL); SDValue Low = DAG.getNode(X86ISD::UNPCKL, DL, VT, V, Zeros); SDValue High = DAG.getNode(X86ISD::UNPCKH, DL, VT, V, Zeros); // Do the horizontal sums into two v2i64s. Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL); MVT SadVecVT = MVT::getVectorVT(MVT::i64, VecSize / 64); Low = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT, DAG.getBitcast(ByteVecVT, Low), Zeros); High = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT, DAG.getBitcast(ByteVecVT, High), Zeros); // Merge them together. MVT ShortVecVT = MVT::getVectorVT(MVT::i16, VecSize / 16); V = DAG.getNode(X86ISD::PACKUS, DL, ByteVecVT, DAG.getBitcast(ShortVecVT, Low), DAG.getBitcast(ShortVecVT, High)); return DAG.getBitcast(VT, V); } // The only element type left is i16. assert(EltVT == MVT::i16 && "Unknown how to handle type"); // To obtain pop count for each i16 element starting from the pop count for // i8 elements, shift the i16s left by 8, sum as i8s, and then shift as i16s // right by 8. It is important to shift as i16s as i8 vector shift isn't // directly supported. SmallVector<SDValue, 16> Shifters(NumElts, DAG.getConstant(8, DL, EltVT)); SDValue Shifter = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Shifters); SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, DAG.getBitcast(VT, V), Shifter); V = DAG.getNode(ISD::ADD, DL, ByteVecVT, DAG.getBitcast(ByteVecVT, Shl), DAG.getBitcast(ByteVecVT, V)); return DAG.getNode(ISD::SRL, DL, VT, DAG.getBitcast(VT, V), Shifter); } static SDValue LowerVectorCTPOPInRegLUT(SDValue Op, SDLoc DL, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT VT = Op.getSimpleValueType(); MVT EltVT = VT.getVectorElementType(); unsigned VecSize = VT.getSizeInBits(); // Implement a lookup table in register by using an algorithm based on: // http://wm.ite.pl/articles/sse-popcount.html // // The general idea is that every lower byte nibble in the input vector is an // index into a in-register pre-computed pop count table. We then split up the // input vector in two new ones: (1) a vector with only the shifted-right // higher nibbles for each byte and (2) a vector with the lower nibbles (and // masked out higher ones) for each byte. PSHUB is used separately with both // to index the in-register table. Next, both are added and the result is a // i8 vector where each element contains the pop count for input byte. // // To obtain the pop count for elements != i8, we follow up with the same // approach and use additional tricks as described below. // const int LUT[16] = {/* 0 */ 0, /* 1 */ 1, /* 2 */ 1, /* 3 */ 2, /* 4 */ 1, /* 5 */ 2, /* 6 */ 2, /* 7 */ 3, /* 8 */ 1, /* 9 */ 2, /* a */ 2, /* b */ 3, /* c */ 2, /* d */ 3, /* e */ 3, /* f */ 4}; int NumByteElts = VecSize / 8; MVT ByteVecVT = MVT::getVectorVT(MVT::i8, NumByteElts); SDValue In = DAG.getBitcast(ByteVecVT, Op); SmallVector<SDValue, 16> LUTVec; for (int i = 0; i < NumByteElts; ++i) LUTVec.push_back(DAG.getConstant(LUT[i % 16], DL, MVT::i8)); SDValue InRegLUT = DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVecVT, LUTVec); SmallVector<SDValue, 16> Mask0F(NumByteElts, DAG.getConstant(0x0F, DL, MVT::i8)); SDValue M0F = DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVecVT, Mask0F); // High nibbles SmallVector<SDValue, 16> Four(NumByteElts, DAG.getConstant(4, DL, MVT::i8)); SDValue FourV = DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVecVT, Four); SDValue HighNibbles = DAG.getNode(ISD::SRL, DL, ByteVecVT, In, FourV); // Low nibbles SDValue LowNibbles = DAG.getNode(ISD::AND, DL, ByteVecVT, In, M0F); // The input vector is used as the shuffle mask that index elements into the // LUT. After counting low and high nibbles, add the vector to obtain the // final pop count per i8 element. SDValue HighPopCnt = DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, HighNibbles); SDValue LowPopCnt = DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, LowNibbles); SDValue PopCnt = DAG.getNode(ISD::ADD, DL, ByteVecVT, HighPopCnt, LowPopCnt); if (EltVT == MVT::i8) return PopCnt; return LowerHorizontalByteSum(PopCnt, VT, Subtarget, DAG); } static SDValue LowerVectorCTPOPBitmath(SDValue Op, SDLoc DL, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT VT = Op.getSimpleValueType(); assert(VT.is128BitVector() && "Only 128-bit vector bitmath lowering supported."); int VecSize = VT.getSizeInBits(); MVT EltVT = VT.getVectorElementType(); int Len = EltVT.getSizeInBits(); // This is the vectorized version of the "best" algorithm from // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel // with a minor tweak to use a series of adds + shifts instead of vector // multiplications. Implemented for all integer vector types. We only use // this when we don't have SSSE3 which allows a LUT-based lowering that is // much faster, even faster than using native popcnt instructions. auto GetShift = [&](unsigned OpCode, SDValue V, int Shifter) { MVT VT = V.getSimpleValueType(); SmallVector<SDValue, 32> Shifters( VT.getVectorNumElements(), DAG.getConstant(Shifter, DL, VT.getVectorElementType())); return DAG.getNode(OpCode, DL, VT, V, DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Shifters)); }; auto GetMask = [&](SDValue V, APInt Mask) { MVT VT = V.getSimpleValueType(); SmallVector<SDValue, 32> Masks( VT.getVectorNumElements(), DAG.getConstant(Mask, DL, VT.getVectorElementType())); return DAG.getNode(ISD::AND, DL, VT, V, DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Masks)); }; // We don't want to incur the implicit masks required to SRL vNi8 vectors on // x86, so set the SRL type to have elements at least i16 wide. This is // correct because all of our SRLs are followed immediately by a mask anyways // that handles any bits that sneak into the high bits of the byte elements. MVT SrlVT = Len > 8 ? VT : MVT::getVectorVT(MVT::i16, VecSize / 16); SDValue V = Op; // v = v - ((v >> 1) & 0x55555555...) SDValue Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 1)); SDValue And = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x55))); V = DAG.getNode(ISD::SUB, DL, VT, V, And); // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) SDValue AndLHS = GetMask(V, APInt::getSplat(Len, APInt(8, 0x33))); Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 2)); SDValue AndRHS = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x33))); V = DAG.getNode(ISD::ADD, DL, VT, AndLHS, AndRHS); // v = (v + (v >> 4)) & 0x0F0F0F0F... Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 4)); SDValue Add = DAG.getNode(ISD::ADD, DL, VT, V, Srl); V = GetMask(Add, APInt::getSplat(Len, APInt(8, 0x0F))); // At this point, V contains the byte-wise population count, and we are // merely doing a horizontal sum if necessary to get the wider element // counts. if (EltVT == MVT::i8) return V; return LowerHorizontalByteSum( DAG.getBitcast(MVT::getVectorVT(MVT::i8, VecSize / 8), V), VT, Subtarget, DAG); } static SDValue LowerVectorCTPOP(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MVT VT = Op.getSimpleValueType(); // FIXME: Need to add AVX-512 support here! assert((VT.is256BitVector() || VT.is128BitVector()) && "Unknown CTPOP type to handle"); SDLoc DL(Op.getNode()); SDValue Op0 = Op.getOperand(0); if (!Subtarget->hasSSSE3()) { // We can't use the fast LUT approach, so fall back on vectorized bitmath. assert(VT.is128BitVector() && "Only 128-bit vectors supported in SSE!"); return LowerVectorCTPOPBitmath(Op0, DL, Subtarget, DAG); } if (VT.is256BitVector() && !Subtarget->hasInt256()) { unsigned NumElems = VT.getVectorNumElements(); // Extract each 128-bit vector, compute pop count and concat the result. SDValue LHS = Extract128BitVector(Op0, 0, DAG, DL); SDValue RHS = Extract128BitVector(Op0, NumElems/2, DAG, DL); return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LowerVectorCTPOPInRegLUT(LHS, DL, Subtarget, DAG), LowerVectorCTPOPInRegLUT(RHS, DL, Subtarget, DAG)); } return LowerVectorCTPOPInRegLUT(Op0, DL, Subtarget, DAG); } static SDValue LowerCTPOP(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { assert(Op.getSimpleValueType().isVector() && "We only do custom lowering for vector population count."); return LowerVectorCTPOP(Op, Subtarget, DAG); } static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) { SDNode *Node = Op.getNode(); SDLoc dl(Node); EVT T = Node->getValueType(0); SDValue negOp = DAG.getNode(ISD::SUB, dl, T, DAG.getConstant(0, dl, T), Node->getOperand(2)); return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), Node->getOperand(0), Node->getOperand(1), negOp, cast<AtomicSDNode>(Node)->getMemOperand(), cast<AtomicSDNode>(Node)->getOrdering(), cast<AtomicSDNode>(Node)->getSynchScope()); } static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) { SDNode *Node = Op.getNode(); SDLoc dl(Node); EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT(); // Convert seq_cst store -> xchg // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b) // FIXME: On 32-bit, store -> fist or movq would be more efficient // (The only way to get a 16-byte store is cmpxchg16b) // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment. if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent || !DAG.getTargetLoweringInfo().isTypeLegal(VT)) { SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), cast<AtomicSDNode>(Node)->getMemOperand(), cast<AtomicSDNode>(Node)->getOrdering(), cast<AtomicSDNode>(Node)->getSynchScope()); return Swap.getValue(1); } // Other atomic stores have a simple pattern. return Op; } static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { MVT VT = Op.getNode()->getSimpleValueType(0); // Let legalize expand this if it isn't a legal type yet. if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) return SDValue(); SDVTList VTs = DAG.getVTList(VT, MVT::i32); unsigned Opc; bool ExtraOp = false; switch (Op.getOpcode()) { default: llvm_unreachable("Invalid code"); case ISD::ADDC: Opc = X86ISD::ADD; break; case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break; case ISD::SUBC: Opc = X86ISD::SUB; break; case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break; } if (!ExtraOp) return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1)); return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1), Op.getOperand(2)); } static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit()); // For MacOSX, we want to call an alternative entry point: __sincos_stret, // which returns the values as { float, float } (in XMM0) or // { double, double } (which is returned in XMM0, XMM1). SDLoc dl(Op); SDValue Arg = Op.getOperand(0); EVT ArgVT = Arg.getValueType(); Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Node = Arg; Entry.Ty = ArgTy; Entry.isSExt = false; Entry.isZExt = false; Args.push_back(Entry); bool isF64 = ArgVT == MVT::f64; // Only optimize x86_64 for now. i386 is a bit messy. For f32, // the small struct {f32, f32} is returned in (eax, edx). For f64, // the results are returned via SRet in memory. const char *LibcallName = isF64 ? "__sincos_stret" : "__sincosf_stret"; const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDValue Callee = DAG.getExternalSymbol(LibcallName, TLI.getPointerTy(DAG.getDataLayout())); Type *RetTy = isF64 ? (Type*)StructType::get(ArgTy, ArgTy, nullptr) : (Type*)VectorType::get(ArgTy, 4); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) .setCallee(CallingConv::C, RetTy, Callee, std::move(Args), 0); std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); if (isF64) // Returned in xmm0 and xmm1. return CallResult.first; // Returned in bits 0:31 and 32:64 xmm0. SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT, CallResult.first, DAG.getIntPtrConstant(0, dl)); SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT, CallResult.first, DAG.getIntPtrConstant(1, dl)); SDVTList Tys = DAG.getVTList(ArgVT, ArgVT); return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal); } /// Widen a vector input to a vector of NVT. The /// input vector must have the same element type as NVT. static SDValue ExtendToType(SDValue InOp, MVT NVT, SelectionDAG &DAG, bool FillWithZeroes = false) { // Check if InOp already has the right width. MVT InVT = InOp.getSimpleValueType(); if (InVT == NVT) return InOp; if (InOp.isUndef()) return DAG.getUNDEF(NVT); assert(InVT.getVectorElementType() == NVT.getVectorElementType() && "input and widen element type must match"); unsigned InNumElts = InVT.getVectorNumElements(); unsigned WidenNumElts = NVT.getVectorNumElements(); assert(WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0 && "Unexpected request for vector widening"); EVT EltVT = NVT.getVectorElementType(); SDLoc dl(InOp); if (InOp.getOpcode() == ISD::CONCAT_VECTORS && InOp.getNumOperands() == 2) { SDValue N1 = InOp.getOperand(1); if ((ISD::isBuildVectorAllZeros(N1.getNode()) && FillWithZeroes) || N1.isUndef()) { InOp = InOp.getOperand(0); InVT = InOp.getSimpleValueType(); InNumElts = InVT.getVectorNumElements(); } } if (ISD::isBuildVectorOfConstantSDNodes(InOp.getNode()) || ISD::isBuildVectorOfConstantFPSDNodes(InOp.getNode())) { SmallVector<SDValue, 16> Ops; for (unsigned i = 0; i < InNumElts; ++i) Ops.push_back(InOp.getOperand(i)); SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, EltVT) : DAG.getUNDEF(EltVT); for (unsigned i = 0; i < WidenNumElts - InNumElts; ++i) Ops.push_back(FillVal); return DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, Ops); } SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, NVT) : DAG.getUNDEF(NVT); return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, NVT, FillVal, InOp, DAG.getIntPtrConstant(0, dl)); } static SDValue LowerMSCATTER(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { assert(Subtarget->hasAVX512() && "MGATHER/MSCATTER are supported on AVX-512 arch only"); // X86 scatter kills mask register, so its type should be added to // the list of return values. // If the "scatter" has 2 return values, it is already handled. if (Op.getNode()->getNumValues() == 2) return Op; MaskedScatterSDNode *N = cast<MaskedScatterSDNode>(Op.getNode()); SDValue Src = N->getValue(); MVT VT = Src.getSimpleValueType(); assert(VT.getScalarSizeInBits() >= 32 && "Unsupported scatter op"); SDLoc dl(Op); SDValue NewScatter; SDValue Index = N->getIndex(); SDValue Mask = N->getMask(); SDValue Chain = N->getChain(); SDValue BasePtr = N->getBasePtr(); MVT MemVT = N->getMemoryVT().getSimpleVT(); MVT IndexVT = Index.getSimpleValueType(); MVT MaskVT = Mask.getSimpleValueType(); if (MemVT.getScalarSizeInBits() < VT.getScalarSizeInBits()) { // The v2i32 value was promoted to v2i64. // Now we "redo" the type legalizer's work and widen the original // v2i32 value to v4i32. The original v2i32 is retrieved from v2i64 // with a shuffle. assert((MemVT == MVT::v2i32 && VT == MVT::v2i64) && "Unexpected memory type"); int ShuffleMask[] = {0, 2, -1, -1}; Src = DAG.getVectorShuffle(MVT::v4i32, dl, DAG.getBitcast(MVT::v4i32, Src), DAG.getUNDEF(MVT::v4i32), ShuffleMask); // Now we have 4 elements instead of 2. // Expand the index. MVT NewIndexVT = MVT::getVectorVT(IndexVT.getScalarType(), 4); Index = ExtendToType(Index, NewIndexVT, DAG); // Expand the mask with zeroes // Mask may be <2 x i64> or <2 x i1> at this moment assert((MaskVT == MVT::v2i1 || MaskVT == MVT::v2i64) && "Unexpected mask type"); MVT ExtMaskVT = MVT::getVectorVT(MaskVT.getScalarType(), 4); Mask = ExtendToType(Mask, ExtMaskVT, DAG, true); VT = MVT::v4i32; } unsigned NumElts = VT.getVectorNumElements(); if (!Subtarget->hasVLX() && !VT.is512BitVector() && !Index.getSimpleValueType().is512BitVector()) { // AVX512F supports only 512-bit vectors. Or data or index should // be 512 bit wide. If now the both index and data are 256-bit, but // the vector contains 8 elements, we just sign-extend the index if (IndexVT == MVT::v8i32) // Just extend index Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index); else { // The minimal number of elts in scatter is 8 NumElts = 8; // Index MVT NewIndexVT = MVT::getVectorVT(IndexVT.getScalarType(), NumElts); // Use original index here, do not modify the index twice Index = ExtendToType(N->getIndex(), NewIndexVT, DAG); if (IndexVT.getScalarType() == MVT::i32) Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index); // Mask // At this point we have promoted mask operand assert(MaskVT.getScalarSizeInBits() >= 32 && "unexpected mask type"); MVT ExtMaskVT = MVT::getVectorVT(MaskVT.getScalarType(), NumElts); // Use the original mask here, do not modify the mask twice Mask = ExtendToType(N->getMask(), ExtMaskVT, DAG, true); // The value that should be stored MVT NewVT = MVT::getVectorVT(VT.getScalarType(), NumElts); Src = ExtendToType(Src, NewVT, DAG); } } // If the mask is "wide" at this point - truncate it to i1 vector MVT BitMaskVT = MVT::getVectorVT(MVT::i1, NumElts); Mask = DAG.getNode(ISD::TRUNCATE, dl, BitMaskVT, Mask); // The mask is killed by scatter, add it to the values SDVTList VTs = DAG.getVTList(BitMaskVT, MVT::Other); SDValue Ops[] = {Chain, Src, Mask, BasePtr, Index}; NewScatter = DAG.getMaskedScatter(VTs, N->getMemoryVT(), dl, Ops, N->getMemOperand()); DAG.ReplaceAllUsesWith(Op, SDValue(NewScatter.getNode(), 1)); return SDValue(NewScatter.getNode(), 0); } static SDValue LowerMLOAD(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode()); MVT VT = Op.getSimpleValueType(); SDValue Mask = N->getMask(); SDLoc dl(Op); if (Subtarget->hasAVX512() && !Subtarget->hasVLX() && !VT.is512BitVector() && Mask.getValueType() == MVT::v8i1) { // This operation is legal for targets with VLX, but without // VLX the vector should be widened to 512 bit unsigned NumEltsInWideVec = 512/VT.getScalarSizeInBits(); MVT WideDataVT = MVT::getVectorVT(VT.getScalarType(), NumEltsInWideVec); MVT WideMaskVT = MVT::getVectorVT(MVT::i1, NumEltsInWideVec); SDValue Src0 = N->getSrc0(); Src0 = ExtendToType(Src0, WideDataVT, DAG); Mask = ExtendToType(Mask, WideMaskVT, DAG, true); SDValue NewLoad = DAG.getMaskedLoad(WideDataVT, dl, N->getChain(), N->getBasePtr(), Mask, Src0, N->getMemoryVT(), N->getMemOperand(), N->getExtensionType()); SDValue Exract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, NewLoad.getValue(0), DAG.getIntPtrConstant(0, dl)); SDValue RetOps[] = {Exract, NewLoad.getValue(1)}; return DAG.getMergeValues(RetOps, dl); } return Op; } static SDValue LowerMSTORE(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { MaskedStoreSDNode *N = cast<MaskedStoreSDNode>(Op.getNode()); SDValue DataToStore = N->getValue(); MVT VT = DataToStore.getSimpleValueType(); SDValue Mask = N->getMask(); SDLoc dl(Op); if (Subtarget->hasAVX512() && !Subtarget->hasVLX() && !VT.is512BitVector() && Mask.getValueType() == MVT::v8i1) { // This operation is legal for targets with VLX, but without // VLX the vector should be widened to 512 bit unsigned NumEltsInWideVec = 512/VT.getScalarSizeInBits(); MVT WideDataVT = MVT::getVectorVT(VT.getScalarType(), NumEltsInWideVec); MVT WideMaskVT = MVT::getVectorVT(MVT::i1, NumEltsInWideVec); DataToStore = ExtendToType(DataToStore, WideDataVT, DAG); Mask = ExtendToType(Mask, WideMaskVT, DAG, true); return DAG.getMaskedStore(N->getChain(), dl, DataToStore, N->getBasePtr(), Mask, N->getMemoryVT(), N->getMemOperand(), N->isTruncatingStore()); } return Op; } static SDValue LowerMGATHER(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { assert(Subtarget->hasAVX512() && "MGATHER/MSCATTER are supported on AVX-512 arch only"); MaskedGatherSDNode *N = cast<MaskedGatherSDNode>(Op.getNode()); SDLoc dl(Op); MVT VT = Op.getSimpleValueType(); SDValue Index = N->getIndex(); SDValue Mask = N->getMask(); SDValue Src0 = N->getValue(); MVT IndexVT = Index.getSimpleValueType(); MVT MaskVT = Mask.getSimpleValueType(); unsigned NumElts = VT.getVectorNumElements(); assert(VT.getScalarSizeInBits() >= 32 && "Unsupported gather op"); if (!Subtarget->hasVLX() && !VT.is512BitVector() && !Index.getSimpleValueType().is512BitVector()) { // AVX512F supports only 512-bit vectors. Or data or index should // be 512 bit wide. If now the both index and data are 256-bit, but // the vector contains 8 elements, we just sign-extend the index if (NumElts == 8) { Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index); SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), N->getOperand(3), Index }; DAG.UpdateNodeOperands(N, Ops); return Op; } // Minimal number of elements in Gather NumElts = 8; // Index MVT NewIndexVT = MVT::getVectorVT(IndexVT.getScalarType(), NumElts); Index = ExtendToType(Index, NewIndexVT, DAG); if (IndexVT.getScalarType() == MVT::i32) Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index); // Mask MVT MaskBitVT = MVT::getVectorVT(MVT::i1, NumElts); // At this point we have promoted mask operand assert(MaskVT.getScalarSizeInBits() >= 32 && "unexpected mask type"); MVT ExtMaskVT = MVT::getVectorVT(MaskVT.getScalarType(), NumElts); Mask = ExtendToType(Mask, ExtMaskVT, DAG, true); Mask = DAG.getNode(ISD::TRUNCATE, dl, MaskBitVT, Mask); // The pass-thru value MVT NewVT = MVT::getVectorVT(VT.getScalarType(), NumElts); Src0 = ExtendToType(Src0, NewVT, DAG); SDValue Ops[] = { N->getChain(), Src0, Mask, N->getBasePtr(), Index }; SDValue NewGather = DAG.getMaskedGather(DAG.getVTList(NewVT, MVT::Other), N->getMemoryVT(), dl, Ops, N->getMemOperand()); SDValue Exract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, NewGather.getValue(0), DAG.getIntPtrConstant(0, dl)); SDValue RetOps[] = {Exract, NewGather.getValue(1)}; return DAG.getMergeValues(RetOps, dl); } return Op; } SDValue X86TargetLowering::LowerGC_TRANSITION_START(SDValue Op, SelectionDAG &DAG) const { // TODO: Eventually, the lowering of these nodes should be informed by or // deferred to the GC strategy for the function in which they appear. For // now, however, they must be lowered to something. Since they are logically // no-ops in the case of a null GC strategy (or a GC strategy which does not // require special handling for these nodes), lower them as literal NOOPs for // the time being. SmallVector<SDValue, 2> Ops; Ops.push_back(Op.getOperand(0)); if (Op->getGluedNode()) Ops.push_back(Op->getOperand(Op->getNumOperands() - 1)); SDLoc OpDL(Op); SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0); return NOOP; } SDValue X86TargetLowering::LowerGC_TRANSITION_END(SDValue Op, SelectionDAG &DAG) const { // TODO: Eventually, the lowering of these nodes should be informed by or // deferred to the GC strategy for the function in which they appear. For // now, however, they must be lowered to something. Since they are logically // no-ops in the case of a null GC strategy (or a GC strategy which does not // require special handling for these nodes), lower them as literal NOOPs for // the time being. SmallVector<SDValue, 2> Ops; Ops.push_back(Op.getOperand(0)); if (Op->getGluedNode()) Ops.push_back(Op->getOperand(Op->getNumOperands() - 1)); SDLoc OpDL(Op); SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0); return NOOP; } /// LowerOperation - Provide custom lowering hooks for some operations. /// SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: llvm_unreachable("Should not custom lower this!"); case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, Subtarget, DAG); case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: return LowerCMP_SWAP(Op, Subtarget, DAG); case ISD::CTPOP: return LowerCTPOP(Op, Subtarget, DAG); case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG); case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op,DAG); case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, Subtarget, DAG); case ISD::VECTOR_SHUFFLE: return lowerVectorShuffle(Op, Subtarget, DAG); case ISD::VSELECT: return LowerVSELECT(Op, DAG); case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG); case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG); case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); case ISD::SHL_PARTS: case ISD::SRA_PARTS: case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG); case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); case ISD::ZERO_EXTEND: return LowerZERO_EXTEND(Op, Subtarget, DAG); case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, Subtarget, DAG); case ISD::ANY_EXTEND: return LowerANY_EXTEND(Op, Subtarget, DAG); case ISD::SIGN_EXTEND_VECTOR_INREG: return LowerSIGN_EXTEND_VECTOR_INREG(Op, Subtarget, DAG); case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); case ISD::LOAD: return LowerExtendedLoad(Op, Subtarget, DAG); case ISD::FABS: case ISD::FNEG: return LowerFABSorFNEG(Op, DAG); case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG); case ISD::SETCC: return LowerSETCC(Op, DAG); case ISD::SETCCE: return LowerSETCCE(Op, DAG); case ISD::SELECT: return LowerSELECT(Op, DAG); case ISD::BRCOND: return LowerBRCOND(Op, DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG); case ISD::VAARG: return LowerVAARG(Op, DAG); case ISD::VACOPY: return LowerVACOPY(Op, Subtarget, DAG); case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, Subtarget, DAG); case ISD::INTRINSIC_VOID: case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG); case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); case ISD::CTLZ: return LowerCTLZ(Op, Subtarget, DAG); case ISD::CTLZ_ZERO_UNDEF: return LowerCTLZ_ZERO_UNDEF(Op, Subtarget, DAG); case ISD::CTTZ: case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op, DAG); case ISD::MUL: return LowerMUL(Op, Subtarget, DAG); case ISD::UMUL_LOHI: case ISD::SMUL_LOHI: return LowerMUL_LOHI(Op, Subtarget, DAG); case ISD::ROTL: return LowerRotate(Op, Subtarget, DAG); case ISD::SRA: case ISD::SRL: case ISD::SHL: return LowerShift(Op, Subtarget, DAG); case ISD::SADDO: case ISD::UADDO: case ISD::SSUBO: case ISD::USUBO: case ISD::SMULO: case ISD::UMULO: return LowerXALUO(Op, DAG); case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, Subtarget,DAG); case ISD::BITCAST: return LowerBITCAST(Op, Subtarget, DAG); case ISD::ADDC: case ISD::ADDE: case ISD::SUBC: case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); case ISD::ADD: return LowerADD(Op, DAG); case ISD::SUB: return LowerSUB(Op, DAG); case ISD::SMAX: case ISD::SMIN: case ISD::UMAX: case ISD::UMIN: return LowerMINMAX(Op, DAG); case ISD::FSINCOS: return LowerFSINCOS(Op, Subtarget, DAG); case ISD::MLOAD: return LowerMLOAD(Op, Subtarget, DAG); case ISD::MSTORE: return LowerMSTORE(Op, Subtarget, DAG); case ISD::MGATHER: return LowerMGATHER(Op, Subtarget, DAG); case ISD::MSCATTER: return LowerMSCATTER(Op, Subtarget, DAG); case ISD::GC_TRANSITION_START: return LowerGC_TRANSITION_START(Op, DAG); case ISD::GC_TRANSITION_END: return LowerGC_TRANSITION_END(Op, DAG); } } /// ReplaceNodeResults - Replace a node with an illegal result type /// with a new node built out of custom code. void X86TargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results, SelectionDAG &DAG) const { SDLoc dl(N); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); switch (N->getOpcode()) { default: llvm_unreachable("Do not know how to custom type legalize this operation!"); case X86ISD::AVG: { // Legalize types for X86ISD::AVG by expanding vectors. assert(Subtarget->hasSSE2() && "Requires at least SSE2!"); auto InVT = N->getValueType(0); auto InVTSize = InVT.getSizeInBits(); const unsigned RegSize = (InVTSize > 128) ? ((InVTSize > 256) ? 512 : 256) : 128; assert((!Subtarget->hasAVX512() || RegSize < 512) && "512-bit vector requires AVX512"); assert((!Subtarget->hasAVX2() || RegSize < 256) && "256-bit vector requires AVX2"); auto ElemVT = InVT.getVectorElementType(); auto RegVT = EVT::getVectorVT(*DAG.getContext(), ElemVT, RegSize / ElemVT.getSizeInBits()); assert(RegSize % InVT.getSizeInBits() == 0); unsigned NumConcat = RegSize / InVT.getSizeInBits(); SmallVector<SDValue, 16> Ops(NumConcat, DAG.getUNDEF(InVT)); Ops[0] = N->getOperand(0); SDValue InVec0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Ops); Ops[0] = N->getOperand(1); SDValue InVec1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Ops); SDValue Res = DAG.getNode(X86ISD::AVG, dl, RegVT, InVec0, InVec1); Results.push_back(DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InVT, Res, DAG.getIntPtrConstant(0, dl))); return; } // We might have generated v2f32 FMIN/FMAX operations. Widen them to v4f32. case X86ISD::FMINC: case X86ISD::FMIN: case X86ISD::FMAXC: case X86ISD::FMAX: { EVT VT = N->getValueType(0); assert(VT == MVT::v2f32 && "Unexpected type (!= v2f32) on FMIN/FMAX."); SDValue UNDEF = DAG.getUNDEF(VT); SDValue LHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, N->getOperand(0), UNDEF); SDValue RHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, N->getOperand(1), UNDEF); Results.push_back(DAG.getNode(N->getOpcode(), dl, MVT::v4f32, LHS, RHS)); return; } case ISD::SIGN_EXTEND_INREG: case ISD::ADDC: case ISD::ADDE: case ISD::SUBC: case ISD::SUBE: // We don't want to expand or promote these. return; case ISD::SDIV: case ISD::UDIV: case ISD::SREM: case ISD::UREM: case ISD::SDIVREM: case ISD::UDIVREM: { SDValue V = LowerWin64_i128OP(SDValue(N,0), DAG); Results.push_back(V); return; } case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: { bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true); SDValue FIST = Vals.first, StackSlot = Vals.second; if (FIST.getNode()) { EVT VT = N->getValueType(0); // Return a load from the stack slot. if (StackSlot.getNode()) Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, MachinePointerInfo(), false, false, false, 0)); else Results.push_back(FIST); } return; } case ISD::UINT_TO_FP: { assert(Subtarget->hasSSE2() && "Requires at least SSE2!"); if (N->getOperand(0).getValueType() != MVT::v2i32 || N->getValueType(0) != MVT::v2f32) return; SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64, N->getOperand(0)); SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl, MVT::f64); SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias); SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn, DAG.getBitcast(MVT::v2i64, VBias)); Or = DAG.getBitcast(MVT::v2f64, Or); // TODO: Are there any fast-math-flags to propagate here? SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias); Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub)); return; } case ISD::FP_ROUND: { if (!TLI.isTypeLegal(N->getOperand(0).getValueType())) return; SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0)); Results.push_back(V); return; } case ISD::FP_EXTEND: { // Right now, only MVT::v2f32 has OperationAction for FP_EXTEND. // No other ValueType for FP_EXTEND should reach this point. assert(N->getValueType(0) == MVT::v2f32 && "Do not know how to legalize this Node"); return; } case ISD::INTRINSIC_W_CHAIN: { unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); switch (IntNo) { default : llvm_unreachable("Do not know how to custom type " "legalize this intrinsic operation!"); case Intrinsic::x86_rdtsc: return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget, Results); case Intrinsic::x86_rdtscp: return getReadTimeStampCounter(N, dl, X86ISD::RDTSCP_DAG, DAG, Subtarget, Results); case Intrinsic::x86_rdpmc: return getReadPerformanceCounter(N, dl, DAG, Subtarget, Results); } } case ISD::INTRINSIC_WO_CHAIN: { if (SDValue V = LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), Subtarget, DAG)) Results.push_back(V); return; } case ISD::READCYCLECOUNTER: { return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget, Results); } case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { EVT T = N->getValueType(0); assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair"); bool Regs64bit = T == MVT::i128; MVT HalfT = Regs64bit ? MVT::i64 : MVT::i32; SDValue cpInL, cpInH; cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2), DAG.getConstant(0, dl, HalfT)); cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2), DAG.getConstant(1, dl, HalfT)); cpInL = DAG.getCopyToReg(N->getOperand(0), dl, Regs64bit ? X86::RAX : X86::EAX, cpInL, SDValue()); cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, Regs64bit ? X86::RDX : X86::EDX, cpInH, cpInL.getValue(1)); SDValue swapInL, swapInH; swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3), DAG.getConstant(0, dl, HalfT)); swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3), DAG.getConstant(1, dl, HalfT)); swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, Regs64bit ? X86::RBX : X86::EBX, swapInL, cpInH.getValue(1)); swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, Regs64bit ? X86::RCX : X86::ECX, swapInH, swapInL.getValue(1)); SDValue Ops[] = { swapInH.getValue(0), N->getOperand(1), swapInH.getValue(1) }; SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG : X86ISD::LCMPXCHG8_DAG; SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO); SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, Regs64bit ? X86::RAX : X86::EAX, HalfT, Result.getValue(1)); SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, Regs64bit ? X86::RDX : X86::EDX, HalfT, cpOutL.getValue(2)); SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)}; SDValue EFLAGS = DAG.getCopyFromReg(cpOutH.getValue(1), dl, X86::EFLAGS, MVT::i32, cpOutH.getValue(2)); SDValue Success = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(X86::COND_E, dl, MVT::i8), EFLAGS); Success = DAG.getZExtOrTrunc(Success, dl, N->getValueType(1)); Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF)); Results.push_back(Success); Results.push_back(EFLAGS.getValue(1)); return; } case ISD::ATOMIC_SWAP: case ISD::ATOMIC_LOAD_ADD: case ISD::ATOMIC_LOAD_SUB: case ISD::ATOMIC_LOAD_AND: case ISD::ATOMIC_LOAD_OR: case ISD::ATOMIC_LOAD_XOR: case ISD::ATOMIC_LOAD_NAND: case ISD::ATOMIC_LOAD_MIN: case ISD::ATOMIC_LOAD_MAX: case ISD::ATOMIC_LOAD_UMIN: case ISD::ATOMIC_LOAD_UMAX: case ISD::ATOMIC_LOAD: { // Delegate to generic TypeLegalization. Situations we can really handle // should have already been dealt with by AtomicExpandPass.cpp. break; } case ISD::BITCAST: { assert(Subtarget->hasSSE2() && "Requires at least SSE2!"); EVT DstVT = N->getValueType(0); EVT SrcVT = N->getOperand(0)->getValueType(0); if (SrcVT != MVT::f64 || (DstVT != MVT::v2i32 && DstVT != MVT::v4i16 && DstVT != MVT::v8i8)) return; unsigned NumElts = DstVT.getVectorNumElements(); EVT SVT = DstVT.getVectorElementType(); EVT WiderVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2); SDValue Expanded = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, N->getOperand(0)); SDValue ToVecInt = DAG.getBitcast(WiderVT, Expanded); if (ExperimentalVectorWideningLegalization) { // If we are legalizing vectors by widening, we already have the desired // legal vector type, just return it. Results.push_back(ToVecInt); return; } SmallVector<SDValue, 8> Elts; for (unsigned i = 0, e = NumElts; i != e; ++i) Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, ToVecInt, DAG.getIntPtrConstant(i, dl))); Results.push_back(DAG.getNode(ISD::BUILD_VECTOR, dl, DstVT, Elts)); } } } const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { switch ((X86ISD::NodeType)Opcode) { case X86ISD::FIRST_NUMBER: break; case X86ISD::BSF: return "X86ISD::BSF"; case X86ISD::BSR: return "X86ISD::BSR"; case X86ISD::SHLD: return "X86ISD::SHLD"; case X86ISD::SHRD: return "X86ISD::SHRD"; case X86ISD::FAND: return "X86ISD::FAND"; case X86ISD::FANDN: return "X86ISD::FANDN"; case X86ISD::FOR: return "X86ISD::FOR"; case X86ISD::FXOR: return "X86ISD::FXOR"; case X86ISD::FILD: return "X86ISD::FILD"; case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG"; case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; case X86ISD::FLD: return "X86ISD::FLD"; case X86ISD::FST: return "X86ISD::FST"; case X86ISD::CALL: return "X86ISD::CALL"; case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG"; case X86ISD::RDTSCP_DAG: return "X86ISD::RDTSCP_DAG"; case X86ISD::RDPMC_DAG: return "X86ISD::RDPMC_DAG"; case X86ISD::BT: return "X86ISD::BT"; case X86ISD::CMP: return "X86ISD::CMP"; case X86ISD::COMI: return "X86ISD::COMI"; case X86ISD::UCOMI: return "X86ISD::UCOMI"; case X86ISD::CMPM: return "X86ISD::CMPM"; case X86ISD::CMPMU: return "X86ISD::CMPMU"; case X86ISD::CMPM_RND: return "X86ISD::CMPM_RND"; case X86ISD::SETCC: return "X86ISD::SETCC"; case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY"; case X86ISD::FSETCC: return "X86ISD::FSETCC"; case X86ISD::FGETSIGNx86: return "X86ISD::FGETSIGNx86"; case X86ISD::CMOV: return "X86ISD::CMOV"; case X86ISD::BRCOND: return "X86ISD::BRCOND"; case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG"; case X86ISD::IRET: return "X86ISD::IRET"; case X86ISD::REP_STOS: return "X86ISD::REP_STOS"; case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS"; case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg"; case X86ISD::Wrapper: return "X86ISD::Wrapper"; case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP"; case X86ISD::MOVDQ2Q: return "X86ISD::MOVDQ2Q"; case X86ISD::MMX_MOVD2W: return "X86ISD::MMX_MOVD2W"; case X86ISD::MMX_MOVW2D: return "X86ISD::MMX_MOVW2D"; case X86ISD::PEXTRB: return "X86ISD::PEXTRB"; case X86ISD::PEXTRW: return "X86ISD::PEXTRW"; case X86ISD::INSERTPS: return "X86ISD::INSERTPS"; case X86ISD::PINSRB: return "X86ISD::PINSRB"; case X86ISD::PINSRW: return "X86ISD::PINSRW"; case X86ISD::MMX_PINSRW: return "X86ISD::MMX_PINSRW"; case X86ISD::PSHUFB: return "X86ISD::PSHUFB"; case X86ISD::ANDNP: return "X86ISD::ANDNP"; case X86ISD::PSIGN: return "X86ISD::PSIGN"; case X86ISD::BLENDI: return "X86ISD::BLENDI"; case X86ISD::SHRUNKBLEND: return "X86ISD::SHRUNKBLEND"; case X86ISD::ADDUS: return "X86ISD::ADDUS"; case X86ISD::SUBUS: return "X86ISD::SUBUS"; case X86ISD::HADD: return "X86ISD::HADD"; case X86ISD::HSUB: return "X86ISD::HSUB"; case X86ISD::FHADD: return "X86ISD::FHADD"; case X86ISD::FHSUB: return "X86ISD::FHSUB"; case X86ISD::ABS: return "X86ISD::ABS"; case X86ISD::CONFLICT: return "X86ISD::CONFLICT"; case X86ISD::FMAX: return "X86ISD::FMAX"; case X86ISD::FMAX_RND: return "X86ISD::FMAX_RND"; case X86ISD::FMIN: return "X86ISD::FMIN"; case X86ISD::FMIN_RND: return "X86ISD::FMIN_RND"; case X86ISD::FMAXC: return "X86ISD::FMAXC"; case X86ISD::FMINC: return "X86ISD::FMINC"; case X86ISD::FRSQRT: return "X86ISD::FRSQRT"; case X86ISD::FRCP: return "X86ISD::FRCP"; case X86ISD::EXTRQI: return "X86ISD::EXTRQI"; case X86ISD::INSERTQI: return "X86ISD::INSERTQI"; case X86ISD::TLSADDR: return "X86ISD::TLSADDR"; case X86ISD::TLSBASEADDR: return "X86ISD::TLSBASEADDR"; case X86ISD::TLSCALL: return "X86ISD::TLSCALL"; case X86ISD::EH_SJLJ_SETJMP: return "X86ISD::EH_SJLJ_SETJMP"; case X86ISD::EH_SJLJ_LONGJMP: return "X86ISD::EH_SJLJ_LONGJMP"; case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN"; case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN"; case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m"; case X86ISD::FNSTSW16r: return "X86ISD::FNSTSW16r"; case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG"; case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG"; case X86ISD::LCMPXCHG16_DAG: return "X86ISD::LCMPXCHG16_DAG"; case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL"; case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD"; case X86ISD::VZEXT: return "X86ISD::VZEXT"; case X86ISD::VSEXT: return "X86ISD::VSEXT"; case X86ISD::VTRUNC: return "X86ISD::VTRUNC"; case X86ISD::VTRUNCS: return "X86ISD::VTRUNCS"; case X86ISD::VTRUNCUS: return "X86ISD::VTRUNCUS"; case X86ISD::VINSERT: return "X86ISD::VINSERT"; case X86ISD::VFPEXT: return "X86ISD::VFPEXT"; case X86ISD::VFPROUND: return "X86ISD::VFPROUND"; case X86ISD::CVTDQ2PD: return "X86ISD::CVTDQ2PD"; case X86ISD::CVTUDQ2PD: return "X86ISD::CVTUDQ2PD"; case X86ISD::VSHLDQ: return "X86ISD::VSHLDQ"; case X86ISD::VSRLDQ: return "X86ISD::VSRLDQ"; case X86ISD::VSHL: return "X86ISD::VSHL"; case X86ISD::VSRL: return "X86ISD::VSRL"; case X86ISD::VSRA: return "X86ISD::VSRA"; case X86ISD::VSHLI: return "X86ISD::VSHLI"; case X86ISD::VSRLI: return "X86ISD::VSRLI"; case X86ISD::VSRAI: return "X86ISD::VSRAI"; case X86ISD::CMPP: return "X86ISD::CMPP"; case X86ISD::PCMPEQ: return "X86ISD::PCMPEQ"; case X86ISD::PCMPGT: return "X86ISD::PCMPGT"; case X86ISD::PCMPEQM: return "X86ISD::PCMPEQM"; case X86ISD::PCMPGTM: return "X86ISD::PCMPGTM"; case X86ISD::ADD: return "X86ISD::ADD"; case X86ISD::SUB: return "X86ISD::SUB"; case X86ISD::ADC: return "X86ISD::ADC"; case X86ISD::SBB: return "X86ISD::SBB"; case X86ISD::SMUL: return "X86ISD::SMUL"; case X86ISD::UMUL: return "X86ISD::UMUL"; case X86ISD::SMUL8: return "X86ISD::SMUL8"; case X86ISD::UMUL8: return "X86ISD::UMUL8"; case X86ISD::SDIVREM8_SEXT_HREG: return "X86ISD::SDIVREM8_SEXT_HREG"; case X86ISD::UDIVREM8_ZEXT_HREG: return "X86ISD::UDIVREM8_ZEXT_HREG"; case X86ISD::INC: return "X86ISD::INC"; case X86ISD::DEC: return "X86ISD::DEC"; case X86ISD::OR: return "X86ISD::OR"; case X86ISD::XOR: return "X86ISD::XOR"; case X86ISD::AND: return "X86ISD::AND"; case X86ISD::BEXTR: return "X86ISD::BEXTR"; case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM"; case X86ISD::PTEST: return "X86ISD::PTEST"; case X86ISD::TESTP: return "X86ISD::TESTP"; case X86ISD::TESTM: return "X86ISD::TESTM"; case X86ISD::TESTNM: return "X86ISD::TESTNM"; case X86ISD::KORTEST: return "X86ISD::KORTEST"; case X86ISD::KTEST: return "X86ISD::KTEST"; case X86ISD::PACKSS: return "X86ISD::PACKSS"; case X86ISD::PACKUS: return "X86ISD::PACKUS"; case X86ISD::PALIGNR: return "X86ISD::PALIGNR"; case X86ISD::VALIGN: return "X86ISD::VALIGN"; case X86ISD::PSHUFD: return "X86ISD::PSHUFD"; case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW"; case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW"; case X86ISD::SHUFP: return "X86ISD::SHUFP"; case X86ISD::SHUF128: return "X86ISD::SHUF128"; case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS"; case X86ISD::MOVLHPD: return "X86ISD::MOVLHPD"; case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS"; case X86ISD::MOVLPS: return "X86ISD::MOVLPS"; case X86ISD::MOVLPD: return "X86ISD::MOVLPD"; case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP"; case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP"; case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP"; case X86ISD::MOVSD: return "X86ISD::MOVSD"; case X86ISD::MOVSS: return "X86ISD::MOVSS"; case X86ISD::UNPCKL: return "X86ISD::UNPCKL"; case X86ISD::UNPCKH: return "X86ISD::UNPCKH"; case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST"; case X86ISD::VBROADCASTM: return "X86ISD::VBROADCASTM"; case X86ISD::SUBV_BROADCAST: return "X86ISD::SUBV_BROADCAST"; case X86ISD::VEXTRACT: return "X86ISD::VEXTRACT"; case X86ISD::VPERMILPV: return "X86ISD::VPERMILPV"; case X86ISD::VPERMILPI: return "X86ISD::VPERMILPI"; case X86ISD::VPERM2X128: return "X86ISD::VPERM2X128"; case X86ISD::VPERMV: return "X86ISD::VPERMV"; case X86ISD::VPERMV3: return "X86ISD::VPERMV3"; case X86ISD::VPERMIV3: return "X86ISD::VPERMIV3"; case X86ISD::VPERMI: return "X86ISD::VPERMI"; case X86ISD::VPTERNLOG: return "X86ISD::VPTERNLOG"; case X86ISD::VFIXUPIMM: return "X86ISD::VFIXUPIMM"; case X86ISD::VRANGE: return "X86ISD::VRANGE"; case X86ISD::PMULUDQ: return "X86ISD::PMULUDQ"; case X86ISD::PMULDQ: return "X86ISD::PMULDQ"; case X86ISD::PSADBW: return "X86ISD::PSADBW"; case X86ISD::DBPSADBW: return "X86ISD::DBPSADBW"; case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS"; case X86ISD::VAARG_64: return "X86ISD::VAARG_64"; case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA"; case X86ISD::MEMBARRIER: return "X86ISD::MEMBARRIER"; case X86ISD::MFENCE: return "X86ISD::MFENCE"; case X86ISD::SFENCE: return "X86ISD::SFENCE"; case X86ISD::LFENCE: return "X86ISD::LFENCE"; case X86ISD::SEG_ALLOCA: return "X86ISD::SEG_ALLOCA"; case X86ISD::SAHF: return "X86ISD::SAHF"; case X86ISD::RDRAND: return "X86ISD::RDRAND"; case X86ISD::RDSEED: return "X86ISD::RDSEED"; case X86ISD::VPMADDUBSW: return "X86ISD::VPMADDUBSW"; case X86ISD::VPMADDWD: return "X86ISD::VPMADDWD"; case X86ISD::VPROT: return "X86ISD::VPROT"; case X86ISD::VPROTI: return "X86ISD::VPROTI"; case X86ISD::VPSHA: return "X86ISD::VPSHA"; case X86ISD::VPSHL: return "X86ISD::VPSHL"; case X86ISD::VPCOM: return "X86ISD::VPCOM"; case X86ISD::VPCOMU: return "X86ISD::VPCOMU"; case X86ISD::FMADD: return "X86ISD::FMADD"; case X86ISD::FMSUB: return "X86ISD::FMSUB"; case X86ISD::FNMADD: return "X86ISD::FNMADD"; case X86ISD::FNMSUB: return "X86ISD::FNMSUB"; case X86ISD::FMADDSUB: return "X86ISD::FMADDSUB"; case X86ISD::FMSUBADD: return "X86ISD::FMSUBADD"; case X86ISD::FMADD_RND: return "X86ISD::FMADD_RND"; case X86ISD::FNMADD_RND: return "X86ISD::FNMADD_RND"; case X86ISD::FMSUB_RND: return "X86ISD::FMSUB_RND"; case X86ISD::FNMSUB_RND: return "X86ISD::FNMSUB_RND"; case X86ISD::FMADDSUB_RND: return "X86ISD::FMADDSUB_RND"; case X86ISD::FMSUBADD_RND: return "X86ISD::FMSUBADD_RND"; case X86ISD::VRNDSCALE: return "X86ISD::VRNDSCALE"; case X86ISD::VREDUCE: return "X86ISD::VREDUCE"; case X86ISD::VGETMANT: return "X86ISD::VGETMANT"; case X86ISD::PCMPESTRI: return "X86ISD::PCMPESTRI"; case X86ISD::PCMPISTRI: return "X86ISD::PCMPISTRI"; case X86ISD::XTEST: return "X86ISD::XTEST"; case X86ISD::COMPRESS: return "X86ISD::COMPRESS"; case X86ISD::EXPAND: return "X86ISD::EXPAND"; case X86ISD::SELECT: return "X86ISD::SELECT"; case X86ISD::ADDSUB: return "X86ISD::ADDSUB"; case X86ISD::RCP28: return "X86ISD::RCP28"; case X86ISD::EXP2: return "X86ISD::EXP2"; case X86ISD::RSQRT28: return "X86ISD::RSQRT28"; case X86ISD::FADD_RND: return "X86ISD::FADD_RND"; case X86ISD::FSUB_RND: return "X86ISD::FSUB_RND"; case X86ISD::FMUL_RND: return "X86ISD::FMUL_RND"; case X86ISD::FDIV_RND: return "X86ISD::FDIV_RND"; case X86ISD::FSQRT_RND: return "X86ISD::FSQRT_RND"; case X86ISD::FGETEXP_RND: return "X86ISD::FGETEXP_RND"; case X86ISD::SCALEF: return "X86ISD::SCALEF"; case X86ISD::ADDS: return "X86ISD::ADDS"; case X86ISD::SUBS: return "X86ISD::SUBS"; case X86ISD::AVG: return "X86ISD::AVG"; case X86ISD::MULHRS: return "X86ISD::MULHRS"; case X86ISD::SINT_TO_FP_RND: return "X86ISD::SINT_TO_FP_RND"; case X86ISD::UINT_TO_FP_RND: return "X86ISD::UINT_TO_FP_RND"; case X86ISD::FP_TO_SINT_RND: return "X86ISD::FP_TO_SINT_RND"; case X86ISD::FP_TO_UINT_RND: return "X86ISD::FP_TO_UINT_RND"; case X86ISD::VFPCLASS: return "X86ISD::VFPCLASS"; case X86ISD::VFPCLASSS: return "X86ISD::VFPCLASSS"; } return nullptr; } // isLegalAddressingMode - Return true if the addressing mode represented // by AM is legal for this target, for a load/store of the specified type. bool X86TargetLowering::isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS) const { // X86 supports extremely general addressing modes. CodeModel::Model M = getTargetMachine().getCodeModel(); Reloc::Model R = getTargetMachine().getRelocationModel(); // X86 allows a sign-extended 32-bit immediate field as a displacement. if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != nullptr)) return false; if (AM.BaseGV) { unsigned GVFlags = Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine()); // If a reference to this global requires an extra load, we can't fold it. if (isGlobalStubReference(GVFlags)) return false; // If BaseGV requires a register for the PIC base, we cannot also have a // BaseReg specified. if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags)) return false; // If lower 4G is not available, then we must use rip-relative addressing. if ((M != CodeModel::Small || R != Reloc::Static) && Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1)) return false; } switch (AM.Scale) { case 0: case 1: case 2: case 4: case 8: // These scales always work. break; case 3: case 5: case 9: // These scales are formed with basereg+scalereg. Only accept if there is // no basereg yet. if (AM.HasBaseReg) return false; break; default: // Other stuff never works. return false; } return true; } bool X86TargetLowering::isVectorShiftByScalarCheap(Type *Ty) const { unsigned Bits = Ty->getScalarSizeInBits(); // 8-bit shifts are always expensive, but versions with a scalar amount aren't // particularly cheaper than those without. if (Bits == 8) return false; // On AVX2 there are new vpsllv[dq] instructions (and other shifts), that make // variable shifts just as cheap as scalar ones. if (Subtarget->hasInt256() && (Bits == 32 || Bits == 64)) return false; // Otherwise, it's significantly cheaper to shift by a scalar amount than by a // fully general vector. return true; } bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) return false; unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); return NumBits1 > NumBits2; } bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) return false; if (!isTypeLegal(EVT::getEVT(Ty1))) return false; assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop"); // Assuming the caller doesn't have a zeroext or signext return parameter, // truncation all the way down to i1 is valid. return true; } bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const { return isInt<32>(Imm); } bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const { // Can also use sub to handle negated immediates. return isInt<32>(Imm); } bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { if (!VT1.isInteger() || !VT2.isInteger()) return false; unsigned NumBits1 = VT1.getSizeInBits(); unsigned NumBits2 = VT2.getSizeInBits(); return NumBits1 > NumBits2; } bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit(); } bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit(); } bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { EVT VT1 = Val.getValueType(); if (isZExtFree(VT1, VT2)) return true; if (Val.getOpcode() != ISD::LOAD) return false; if (!VT1.isSimple() || !VT1.isInteger() || !VT2.isSimple() || !VT2.isInteger()) return false; switch (VT1.getSimpleVT().SimpleTy) { default: break; case MVT::i8: case MVT::i16: case MVT::i32: // X86 has 8, 16, and 32-bit zero-extending loads. return true; } return false; } bool X86TargetLowering::isVectorLoadExtDesirable(SDValue) const { return true; } bool X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { if (!Subtarget->hasAnyFMA()) return false; VT = VT.getScalarType(); if (!VT.isSimple()) return false; switch (VT.getSimpleVT().SimpleTy) { case MVT::f32: case MVT::f64: return true; default: break; } return false; } bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const { // i16 instructions are longer (0x66 prefix) and potentially slower. return !(VT1 == MVT::i32 && VT2 == MVT::i16); } /// isShuffleMaskLegal - Targets can use this to indicate that they only /// support *some* VECTOR_SHUFFLE operations, those with specific masks. /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values /// are assumed to be legal. bool X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, EVT VT) const { if (!VT.isSimple()) return false; // Not for i1 vectors if (VT.getSimpleVT().getScalarType() == MVT::i1) return false; // Very little shuffling can be done for 64-bit vectors right now. if (VT.getSimpleVT().getSizeInBits() == 64) return false; // We only care that the types being shuffled are legal. The lowering can // handle any possible shuffle mask that results. return isTypeLegal(VT.getSimpleVT()); } bool X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask, EVT VT) const { // Just delegate to the generic legality, clear masks aren't special. return isShuffleMaskLegal(Mask, VT); } //===----------------------------------------------------------------------===// // X86 Scheduler Hooks //===----------------------------------------------------------------------===// /// Utility function to emit xbegin specifying the start of an RTM region. static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB, const TargetInstrInfo *TII) { DebugLoc DL = MI->getDebugLoc(); const BasicBlock *BB = MBB->getBasicBlock(); MachineFunction::iterator I = ++MBB->getIterator(); // For the v = xbegin(), we generate // // thisMBB: // xbegin sinkMBB // // mainMBB: // eax = -1 // // sinkMBB: // v = eax MachineBasicBlock *thisMBB = MBB; MachineFunction *MF = MBB->getParent(); MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); MF->insert(I, mainMBB); MF->insert(I, sinkMBB); // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), MBB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); // thisMBB: // xbegin sinkMBB // # fallthrough to mainMBB // # abortion to sinkMBB BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB); thisMBB->addSuccessor(mainMBB); thisMBB->addSuccessor(sinkMBB); // mainMBB: // EAX = -1 BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1); mainMBB->addSuccessor(sinkMBB); // sinkMBB: // EAX is live into the sinkMBB sinkMBB->addLiveIn(X86::EAX); BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) .addReg(X86::EAX); MI->eraseFromParent(); return sinkMBB; } // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8 // or XMM0_V32I8 in AVX all of this code can be replaced with that // in the .td file. static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB, const TargetInstrInfo *TII) { unsigned Opc; switch (MI->getOpcode()) { default: llvm_unreachable("illegal opcode!"); case X86::PCMPISTRM128REG: Opc = X86::PCMPISTRM128rr; break; case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break; case X86::PCMPISTRM128MEM: Opc = X86::PCMPISTRM128rm; break; case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break; case X86::PCMPESTRM128REG: Opc = X86::PCMPESTRM128rr; break; case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break; case X86::PCMPESTRM128MEM: Opc = X86::PCMPESTRM128rm; break; case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break; } DebugLoc dl = MI->getDebugLoc(); MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc)); unsigned NumArgs = MI->getNumOperands(); for (unsigned i = 1; i < NumArgs; ++i) { MachineOperand &Op = MI->getOperand(i); if (!(Op.isReg() && Op.isImplicit())) MIB.addOperand(Op); } if (MI->hasOneMemOperand()) MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) .addReg(X86::XMM0); MI->eraseFromParent(); return BB; } // FIXME: Custom handling because TableGen doesn't support multiple implicit // defs in an instruction pattern static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB, const TargetInstrInfo *TII) { unsigned Opc; switch (MI->getOpcode()) { default: llvm_unreachable("illegal opcode!"); case X86::PCMPISTRIREG: Opc = X86::PCMPISTRIrr; break; case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break; case X86::PCMPISTRIMEM: Opc = X86::PCMPISTRIrm; break; case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break; case X86::PCMPESTRIREG: Opc = X86::PCMPESTRIrr; break; case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break; case X86::PCMPESTRIMEM: Opc = X86::PCMPESTRIrm; break; case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break; } DebugLoc dl = MI->getDebugLoc(); MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc)); unsigned NumArgs = MI->getNumOperands(); // remove the results for (unsigned i = 1; i < NumArgs; ++i) { MachineOperand &Op = MI->getOperand(i); if (!(Op.isReg() && Op.isImplicit())) MIB.addOperand(Op); } if (MI->hasOneMemOperand()) MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) .addReg(X86::ECX); MI->eraseFromParent(); return BB; } static MachineBasicBlock *EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB, const X86Subtarget *Subtarget) { DebugLoc dl = MI->getDebugLoc(); const TargetInstrInfo *TII = Subtarget->getInstrInfo(); // Address into RAX/EAX, other two args into ECX, EDX. unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r; unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg); for (int i = 0; i < X86::AddrNumOperands; ++i) MIB.addOperand(MI->getOperand(i)); unsigned ValOps = X86::AddrNumOperands; BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX) .addReg(MI->getOperand(ValOps).getReg()); BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX) .addReg(MI->getOperand(ValOps+1).getReg()); // The instruction doesn't actually take any operands though. BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr)); MI->eraseFromParent(); // The pseudo is gone now. return BB; } MachineBasicBlock * X86TargetLowering::EmitVAARG64WithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { // Emit va_arg instruction on X86-64. // Operands to this pseudo-instruction: // 0 ) Output : destination address (reg) // 1-5) Input : va_list address (addr, i64mem) // 6 ) ArgSize : Size (in bytes) of vararg type // 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset // 8 ) Align : Alignment of type // 9 ) EFLAGS (implicit-def) assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!"); static_assert(X86::AddrNumOperands == 5, "VAARG_64 assumes 5 address operands"); unsigned DestReg = MI->getOperand(0).getReg(); MachineOperand &Base = MI->getOperand(1); MachineOperand &Scale = MI->getOperand(2); MachineOperand &Index = MI->getOperand(3); MachineOperand &Disp = MI->getOperand(4); MachineOperand &Segment = MI->getOperand(5); unsigned ArgSize = MI->getOperand(6).getImm(); unsigned ArgMode = MI->getOperand(7).getImm(); unsigned Align = MI->getOperand(8).getImm(); // Memory Reference assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand"); MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); // Machine Information const TargetInstrInfo *TII = Subtarget->getInstrInfo(); MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64); const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32); DebugLoc DL = MI->getDebugLoc(); // struct va_list { // i32 gp_offset // i32 fp_offset // i64 overflow_area (address) // i64 reg_save_area (address) // } // sizeof(va_list) = 24 // alignment(va_list) = 8 unsigned TotalNumIntRegs = 6; unsigned TotalNumXMMRegs = 8; bool UseGPOffset = (ArgMode == 1); bool UseFPOffset = (ArgMode == 2); unsigned MaxOffset = TotalNumIntRegs * 8 + (UseFPOffset ? TotalNumXMMRegs * 16 : 0); /* Align ArgSize to a multiple of 8 */ unsigned ArgSizeA8 = (ArgSize + 7) & ~7; bool NeedsAlign = (Align > 8); MachineBasicBlock *thisMBB = MBB; MachineBasicBlock *overflowMBB; MachineBasicBlock *offsetMBB; MachineBasicBlock *endMBB; unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB unsigned OffsetReg = 0; if (!UseGPOffset && !UseFPOffset) { // If we only pull from the overflow region, we don't create a branch. // We don't need to alter control flow. OffsetDestReg = 0; // unused OverflowDestReg = DestReg; offsetMBB = nullptr; overflowMBB = thisMBB; endMBB = thisMBB; } else { // First emit code to check if gp_offset (or fp_offset) is below the bound. // If so, pull the argument from reg_save_area. (branch to offsetMBB) // If not, pull from overflow_area. (branch to overflowMBB) // // thisMBB // | . // | . // offsetMBB overflowMBB // | . // | . // endMBB // Registers for the PHI in endMBB OffsetDestReg = MRI.createVirtualRegister(AddrRegClass); OverflowDestReg = MRI.createVirtualRegister(AddrRegClass); const BasicBlock *LLVM_BB = MBB->getBasicBlock(); MachineFunction *MF = MBB->getParent(); overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB); offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB); endMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineFunction::iterator MBBIter = ++MBB->getIterator(); // Insert the new basic blocks MF->insert(MBBIter, offsetMBB); MF->insert(MBBIter, overflowMBB); MF->insert(MBBIter, endMBB); // Transfer the remainder of MBB and its successor edges to endMBB. endMBB->splice(endMBB->begin(), thisMBB, std::next(MachineBasicBlock::iterator(MI)), thisMBB->end()); endMBB->transferSuccessorsAndUpdatePHIs(thisMBB); // Make offsetMBB and overflowMBB successors of thisMBB thisMBB->addSuccessor(offsetMBB); thisMBB->addSuccessor(overflowMBB); // endMBB is a successor of both offsetMBB and overflowMBB offsetMBB->addSuccessor(endMBB); overflowMBB->addSuccessor(endMBB); // Load the offset value into a register OffsetReg = MRI.createVirtualRegister(OffsetRegClass); BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg) .addOperand(Base) .addOperand(Scale) .addOperand(Index) .addDisp(Disp, UseFPOffset ? 4 : 0) .addOperand(Segment) .setMemRefs(MMOBegin, MMOEnd); // Check if there is enough room left to pull this argument. BuildMI(thisMBB, DL, TII->get(X86::CMP32ri)) .addReg(OffsetReg) .addImm(MaxOffset + 8 - ArgSizeA8); // Branch to "overflowMBB" if offset >= max // Fall through to "offsetMBB" otherwise BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE))) .addMBB(overflowMBB); } // In offsetMBB, emit code to use the reg_save_area. if (offsetMBB) { assert(OffsetReg != 0); // Read the reg_save_area address. unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass); BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg) .addOperand(Base) .addOperand(Scale) .addOperand(Index) .addDisp(Disp, 16) .addOperand(Segment) .setMemRefs(MMOBegin, MMOEnd); // Zero-extend the offset unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass); BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64) .addImm(0) .addReg(OffsetReg) .addImm(X86::sub_32bit); // Add the offset to the reg_save_area to get the final address. BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg) .addReg(OffsetReg64) .addReg(RegSaveReg); // Compute the offset for the next argument unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass); BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg) .addReg(OffsetReg) .addImm(UseFPOffset ? 16 : 8); // Store it back into the va_list. BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr)) .addOperand(Base) .addOperand(Scale) .addOperand(Index) .addDisp(Disp, UseFPOffset ? 4 : 0) .addOperand(Segment) .addReg(NextOffsetReg) .setMemRefs(MMOBegin, MMOEnd); // Jump to endMBB BuildMI(offsetMBB, DL, TII->get(X86::JMP_1)) .addMBB(endMBB); } // // Emit code to use overflow area // // Load the overflow_area address into a register. unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass); BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg) .addOperand(Base) .addOperand(Scale) .addOperand(Index) .addDisp(Disp, 8) .addOperand(Segment) .setMemRefs(MMOBegin, MMOEnd); // If we need to align it, do so. Otherwise, just copy the address // to OverflowDestReg. if (NeedsAlign) { // Align the overflow address assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2"); unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass); // aligned_addr = (addr + (align-1)) & ~(align-1) BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg) .addReg(OverflowAddrReg) .addImm(Align-1); BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg) .addReg(TmpReg) .addImm(~(uint64_t)(Align-1)); } else { BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg) .addReg(OverflowAddrReg); } // Compute the next overflow address after this argument. // (the overflow address should be kept 8-byte aligned) unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass); BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg) .addReg(OverflowDestReg) .addImm(ArgSizeA8); // Store the new overflow address. BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr)) .addOperand(Base) .addOperand(Scale) .addOperand(Index) .addDisp(Disp, 8) .addOperand(Segment) .addReg(NextAddrReg) .setMemRefs(MMOBegin, MMOEnd); // If we branched, emit the PHI to the front of endMBB. if (offsetMBB) { BuildMI(*endMBB, endMBB->begin(), DL, TII->get(X86::PHI), DestReg) .addReg(OffsetDestReg).addMBB(offsetMBB) .addReg(OverflowDestReg).addMBB(overflowMBB); } // Erase the pseudo instruction MI->eraseFromParent(); return endMBB; } MachineBasicBlock * X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter( MachineInstr *MI, MachineBasicBlock *MBB) const { // Emit code to save XMM registers to the stack. The ABI says that the // number of registers to save is given in %al, so it's theoretically // possible to do an indirect jump trick to avoid saving all of them, // however this code takes a simpler approach and just executes all // of the stores if %al is non-zero. It's less code, and it's probably // easier on the hardware branch predictor, and stores aren't all that // expensive anyway. // Create the new basic blocks. One block contains all the XMM stores, // and one block is the final destination regardless of whether any // stores were performed. const BasicBlock *LLVM_BB = MBB->getBasicBlock(); MachineFunction *F = MBB->getParent(); MachineFunction::iterator MBBIter = ++MBB->getIterator(); MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(MBBIter, XMMSaveMBB); F->insert(MBBIter, EndMBB); // Transfer the remainder of MBB and its successor edges to EndMBB. EndMBB->splice(EndMBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), MBB->end()); EndMBB->transferSuccessorsAndUpdatePHIs(MBB); // The original block will now fall through to the XMM save block. MBB->addSuccessor(XMMSaveMBB); // The XMMSaveMBB will fall through to the end block. XMMSaveMBB->addSuccessor(EndMBB); // Now add the instructions. const TargetInstrInfo *TII = Subtarget->getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); unsigned CountReg = MI->getOperand(0).getReg(); int64_t RegSaveFrameIndex = MI->getOperand(1).getImm(); int64_t VarArgsFPOffset = MI->getOperand(2).getImm(); if (!Subtarget->isCallingConvWin64(F->getFunction()->getCallingConv())) { // If %al is 0, branch around the XMM save block. BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg); BuildMI(MBB, DL, TII->get(X86::JE_1)).addMBB(EndMBB); MBB->addSuccessor(EndMBB); } // Make sure the last operand is EFLAGS, which gets clobbered by the branch // that was just emitted, but clearly shouldn't be "saved". assert((MI->getNumOperands() <= 3 || !MI->getOperand(MI->getNumOperands() - 1).isReg() || MI->getOperand(MI->getNumOperands() - 1).getReg() == X86::EFLAGS) && "Expected last argument to be EFLAGS"); unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr; // In the XMM save block, save all the XMM argument registers. for (int i = 3, e = MI->getNumOperands() - 1; i != e; ++i) { int64_t Offset = (i - 3) * 16 + VarArgsFPOffset; MachineMemOperand *MMO = F->getMachineMemOperand( MachinePointerInfo::getFixedStack(*F, RegSaveFrameIndex, Offset), MachineMemOperand::MOStore, /*Size=*/16, /*Align=*/16); BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc)) .addFrameIndex(RegSaveFrameIndex) .addImm(/*Scale=*/1) .addReg(/*IndexReg=*/0) .addImm(/*Disp=*/Offset) .addReg(/*Segment=*/0) .addReg(MI->getOperand(i).getReg()) .addMemOperand(MMO); } MI->eraseFromParent(); // The pseudo instruction is gone now. return EndMBB; } // The EFLAGS operand of SelectItr might be missing a kill marker // because there were multiple uses of EFLAGS, and ISel didn't know // which to mark. Figure out whether SelectItr should have had a // kill marker, and set it if it should. Returns the correct kill // marker value. static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr, MachineBasicBlock* BB, const TargetRegisterInfo* TRI) { // Scan forward through BB for a use/def of EFLAGS. MachineBasicBlock::iterator miI(std::next(SelectItr)); for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) { const MachineInstr& mi = *miI; if (mi.readsRegister(X86::EFLAGS)) return false; if (mi.definesRegister(X86::EFLAGS)) break; // Should have kill-flag - update below. } // If we hit the end of the block, check whether EFLAGS is live into a // successor. if (miI == BB->end()) { for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(), sEnd = BB->succ_end(); sItr != sEnd; ++sItr) { MachineBasicBlock* succ = *sItr; if (succ->isLiveIn(X86::EFLAGS)) return false; } } // We found a def, or hit the end of the basic block and EFLAGS wasn't live // out. SelectMI should have a kill flag on EFLAGS. SelectItr->addRegisterKilled(X86::EFLAGS, TRI); return true; } // Return true if it is OK for this CMOV pseudo-opcode to be cascaded // together with other CMOV pseudo-opcodes into a single basic-block with // conditional jump around it. static bool isCMOVPseudo(MachineInstr *MI) { switch (MI->getOpcode()) { case X86::CMOV_FR32: case X86::CMOV_FR64: case X86::CMOV_GR8: case X86::CMOV_GR16: case X86::CMOV_GR32: case X86::CMOV_RFP32: case X86::CMOV_RFP64: case X86::CMOV_RFP80: case X86::CMOV_V2F64: case X86::CMOV_V2I64: case X86::CMOV_V4F32: case X86::CMOV_V4F64: case X86::CMOV_V4I64: case X86::CMOV_V16F32: case X86::CMOV_V8F32: case X86::CMOV_V8F64: case X86::CMOV_V8I64: case X86::CMOV_V8I1: case X86::CMOV_V16I1: case X86::CMOV_V32I1: case X86::CMOV_V64I1: return true; default: return false; } } MachineBasicBlock * X86TargetLowering::EmitLoweredSelect(MachineInstr *MI, MachineBasicBlock *BB) const { const TargetInstrInfo *TII = Subtarget->getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); // To "insert" a SELECT_CC instruction, we actually have to insert the // diamond control-flow pattern. The incoming instruction knows the // destination vreg to set, the condition code register to branch on, the // true/false values to select between, and a branch opcode to use. const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = ++BB->getIterator(); // thisMBB: // ... // TrueVal = ... // cmpTY ccX, r1, r2 // bCC copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *thisMBB = BB; MachineFunction *F = BB->getParent(); // This code lowers all pseudo-CMOV instructions. Generally it lowers these // as described above, by inserting a BB, and then making a PHI at the join // point to select the true and false operands of the CMOV in the PHI. // // The code also handles two different cases of multiple CMOV opcodes // in a row. // // Case 1: // In this case, there are multiple CMOVs in a row, all which are based on // the same condition setting (or the exact opposite condition setting). // In this case we can lower all the CMOVs using a single inserted BB, and // then make a number of PHIs at the join point to model the CMOVs. The only // trickiness here, is that in a case like: // // t2 = CMOV cond1 t1, f1 // t3 = CMOV cond1 t2, f2 // // when rewriting this into PHIs, we have to perform some renaming on the // temps since you cannot have a PHI operand refer to a PHI result earlier // in the same block. The "simple" but wrong lowering would be: // // t2 = PHI t1(BB1), f1(BB2) // t3 = PHI t2(BB1), f2(BB2) // // but clearly t2 is not defined in BB1, so that is incorrect. The proper // renaming is to note that on the path through BB1, t2 is really just a // copy of t1, and do that renaming, properly generating: // // t2 = PHI t1(BB1), f1(BB2) // t3 = PHI t1(BB1), f2(BB2) // // Case 2, we lower cascaded CMOVs such as // // (CMOV (CMOV F, T, cc1), T, cc2) // // to two successives branches. For that, we look for another CMOV as the // following instruction. // // Without this, we would add a PHI between the two jumps, which ends up // creating a few copies all around. For instance, for // // (sitofp (zext (fcmp une))) // // we would generate: // // ucomiss %xmm1, %xmm0 // movss <1.0f>, %xmm0 // movaps %xmm0, %xmm1 // jne .LBB5_2 // xorps %xmm1, %xmm1 // .LBB5_2: // jp .LBB5_4 // movaps %xmm1, %xmm0 // .LBB5_4: // retq // // because this custom-inserter would have generated: // // A // | \ // | B // | / // C // | \ // | D // | / // E // // A: X = ...; Y = ... // B: empty // C: Z = PHI [X, A], [Y, B] // D: empty // E: PHI [X, C], [Z, D] // // If we lower both CMOVs in a single step, we can instead generate: // // A // | \ // | C // | /| // |/ | // | | // | D // | / // E // // A: X = ...; Y = ... // D: empty // E: PHI [X, A], [X, C], [Y, D] // // Which, in our sitofp/fcmp example, gives us something like: // // ucomiss %xmm1, %xmm0 // movss <1.0f>, %xmm0 // jne .LBB5_4 // jp .LBB5_4 // xorps %xmm0, %xmm0 // .LBB5_4: // retq // MachineInstr *CascadedCMOV = nullptr; MachineInstr *LastCMOV = MI; X86::CondCode CC = X86::CondCode(MI->getOperand(3).getImm()); X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC); MachineBasicBlock::iterator NextMIIt = std::next(MachineBasicBlock::iterator(MI)); // Check for case 1, where there are multiple CMOVs with the same condition // first. Of the two cases of multiple CMOV lowerings, case 1 reduces the // number of jumps the most. if (isCMOVPseudo(MI)) { // See if we have a string of CMOVS with the same condition. while (NextMIIt != BB->end() && isCMOVPseudo(NextMIIt) && (NextMIIt->getOperand(3).getImm() == CC || NextMIIt->getOperand(3).getImm() == OppCC)) { LastCMOV = &*NextMIIt; ++NextMIIt; } } // This checks for case 2, but only do this if we didn't already find // case 1, as indicated by LastCMOV == MI. if (LastCMOV == MI && NextMIIt != BB->end() && NextMIIt->getOpcode() == MI->getOpcode() && NextMIIt->getOperand(2).getReg() == MI->getOperand(2).getReg() && NextMIIt->getOperand(1).getReg() == MI->getOperand(0).getReg()) { CascadedCMOV = &*NextMIIt; } MachineBasicBlock *jcc1MBB = nullptr; // If we have a cascaded CMOV, we lower it to two successive branches to // the same block. EFLAGS is used by both, so mark it as live in the second. if (CascadedCMOV) { jcc1MBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, jcc1MBB); jcc1MBB->addLiveIn(X86::EFLAGS); } MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, copy0MBB); F->insert(It, sinkMBB); // If the EFLAGS register isn't dead in the terminator, then claim that it's // live into the sink and copy blocks. const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); MachineInstr *LastEFLAGSUser = CascadedCMOV ? CascadedCMOV : LastCMOV; if (!LastEFLAGSUser->killsRegister(X86::EFLAGS) && !checkAndUpdateEFLAGSKill(LastEFLAGSUser, BB, TRI)) { copy0MBB->addLiveIn(X86::EFLAGS); sinkMBB->addLiveIn(X86::EFLAGS); } // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), BB, std::next(MachineBasicBlock::iterator(LastCMOV)), BB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(BB); // Add the true and fallthrough blocks as its successors. if (CascadedCMOV) { // The fallthrough block may be jcc1MBB, if we have a cascaded CMOV. BB->addSuccessor(jcc1MBB); // In that case, jcc1MBB will itself fallthrough the copy0MBB, and // jump to the sinkMBB. jcc1MBB->addSuccessor(copy0MBB); jcc1MBB->addSuccessor(sinkMBB); } else { BB->addSuccessor(copy0MBB); } // The true block target of the first (or only) branch is always sinkMBB. BB->addSuccessor(sinkMBB); // Create the conditional branch instruction. unsigned Opc = X86::GetCondBranchFromCond(CC); BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB); if (CascadedCMOV) { unsigned Opc2 = X86::GetCondBranchFromCond( (X86::CondCode)CascadedCMOV->getOperand(3).getImm()); BuildMI(jcc1MBB, DL, TII->get(Opc2)).addMBB(sinkMBB); } // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB copy0MBB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI); MachineBasicBlock::iterator MIItEnd = std::next(MachineBasicBlock::iterator(LastCMOV)); MachineBasicBlock::iterator SinkInsertionPoint = sinkMBB->begin(); DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; MachineInstrBuilder MIB; // As we are creating the PHIs, we have to be careful if there is more than // one. Later CMOVs may reference the results of earlier CMOVs, but later // PHIs have to reference the individual true/false inputs from earlier PHIs. // That also means that PHI construction must work forward from earlier to // later, and that the code must maintain a mapping from earlier PHI's // destination registers, and the registers that went into the PHI. for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) { unsigned DestReg = MIIt->getOperand(0).getReg(); unsigned Op1Reg = MIIt->getOperand(1).getReg(); unsigned Op2Reg = MIIt->getOperand(2).getReg(); // If this CMOV we are generating is the opposite condition from // the jump we generated, then we have to swap the operands for the // PHI that is going to be generated. if (MIIt->getOperand(3).getImm() == OppCC) std::swap(Op1Reg, Op2Reg); if (RegRewriteTable.find(Op1Reg) != RegRewriteTable.end()) Op1Reg = RegRewriteTable[Op1Reg].first; if (RegRewriteTable.find(Op2Reg) != RegRewriteTable.end()) Op2Reg = RegRewriteTable[Op2Reg].second; MIB = BuildMI(*sinkMBB, SinkInsertionPoint, DL, TII->get(X86::PHI), DestReg) .addReg(Op1Reg).addMBB(copy0MBB) .addReg(Op2Reg).addMBB(thisMBB); // Add this PHI to the rewrite table. RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg); } // If we have a cascaded CMOV, the second Jcc provides the same incoming // value as the first Jcc (the True operand of the SELECT_CC/CMOV nodes). if (CascadedCMOV) { MIB.addReg(MI->getOperand(2).getReg()).addMBB(jcc1MBB); // Copy the PHI result to the register defined by the second CMOV. BuildMI(*sinkMBB, std::next(MachineBasicBlock::iterator(MIB.getInstr())), DL, TII->get(TargetOpcode::COPY), CascadedCMOV->getOperand(0).getReg()) .addReg(MI->getOperand(0).getReg()); CascadedCMOV->eraseFromParent(); } // Now remove the CMOV(s). for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ) (MIIt++)->eraseFromParent(); return sinkMBB; } MachineBasicBlock * X86TargetLowering::EmitLoweredAtomicFP(MachineInstr *MI, MachineBasicBlock *BB) const { // Combine the following atomic floating-point modification pattern: // a.store(reg OP a.load(acquire), release) // Transform them into: // OPss (%gpr), %xmm // movss %xmm, (%gpr) // Or sd equivalent for 64-bit operations. unsigned MOp, FOp; switch (MI->getOpcode()) { default: llvm_unreachable("unexpected instr type for EmitLoweredAtomicFP"); case X86::RELEASE_FADD32mr: MOp = X86::MOVSSmr; FOp = X86::ADDSSrm; break; case X86::RELEASE_FADD64mr: MOp = X86::MOVSDmr; FOp = X86::ADDSDrm; break; } const X86InstrInfo *TII = Subtarget->getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); MachineOperand MSrc = MI->getOperand(0); unsigned VSrc = MI->getOperand(5).getReg(); const MachineOperand &Disp = MI->getOperand(3); MachineOperand ZeroDisp = MachineOperand::CreateImm(0); bool hasDisp = Disp.isGlobal() || Disp.isImm(); if (hasDisp && MSrc.isReg()) MSrc.setIsKill(false); MachineInstrBuilder MIM = BuildMI(*BB, MI, DL, TII->get(MOp)) .addOperand(/*Base=*/MSrc) .addImm(/*Scale=*/1) .addReg(/*Index=*/0) .addDisp(hasDisp ? Disp : ZeroDisp, /*off=*/0) .addReg(0); MachineInstr *MIO = BuildMI(*BB, (MachineInstr *)MIM, DL, TII->get(FOp), MRI.createVirtualRegister(MRI.getRegClass(VSrc))) .addReg(VSrc) .addOperand(/*Base=*/MSrc) .addImm(/*Scale=*/1) .addReg(/*Index=*/0) .addDisp(hasDisp ? Disp : ZeroDisp, /*off=*/0) .addReg(/*Segment=*/0); MIM.addReg(MIO->getOperand(0).getReg(), RegState::Kill); MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; } MachineBasicBlock * X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB) const { MachineFunction *MF = BB->getParent(); const TargetInstrInfo *TII = Subtarget->getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); const BasicBlock *LLVM_BB = BB->getBasicBlock(); assert(MF->shouldSplitStack()); const bool Is64Bit = Subtarget->is64Bit(); const bool IsLP64 = Subtarget->isTarget64BitLP64(); const unsigned TlsReg = Is64Bit ? X86::FS : X86::GS; const unsigned TlsOffset = IsLP64 ? 0x70 : Is64Bit ? 0x40 : 0x30; // BB: // ... [Till the alloca] // If stacklet is not large enough, jump to mallocMBB // // bumpMBB: // Allocate by subtracting from RSP // Jump to continueMBB // // mallocMBB: // Allocate by call to runtime // // continueMBB: // ... // [rest of original BB] // MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineRegisterInfo &MRI = MF->getRegInfo(); const TargetRegisterClass *AddrRegClass = getRegClassFor(getPointerTy(MF->getDataLayout())); unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass), bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass), tmpSPVReg = MRI.createVirtualRegister(AddrRegClass), SPLimitVReg = MRI.createVirtualRegister(AddrRegClass), sizeVReg = MI->getOperand(1).getReg(), physSPReg = IsLP64 || Subtarget->isTargetNaCl64() ? X86::RSP : X86::ESP; MachineFunction::iterator MBBIter = ++BB->getIterator(); MF->insert(MBBIter, bumpMBB); MF->insert(MBBIter, mallocMBB); MF->insert(MBBIter, continueMBB); continueMBB->splice(continueMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); continueMBB->transferSuccessorsAndUpdatePHIs(BB); // Add code to the main basic block to check if the stack limit has been hit, // and if so, jump to mallocMBB otherwise to bumpMBB. BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg); BuildMI(BB, DL, TII->get(IsLP64 ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg) .addReg(tmpSPVReg).addReg(sizeVReg); BuildMI(BB, DL, TII->get(IsLP64 ? X86::CMP64mr:X86::CMP32mr)) .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg) .addReg(SPLimitVReg); BuildMI(BB, DL, TII->get(X86::JG_1)).addMBB(mallocMBB); // bumpMBB simply decreases the stack pointer, since we know the current // stacklet has enough space. BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg) .addReg(SPLimitVReg); BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg) .addReg(SPLimitVReg); BuildMI(bumpMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB); // Calls into a routine in libgcc to allocate more space from the heap. const uint32_t *RegMask = Subtarget->getRegisterInfo()->getCallPreservedMask(*MF, CallingConv::C); if (IsLP64) { BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI) .addReg(sizeVReg); BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32)) .addExternalSymbol("__morestack_allocate_stack_space") .addRegMask(RegMask) .addReg(X86::RDI, RegState::Implicit) .addReg(X86::RAX, RegState::ImplicitDefine); } else if (Is64Bit) { BuildMI(mallocMBB, DL, TII->get(X86::MOV32rr), X86::EDI) .addReg(sizeVReg); BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32)) .addExternalSymbol("__morestack_allocate_stack_space") .addRegMask(RegMask) .addReg(X86::EDI, RegState::Implicit) .addReg(X86::EAX, RegState::ImplicitDefine); } else { BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg) .addImm(12); BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg); BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32)) .addExternalSymbol("__morestack_allocate_stack_space") .addRegMask(RegMask) .addReg(X86::EAX, RegState::ImplicitDefine); } if (!Is64Bit) BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg) .addImm(16); BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg) .addReg(IsLP64 ? X86::RAX : X86::EAX); BuildMI(mallocMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB); // Set up the CFG correctly. BB->addSuccessor(bumpMBB); BB->addSuccessor(mallocMBB); mallocMBB->addSuccessor(continueMBB); bumpMBB->addSuccessor(continueMBB); // Take care of the PHI nodes. BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI), MI->getOperand(0).getReg()) .addReg(mallocPtrVReg).addMBB(mallocMBB) .addReg(bumpSPPtrVReg).addMBB(bumpMBB); // Delete the original pseudo instruction. MI->eraseFromParent(); // And we're done. return continueMBB; } MachineBasicBlock * X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI, MachineBasicBlock *BB) const { assert(!Subtarget->isTargetMachO()); DebugLoc DL = MI->getDebugLoc(); MachineInstr *ResumeMI = Subtarget->getFrameLowering()->emitStackProbe( *BB->getParent(), *BB, MI, DL, false); MachineBasicBlock *ResumeBB = ResumeMI->getParent(); MI->eraseFromParent(); // The pseudo instruction is gone now. return ResumeBB; } MachineBasicBlock * X86TargetLowering::EmitLoweredCatchRet(MachineInstr *MI, MachineBasicBlock *BB) const { MachineFunction *MF = BB->getParent(); const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); MachineBasicBlock *TargetMBB = MI->getOperand(0).getMBB(); DebugLoc DL = MI->getDebugLoc(); assert(!isAsynchronousEHPersonality( classifyEHPersonality(MF->getFunction()->getPersonalityFn())) && "SEH does not use catchret!"); // Only 32-bit EH needs to worry about manually restoring stack pointers. if (!Subtarget->is32Bit()) return BB; // C++ EH creates a new target block to hold the restore code, and wires up // the new block to the return destination with a normal JMP_4. MachineBasicBlock *RestoreMBB = MF->CreateMachineBasicBlock(BB->getBasicBlock()); assert(BB->succ_size() == 1); MF->insert(std::next(BB->getIterator()), RestoreMBB); RestoreMBB->transferSuccessorsAndUpdatePHIs(BB); BB->addSuccessor(RestoreMBB); MI->getOperand(0).setMBB(RestoreMBB); auto RestoreMBBI = RestoreMBB->begin(); BuildMI(*RestoreMBB, RestoreMBBI, DL, TII.get(X86::EH_RESTORE)); BuildMI(*RestoreMBB, RestoreMBBI, DL, TII.get(X86::JMP_4)).addMBB(TargetMBB); return BB; } MachineBasicBlock * X86TargetLowering::EmitLoweredCatchPad(MachineInstr *MI, MachineBasicBlock *BB) const { MachineFunction *MF = BB->getParent(); const Constant *PerFn = MF->getFunction()->getPersonalityFn(); bool IsSEH = isAsynchronousEHPersonality(classifyEHPersonality(PerFn)); // Only 32-bit SEH requires special handling for catchpad. if (IsSEH && Subtarget->is32Bit()) { const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); BuildMI(*BB, MI, DL, TII.get(X86::EH_RESTORE)); } MI->eraseFromParent(); return BB; } MachineBasicBlock * X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI, MachineBasicBlock *BB) const { // This is pretty easy. We're taking the value that we received from // our load from the relocation, sticking it in either RDI (x86-64) // or EAX and doing an indirect call. The return value will then // be in the normal return register. MachineFunction *F = BB->getParent(); const X86InstrInfo *TII = Subtarget->getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?"); assert(MI->getOperand(3).isGlobal() && "This should be a global"); // Get a register mask for the lowered call. // FIXME: The 32-bit calls have non-standard calling conventions. Use a // proper register mask. const uint32_t *RegMask = Subtarget->is64Bit() ? Subtarget->getRegisterInfo()->getDarwinTLSCallPreservedMask() : Subtarget->getRegisterInfo()->getCallPreservedMask(*F, CallingConv::C); if (Subtarget->is64Bit()) { MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, TII->get(X86::MOV64rm), X86::RDI) .addReg(X86::RIP) .addImm(0).addReg(0) .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, MI->getOperand(3).getTargetFlags()) .addReg(0); MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m)); addDirectMem(MIB, X86::RDI); MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask); } else if (F->getTarget().getRelocationModel() != Reloc::PIC_) { MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, TII->get(X86::MOV32rm), X86::EAX) .addReg(0) .addImm(0).addReg(0) .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, MI->getOperand(3).getTargetFlags()) .addReg(0); MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); addDirectMem(MIB, X86::EAX); MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask); } else { MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, TII->get(X86::MOV32rm), X86::EAX) .addReg(TII->getGlobalBaseReg(F)) .addImm(0).addReg(0) .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, MI->getOperand(3).getTargetFlags()) .addReg(0); MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); addDirectMem(MIB, X86::EAX); MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask); } MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; } MachineBasicBlock * X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI, MachineBasicBlock *MBB) const { DebugLoc DL = MI->getDebugLoc(); MachineFunction *MF = MBB->getParent(); const TargetInstrInfo *TII = Subtarget->getInstrInfo(); MachineRegisterInfo &MRI = MF->getRegInfo(); const BasicBlock *BB = MBB->getBasicBlock(); MachineFunction::iterator I = ++MBB->getIterator(); // Memory Reference MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); unsigned DstReg; unsigned MemOpndSlot = 0; unsigned CurOp = 0; DstReg = MI->getOperand(CurOp++).getReg(); const TargetRegisterClass *RC = MRI.getRegClass(DstReg); assert(RC->hasType(MVT::i32) && "Invalid destination!"); unsigned mainDstReg = MRI.createVirtualRegister(RC); unsigned restoreDstReg = MRI.createVirtualRegister(RC); MemOpndSlot = CurOp; MVT PVT = getPointerTy(MF->getDataLayout()); assert((PVT == MVT::i64 || PVT == MVT::i32) && "Invalid Pointer Size!"); // For v = setjmp(buf), we generate // // thisMBB: // buf[LabelOffset] = restoreMBB <-- takes address of restoreMBB // SjLjSetup restoreMBB // // mainMBB: // v_main = 0 // // sinkMBB: // v = phi(main, restore) // // restoreMBB: // if base pointer being used, load it from frame // v_restore = 1 MachineBasicBlock *thisMBB = MBB; MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB); MF->insert(I, mainMBB); MF->insert(I, sinkMBB); MF->push_back(restoreMBB); restoreMBB->setHasAddressTaken(); MachineInstrBuilder MIB; // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), MBB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); // thisMBB: unsigned PtrStoreOpc = 0; unsigned LabelReg = 0; const int64_t LabelOffset = 1 * PVT.getStoreSize(); Reloc::Model RM = MF->getTarget().getRelocationModel(); bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) && (RM == Reloc::Static || RM == Reloc::DynamicNoPIC); // Prepare IP either in reg or imm. if (!UseImmLabel) { PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr; const TargetRegisterClass *PtrRC = getRegClassFor(PVT); LabelReg = MRI.createVirtualRegister(PtrRC); if (Subtarget->is64Bit()) { MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg) .addReg(X86::RIP) .addImm(0) .addReg(0) .addMBB(restoreMBB) .addReg(0); } else { const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII); MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg) .addReg(XII->getGlobalBaseReg(MF)) .addImm(0) .addReg(0) .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference()) .addReg(0); } } else PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi; // Store IP MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc)); for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { if (i == X86::AddrDisp) MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset); else MIB.addOperand(MI->getOperand(MemOpndSlot + i)); } if (!UseImmLabel) MIB.addReg(LabelReg); else MIB.addMBB(restoreMBB); MIB.setMemRefs(MMOBegin, MMOEnd); // Setup MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup)) .addMBB(restoreMBB); const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); MIB.addRegMask(RegInfo->getNoPreservedMask()); thisMBB->addSuccessor(mainMBB); thisMBB->addSuccessor(restoreMBB); // mainMBB: // EAX = 0 BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg); mainMBB->addSuccessor(sinkMBB); // sinkMBB: BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(X86::PHI), DstReg) .addReg(mainDstReg).addMBB(mainMBB) .addReg(restoreDstReg).addMBB(restoreMBB); // restoreMBB: if (RegInfo->hasBasePointer(*MF)) { const bool Uses64BitFramePtr = Subtarget->isTarget64BitLP64() || Subtarget->isTargetNaCl64(); X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); X86FI->setRestoreBasePointer(MF); unsigned FramePtr = RegInfo->getFrameRegister(*MF); unsigned BasePtr = RegInfo->getBaseRegister(); unsigned Opm = Uses64BitFramePtr ? X86::MOV64rm : X86::MOV32rm; addRegOffset(BuildMI(restoreMBB, DL, TII->get(Opm), BasePtr), FramePtr, true, X86FI->getRestoreBasePointerOffset()) .setMIFlag(MachineInstr::FrameSetup); } BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1); BuildMI(restoreMBB, DL, TII->get(X86::JMP_1)).addMBB(sinkMBB); restoreMBB->addSuccessor(sinkMBB); MI->eraseFromParent(); return sinkMBB; } MachineBasicBlock * X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI, MachineBasicBlock *MBB) const { DebugLoc DL = MI->getDebugLoc(); MachineFunction *MF = MBB->getParent(); const TargetInstrInfo *TII = Subtarget->getInstrInfo(); MachineRegisterInfo &MRI = MF->getRegInfo(); // Memory Reference MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); MVT PVT = getPointerTy(MF->getDataLayout()); assert((PVT == MVT::i64 || PVT == MVT::i32) && "Invalid Pointer Size!"); const TargetRegisterClass *RC = (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass; unsigned Tmp = MRI.createVirtualRegister(RC); // Since FP is only updated here but NOT referenced, it's treated as GPR. const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP; unsigned SP = RegInfo->getStackRegister(); MachineInstrBuilder MIB; const int64_t LabelOffset = 1 * PVT.getStoreSize(); const int64_t SPOffset = 2 * PVT.getStoreSize(); unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm; unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r; // Reload FP MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP); for (unsigned i = 0; i < X86::AddrNumOperands; ++i) MIB.addOperand(MI->getOperand(i)); MIB.setMemRefs(MMOBegin, MMOEnd); // Reload IP MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp); for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { if (i == X86::AddrDisp) MIB.addDisp(MI->getOperand(i), LabelOffset); else MIB.addOperand(MI->getOperand(i)); } MIB.setMemRefs(MMOBegin, MMOEnd); // Reload SP MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP); for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { if (i == X86::AddrDisp) MIB.addDisp(MI->getOperand(i), SPOffset); else MIB.addOperand(MI->getOperand(i)); } MIB.setMemRefs(MMOBegin, MMOEnd); // Jump BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp); MI->eraseFromParent(); return MBB; } // Replace 213-type (isel default) FMA3 instructions with 231-type for // accumulator loops. Writing back to the accumulator allows the coalescer // to remove extra copies in the loop. // FIXME: Do this on AVX512. We don't support 231 variants yet (PR23937). MachineBasicBlock * X86TargetLowering::emitFMA3Instr(MachineInstr *MI, MachineBasicBlock *MBB) const { MachineOperand &AddendOp = MI->getOperand(3); // Bail out early if the addend isn't a register - we can't switch these. if (!AddendOp.isReg()) return MBB; MachineFunction &MF = *MBB->getParent(); MachineRegisterInfo &MRI = MF.getRegInfo(); // Check whether the addend is defined by a PHI: assert(MRI.hasOneDef(AddendOp.getReg()) && "Multiple defs in SSA?"); MachineInstr &AddendDef = *MRI.def_instr_begin(AddendOp.getReg()); if (!AddendDef.isPHI()) return MBB; // Look for the following pattern: // loop: // %addend = phi [%entry, 0], [%loop, %result] // ... // %result<tied1> = FMA213 %m2<tied0>, %m1, %addend // Replace with: // loop: // %addend = phi [%entry, 0], [%loop, %result] // ... // %result<tied1> = FMA231 %addend<tied0>, %m1, %m2 for (unsigned i = 1, e = AddendDef.getNumOperands(); i < e; i += 2) { assert(AddendDef.getOperand(i).isReg()); MachineOperand PHISrcOp = AddendDef.getOperand(i); MachineInstr &PHISrcInst = *MRI.def_instr_begin(PHISrcOp.getReg()); if (&PHISrcInst == MI) { // Found a matching instruction. unsigned NewFMAOpc = 0; switch (MI->getOpcode()) { case X86::VFMADDPDr213r: NewFMAOpc = X86::VFMADDPDr231r; break; case X86::VFMADDPSr213r: NewFMAOpc = X86::VFMADDPSr231r; break; case X86::VFMADDSDr213r: NewFMAOpc = X86::VFMADDSDr231r; break; case X86::VFMADDSSr213r: NewFMAOpc = X86::VFMADDSSr231r; break; case X86::VFMSUBPDr213r: NewFMAOpc = X86::VFMSUBPDr231r; break; case X86::VFMSUBPSr213r: NewFMAOpc = X86::VFMSUBPSr231r; break; case X86::VFMSUBSDr213r: NewFMAOpc = X86::VFMSUBSDr231r; break; case X86::VFMSUBSSr213r: NewFMAOpc = X86::VFMSUBSSr231r; break; case X86::VFNMADDPDr213r: NewFMAOpc = X86::VFNMADDPDr231r; break; case X86::VFNMADDPSr213r: NewFMAOpc = X86::VFNMADDPSr231r; break; case X86::VFNMADDSDr213r: NewFMAOpc = X86::VFNMADDSDr231r; break; case X86::VFNMADDSSr213r: NewFMAOpc = X86::VFNMADDSSr231r; break; case X86::VFNMSUBPDr213r: NewFMAOpc = X86::VFNMSUBPDr231r; break; case X86::VFNMSUBPSr213r: NewFMAOpc = X86::VFNMSUBPSr231r; break; case X86::VFNMSUBSDr213r: NewFMAOpc = X86::VFNMSUBSDr231r; break; case X86::VFNMSUBSSr213r: NewFMAOpc = X86::VFNMSUBSSr231r; break; case X86::VFMADDSUBPDr213r: NewFMAOpc = X86::VFMADDSUBPDr231r; break; case X86::VFMADDSUBPSr213r: NewFMAOpc = X86::VFMADDSUBPSr231r; break; case X86::VFMSUBADDPDr213r: NewFMAOpc = X86::VFMSUBADDPDr231r; break; case X86::VFMSUBADDPSr213r: NewFMAOpc = X86::VFMSUBADDPSr231r; break; case X86::VFMADDPDr213rY: NewFMAOpc = X86::VFMADDPDr231rY; break; case X86::VFMADDPSr213rY: NewFMAOpc = X86::VFMADDPSr231rY; break; case X86::VFMSUBPDr213rY: NewFMAOpc = X86::VFMSUBPDr231rY; break; case X86::VFMSUBPSr213rY: NewFMAOpc = X86::VFMSUBPSr231rY; break; case X86::VFNMADDPDr213rY: NewFMAOpc = X86::VFNMADDPDr231rY; break; case X86::VFNMADDPSr213rY: NewFMAOpc = X86::VFNMADDPSr231rY; break; case X86::VFNMSUBPDr213rY: NewFMAOpc = X86::VFNMSUBPDr231rY; break; case X86::VFNMSUBPSr213rY: NewFMAOpc = X86::VFNMSUBPSr231rY; break; case X86::VFMADDSUBPDr213rY: NewFMAOpc = X86::VFMADDSUBPDr231rY; break; case X86::VFMADDSUBPSr213rY: NewFMAOpc = X86::VFMADDSUBPSr231rY; break; case X86::VFMSUBADDPDr213rY: NewFMAOpc = X86::VFMSUBADDPDr231rY; break; case X86::VFMSUBADDPSr213rY: NewFMAOpc = X86::VFMSUBADDPSr231rY; break; default: llvm_unreachable("Unrecognized FMA variant."); } const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(NewFMAOpc)) .addOperand(MI->getOperand(0)) .addOperand(MI->getOperand(3)) .addOperand(MI->getOperand(2)) .addOperand(MI->getOperand(1)); MBB->insert(MachineBasicBlock::iterator(MI), MIB); MI->eraseFromParent(); } } return MBB; } MachineBasicBlock * X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *BB) const { switch (MI->getOpcode()) { default: llvm_unreachable("Unexpected instr type to insert"); case X86::TAILJMPd64: case X86::TAILJMPr64: case X86::TAILJMPm64: case X86::TAILJMPd64_REX: case X86::TAILJMPr64_REX: case X86::TAILJMPm64_REX: llvm_unreachable("TAILJMP64 would not be touched here."); case X86::TCRETURNdi64: case X86::TCRETURNri64: case X86::TCRETURNmi64: return BB; case X86::WIN_ALLOCA: return EmitLoweredWinAlloca(MI, BB); case X86::CATCHRET: return EmitLoweredCatchRet(MI, BB); case X86::CATCHPAD: return EmitLoweredCatchPad(MI, BB); case X86::SEG_ALLOCA_32: case X86::SEG_ALLOCA_64: return EmitLoweredSegAlloca(MI, BB); case X86::TLSCall_32: case X86::TLSCall_64: return EmitLoweredTLSCall(MI, BB); case X86::CMOV_FR32: case X86::CMOV_FR64: case X86::CMOV_FR128: case X86::CMOV_GR8: case X86::CMOV_GR16: case X86::CMOV_GR32: case X86::CMOV_RFP32: case X86::CMOV_RFP64: case X86::CMOV_RFP80: case X86::CMOV_V2F64: case X86::CMOV_V2I64: case X86::CMOV_V4F32: case X86::CMOV_V4F64: case X86::CMOV_V4I64: case X86::CMOV_V16F32: case X86::CMOV_V8F32: case X86::CMOV_V8F64: case X86::CMOV_V8I64: case X86::CMOV_V8I1: case X86::CMOV_V16I1: case X86::CMOV_V32I1: case X86::CMOV_V64I1: return EmitLoweredSelect(MI, BB); case X86::RELEASE_FADD32mr: case X86::RELEASE_FADD64mr: return EmitLoweredAtomicFP(MI, BB); case X86::FP32_TO_INT16_IN_MEM: case X86::FP32_TO_INT32_IN_MEM: case X86::FP32_TO_INT64_IN_MEM: case X86::FP64_TO_INT16_IN_MEM: case X86::FP64_TO_INT32_IN_MEM: case X86::FP64_TO_INT64_IN_MEM: case X86::FP80_TO_INT16_IN_MEM: case X86::FP80_TO_INT32_IN_MEM: case X86::FP80_TO_INT64_IN_MEM: { MachineFunction *F = BB->getParent(); const TargetInstrInfo *TII = Subtarget->getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); // Change the floating point control register to use "round towards zero" // mode when truncating to an integer value. int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false); addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx); // Load the old value of the high byte of the control word... unsigned OldCW = F->getRegInfo().createVirtualRegister(&X86::GR16RegClass); addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW), CWFrameIdx); // Set the high part to be round to zero... addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx) .addImm(0xC7F); // Reload the modified control word now... addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::FLDCW16m)), CWFrameIdx); // Restore the memory image of control word to original value addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx) .addReg(OldCW); // Get the X86 opcode to use. unsigned Opc; switch (MI->getOpcode()) { default: llvm_unreachable("illegal opcode!"); case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break; case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break; case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break; case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break; case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break; case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break; case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break; case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break; case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break; } X86AddressMode AM; MachineOperand &Op = MI->getOperand(0); if (Op.isReg()) { AM.BaseType = X86AddressMode::RegBase; AM.Base.Reg = Op.getReg(); } else { AM.BaseType = X86AddressMode::FrameIndexBase; AM.Base.FrameIndex = Op.getIndex(); } Op = MI->getOperand(1); if (Op.isImm()) AM.Scale = Op.getImm(); Op = MI->getOperand(2); if (Op.isImm()) AM.IndexReg = Op.getImm(); Op = MI->getOperand(3); if (Op.isGlobal()) { AM.GV = Op.getGlobal(); } else { AM.Disp = Op.getImm(); } addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM) .addReg(MI->getOperand(X86::AddrNumOperands).getReg()); // Reload the original control word now. addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::FLDCW16m)), CWFrameIdx); MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; } // String/text processing lowering. case X86::PCMPISTRM128REG: case X86::VPCMPISTRM128REG: case X86::PCMPISTRM128MEM: case X86::VPCMPISTRM128MEM: case X86::PCMPESTRM128REG: case X86::VPCMPESTRM128REG: case X86::PCMPESTRM128MEM: case X86::VPCMPESTRM128MEM: assert(Subtarget->hasSSE42() && "Target must have SSE4.2 or AVX features enabled"); return EmitPCMPSTRM(MI, BB, Subtarget->getInstrInfo()); // String/text processing lowering. case X86::PCMPISTRIREG: case X86::VPCMPISTRIREG: case X86::PCMPISTRIMEM: case X86::VPCMPISTRIMEM: case X86::PCMPESTRIREG: case X86::VPCMPESTRIREG: case X86::PCMPESTRIMEM: case X86::VPCMPESTRIMEM: assert(Subtarget->hasSSE42() && "Target must have SSE4.2 or AVX features enabled"); return EmitPCMPSTRI(MI, BB, Subtarget->getInstrInfo()); // Thread synchronization. case X86::MONITOR: return EmitMonitor(MI, BB, Subtarget); // xbegin case X86::XBEGIN: return EmitXBegin(MI, BB, Subtarget->getInstrInfo()); case X86::VASTART_SAVE_XMM_REGS: return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB); case X86::VAARG_64: return EmitVAARG64WithCustomInserter(MI, BB); case X86::EH_SjLj_SetJmp32: case X86::EH_SjLj_SetJmp64: return emitEHSjLjSetJmp(MI, BB); case X86::EH_SjLj_LongJmp32: case X86::EH_SjLj_LongJmp64: return emitEHSjLjLongJmp(MI, BB); case TargetOpcode::STATEPOINT: // As an implementation detail, STATEPOINT shares the STACKMAP format at // this point in the process. We diverge later. return emitPatchPoint(MI, BB); case TargetOpcode::STACKMAP: case TargetOpcode::PATCHPOINT: return emitPatchPoint(MI, BB); case X86::VFMADDPDr213r: case X86::VFMADDPSr213r: case X86::VFMADDSDr213r: case X86::VFMADDSSr213r: case X86::VFMSUBPDr213r: case X86::VFMSUBPSr213r: case X86::VFMSUBSDr213r: case X86::VFMSUBSSr213r: case X86::VFNMADDPDr213r: case X86::VFNMADDPSr213r: case X86::VFNMADDSDr213r: case X86::VFNMADDSSr213r: case X86::VFNMSUBPDr213r: case X86::VFNMSUBPSr213r: case X86::VFNMSUBSDr213r: case X86::VFNMSUBSSr213r: case X86::VFMADDSUBPDr213r: case X86::VFMADDSUBPSr213r: case X86::VFMSUBADDPDr213r: case X86::VFMSUBADDPSr213r: case X86::VFMADDPDr213rY: case X86::VFMADDPSr213rY: case X86::VFMSUBPDr213rY: case X86::VFMSUBPSr213rY: case X86::VFNMADDPDr213rY: case X86::VFNMADDPSr213rY: case X86::VFNMSUBPDr213rY: case X86::VFNMSUBPSr213rY: case X86::VFMADDSUBPDr213rY: case X86::VFMADDSUBPSr213rY: case X86::VFMSUBADDPDr213rY: case X86::VFMSUBADDPSr213rY: return emitFMA3Instr(MI, BB); } } //===----------------------------------------------------------------------===// // X86 Optimization Hooks //===----------------------------------------------------------------------===// void X86TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth) const { unsigned BitWidth = KnownZero.getBitWidth(); unsigned Opc = Op.getOpcode(); assert((Opc >= ISD::BUILTIN_OP_END || Opc == ISD::INTRINSIC_WO_CHAIN || Opc == ISD::INTRINSIC_W_CHAIN || Opc == ISD::INTRINSIC_VOID) && "Should use MaskedValueIsZero if you don't know whether Op" " is a target node!"); KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything. switch (Opc) { default: break; case X86ISD::ADD: case X86ISD::SUB: case X86ISD::ADC: case X86ISD::SBB: case X86ISD::SMUL: case X86ISD::UMUL: case X86ISD::INC: case X86ISD::DEC: case X86ISD::OR: case X86ISD::XOR: case X86ISD::AND: // These nodes' second result is a boolean. if (Op.getResNo() == 0) break; // Fallthrough case X86ISD::SETCC: KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); break; case ISD::INTRINSIC_WO_CHAIN: { unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); unsigned NumLoBits = 0; switch (IntId) { default: break; case Intrinsic::x86_sse_movmsk_ps: case Intrinsic::x86_avx_movmsk_ps_256: case Intrinsic::x86_sse2_movmsk_pd: case Intrinsic::x86_avx_movmsk_pd_256: case Intrinsic::x86_mmx_pmovmskb: case Intrinsic::x86_sse2_pmovmskb_128: case Intrinsic::x86_avx2_pmovmskb: { // High bits of movmskp{s|d}, pmovmskb are known zero. switch (IntId) { default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. case Intrinsic::x86_sse_movmsk_ps: NumLoBits = 4; break; case Intrinsic::x86_avx_movmsk_ps_256: NumLoBits = 8; break; case Intrinsic::x86_sse2_movmsk_pd: NumLoBits = 2; break; case Intrinsic::x86_avx_movmsk_pd_256: NumLoBits = 4; break; case Intrinsic::x86_mmx_pmovmskb: NumLoBits = 8; break; case Intrinsic::x86_sse2_pmovmskb_128: NumLoBits = 16; break; case Intrinsic::x86_avx2_pmovmskb: NumLoBits = 32; break; } KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits); break; } } break; } } } unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode( SDValue Op, const SelectionDAG &, unsigned Depth) const { // SETCC_CARRY sets the dest to ~0 for true or 0 for false. if (Op.getOpcode() == X86ISD::SETCC_CARRY) return Op.getValueType().getScalarSizeInBits(); // Fallback case. return 1; } /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the /// node is a GlobalAddress + offset. bool X86TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const { if (N->getOpcode() == X86ISD::Wrapper) { if (isa<GlobalAddressSDNode>(N->getOperand(0))) { GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal(); Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset(); return true; } } return TargetLowering::isGAPlusOffset(N, GA, Offset); } /// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the /// same as extracting the high 128-bit part of 256-bit vector and then /// inserting the result into the low part of a new 256-bit vector static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) { EVT VT = SVOp->getValueType(0); unsigned NumElems = VT.getVectorNumElements(); // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u> for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j) if (!isUndefOrEqual(SVOp->getMaskElt(i), j) || SVOp->getMaskElt(j) >= 0) return false; return true; } /// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the /// same as extracting the low 128-bit part of 256-bit vector and then /// inserting the result into the high part of a new 256-bit vector static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) { EVT VT = SVOp->getValueType(0); unsigned NumElems = VT.getVectorNumElements(); // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1> for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j) if (!isUndefOrEqual(SVOp->getMaskElt(i), j) || SVOp->getMaskElt(j) >= 0) return false; return true; } /// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors. static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget* Subtarget) { SDLoc dl(N); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); SDValue V1 = SVOp->getOperand(0); SDValue V2 = SVOp->getOperand(1); MVT VT = SVOp->getSimpleValueType(0); unsigned NumElems = VT.getVectorNumElements(); if (V1.getOpcode() == ISD::CONCAT_VECTORS && V2.getOpcode() == ISD::CONCAT_VECTORS) { // // 0,0,0,... // | // V UNDEF BUILD_VECTOR UNDEF // \ / \ / // CONCAT_VECTOR CONCAT_VECTOR // \ / // \ / // RESULT: V + zero extended // if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR || V2.getOperand(1).getOpcode() != ISD::UNDEF || V1.getOperand(1).getOpcode() != ISD::UNDEF) return SDValue(); if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode())) return SDValue(); // To match the shuffle mask, the first half of the mask should // be exactly the first vector, and all the rest a splat with the // first element of the second one. for (unsigned i = 0; i != NumElems/2; ++i) if (!isUndefOrEqual(SVOp->getMaskElt(i), i) || !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems)) return SDValue(); // If V1 is coming from a vector load then just fold to a VZEXT_LOAD. if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) { if (Ld->hasNUsesOfValue(1, 0)) { SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other); SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() }; SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, Ld->getMemoryVT(), Ld->getPointerInfo(), Ld->getAlignment(), false/*isVolatile*/, true/*ReadMem*/, false/*WriteMem*/); // Make sure the newly-created LOAD is in the same position as Ld in // terms of dependency. We create a TokenFactor for Ld and ResNode, // and update uses of Ld's output chain to use the TokenFactor. if (Ld->hasAnyUseOfValue(1)) { SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SDValue(Ld, 1), SDValue(ResNode.getNode(), 1)); DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain); DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1), SDValue(ResNode.getNode(), 1)); } return DAG.getBitcast(VT, ResNode); } } // Emit a zeroed vector and insert the desired subvector on its // first half. SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl); SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl); return DCI.CombineTo(N, InsV); } //===--------------------------------------------------------------------===// // Combine some shuffles into subvector extracts and inserts: // // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u> if (isShuffleHigh128VectorInsertLow(SVOp)) { SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl); SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl); return DCI.CombineTo(N, InsV); } // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1> if (isShuffleLow128VectorInsertHigh(SVOp)) { SDValue V = Extract128BitVector(V1, 0, DAG, dl); SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl); return DCI.CombineTo(N, InsV); } return SDValue(); } /// \brief Combine an arbitrary chain of shuffles into a single instruction if /// possible. /// /// This is the leaf of the recursive combinine below. When we have found some /// chain of single-use x86 shuffle instructions and accumulated the combined /// shuffle mask represented by them, this will try to pattern match that mask /// into either a single instruction if there is a special purpose instruction /// for this operation, or into a PSHUFB instruction which is a fully general /// instruction but should only be used to replace chains over a certain depth. static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask, int Depth, bool HasPSHUFB, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { assert(!Mask.empty() && "Cannot combine an empty shuffle mask!"); // Find the operand that enters the chain. Note that multiple uses are OK // here, we're not going to remove the operand we find. SDValue Input = Op.getOperand(0); while (Input.getOpcode() == ISD::BITCAST) Input = Input.getOperand(0); MVT VT = Input.getSimpleValueType(); MVT RootVT = Root.getSimpleValueType(); SDLoc DL(Root); if (Mask.size() == 1) { int Index = Mask[0]; assert((Index >= 0 || Index == SM_SentinelUndef || Index == SM_SentinelZero) && "Invalid shuffle index found!"); // We may end up with an accumulated mask of size 1 as a result of // widening of shuffle operands (see function canWidenShuffleElements). // If the only shuffle index is equal to SM_SentinelZero then propagate // a zero vector. Otherwise, the combine shuffle mask is a no-op shuffle // mask, and therefore the entire chain of shuffles can be folded away. if (Index == SM_SentinelZero) DCI.CombineTo(Root.getNode(), getZeroVector(RootVT, Subtarget, DAG, DL)); else DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Input), /*AddTo*/ true); return true; } // Use the float domain if the operand type is a floating point type. bool FloatDomain = VT.isFloatingPoint(); // For floating point shuffles, we don't have free copies in the shuffle // instructions or the ability to load as part of the instruction, so // canonicalize their shuffles to UNPCK or MOV variants. // // Note that even with AVX we prefer the PSHUFD form of shuffle for integer // vectors because it can have a load folded into it that UNPCK cannot. This // doesn't preclude something switching to the shorter encoding post-RA. // // FIXME: Should teach these routines about AVX vector widths. if (FloatDomain && VT.is128BitVector()) { if (Mask.equals({0, 0}) || Mask.equals({1, 1})) { bool Lo = Mask.equals({0, 0}); unsigned Shuffle; MVT ShuffleVT; // Check if we have SSE3 which will let us use MOVDDUP. That instruction // is no slower than UNPCKLPD but has the option to fold the input operand // into even an unaligned memory load. if (Lo && Subtarget->hasSSE3()) { Shuffle = X86ISD::MOVDDUP; ShuffleVT = MVT::v2f64; } else { // We have MOVLHPS and MOVHLPS throughout SSE and they encode smaller // than the UNPCK variants. Shuffle = Lo ? X86ISD::MOVLHPS : X86ISD::MOVHLPS; ShuffleVT = MVT::v4f32; } if (Depth == 1 && Root->getOpcode() == Shuffle) return false; // Nothing to do! Op = DAG.getBitcast(ShuffleVT, Input); DCI.AddToWorklist(Op.getNode()); if (Shuffle == X86ISD::MOVDDUP) Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op); else Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op); DCI.AddToWorklist(Op.getNode()); DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op), /*AddTo*/ true); return true; } if (Subtarget->hasSSE3() && (Mask.equals({0, 0, 2, 2}) || Mask.equals({1, 1, 3, 3}))) { bool Lo = Mask.equals({0, 0, 2, 2}); unsigned Shuffle = Lo ? X86ISD::MOVSLDUP : X86ISD::MOVSHDUP; MVT ShuffleVT = MVT::v4f32; if (Depth == 1 && Root->getOpcode() == Shuffle) return false; // Nothing to do! Op = DAG.getBitcast(ShuffleVT, Input); DCI.AddToWorklist(Op.getNode()); Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op); DCI.AddToWorklist(Op.getNode()); DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op), /*AddTo*/ true); return true; } if (Mask.equals({0, 0, 1, 1}) || Mask.equals({2, 2, 3, 3})) { bool Lo = Mask.equals({0, 0, 1, 1}); unsigned Shuffle = Lo ? X86ISD::UNPCKL : X86ISD::UNPCKH; MVT ShuffleVT = MVT::v4f32; if (Depth == 1 && Root->getOpcode() == Shuffle) return false; // Nothing to do! Op = DAG.getBitcast(ShuffleVT, Input); DCI.AddToWorklist(Op.getNode()); Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op); DCI.AddToWorklist(Op.getNode()); DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op), /*AddTo*/ true); return true; } } // We always canonicalize the 8 x i16 and 16 x i8 shuffles into their UNPCK // variants as none of these have single-instruction variants that are // superior to the UNPCK formulation. if (!FloatDomain && VT.is128BitVector() && (Mask.equals({0, 0, 1, 1, 2, 2, 3, 3}) || Mask.equals({4, 4, 5, 5, 6, 6, 7, 7}) || Mask.equals({0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7}) || Mask.equals( {8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15}))) { bool Lo = Mask[0] == 0; unsigned Shuffle = Lo ? X86ISD::UNPCKL : X86ISD::UNPCKH; if (Depth == 1 && Root->getOpcode() == Shuffle) return false; // Nothing to do! MVT ShuffleVT; switch (Mask.size()) { case 8: ShuffleVT = MVT::v8i16; break; case 16: ShuffleVT = MVT::v16i8; break; default: llvm_unreachable("Impossible mask size!"); }; Op = DAG.getBitcast(ShuffleVT, Input); DCI.AddToWorklist(Op.getNode()); Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op); DCI.AddToWorklist(Op.getNode()); DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op), /*AddTo*/ true); return true; } // Don't try to re-form single instruction chains under any circumstances now // that we've done encoding canonicalization for them. if (Depth < 2) return false; // If we have 3 or more shuffle instructions or a chain involving PSHUFB, we // can replace them with a single PSHUFB instruction profitably. Intel's // manuals suggest only using PSHUFB if doing so replacing 5 instructions, but // in practice PSHUFB tends to be *very* fast so we're more aggressive. if ((Depth >= 3 || HasPSHUFB) && Subtarget->hasSSSE3()) { SmallVector<SDValue, 16> PSHUFBMask; int NumBytes = VT.getSizeInBits() / 8; int Ratio = NumBytes / Mask.size(); for (int i = 0; i < NumBytes; ++i) { if (Mask[i / Ratio] == SM_SentinelUndef) { PSHUFBMask.push_back(DAG.getUNDEF(MVT::i8)); continue; } int M = Mask[i / Ratio] != SM_SentinelZero ? Ratio * Mask[i / Ratio] + i % Ratio : 255; PSHUFBMask.push_back(DAG.getConstant(M, DL, MVT::i8)); } MVT ByteVT = MVT::getVectorVT(MVT::i8, NumBytes); Op = DAG.getBitcast(ByteVT, Input); DCI.AddToWorklist(Op.getNode()); SDValue PSHUFBMaskOp = DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVT, PSHUFBMask); DCI.AddToWorklist(PSHUFBMaskOp.getNode()); Op = DAG.getNode(X86ISD::PSHUFB, DL, ByteVT, Op, PSHUFBMaskOp); DCI.AddToWorklist(Op.getNode()); DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op), /*AddTo*/ true); return true; } // Failed to find any combines. return false; } /// \brief Fully generic combining of x86 shuffle instructions. /// /// This should be the last combine run over the x86 shuffle instructions. Once /// they have been fully optimized, this will recursively consider all chains /// of single-use shuffle instructions, build a generic model of the cumulative /// shuffle operation, and check for simpler instructions which implement this /// operation. We use this primarily for two purposes: /// /// 1) Collapse generic shuffles to specialized single instructions when /// equivalent. In most cases, this is just an encoding size win, but /// sometimes we will collapse multiple generic shuffles into a single /// special-purpose shuffle. /// 2) Look for sequences of shuffle instructions with 3 or more total /// instructions, and replace them with the slightly more expensive SSSE3 /// PSHUFB instruction if available. We do this as the last combining step /// to ensure we avoid using PSHUFB if we can implement the shuffle with /// a suitable short sequence of other instructions. The PHUFB will either /// use a register or have to read from memory and so is slightly (but only /// slightly) more expensive than the other shuffle instructions. /// /// Because this is inherently a quadratic operation (for each shuffle in /// a chain, we recurse up the chain), the depth is limited to 8 instructions. /// This should never be an issue in practice as the shuffle lowering doesn't /// produce sequences of more than 8 instructions. /// /// FIXME: We will currently miss some cases where the redundant shuffling /// would simplify under the threshold for PSHUFB formation because of /// combine-ordering. To fix this, we should do the redundant instruction /// combining in this recursive walk. static bool combineX86ShufflesRecursively(SDValue Op, SDValue Root, ArrayRef<int> RootMask, int Depth, bool HasPSHUFB, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { // Bound the depth of our recursive combine because this is ultimately // quadratic in nature. if (Depth > 8) return false; // Directly rip through bitcasts to find the underlying operand. while (Op.getOpcode() == ISD::BITCAST && Op.getOperand(0).hasOneUse()) Op = Op.getOperand(0); MVT VT = Op.getSimpleValueType(); if (!VT.isVector()) return false; // Bail if we hit a non-vector. assert(Root.getSimpleValueType().isVector() && "Shuffles operate on vector types!"); assert(VT.getSizeInBits() == Root.getSimpleValueType().getSizeInBits() && "Can only combine shuffles of the same vector register size."); if (!isTargetShuffle(Op.getOpcode())) return false; SmallVector<int, 16> OpMask; bool IsUnary; bool HaveMask = getTargetShuffleMask(Op.getNode(), VT, OpMask, IsUnary); // We only can combine unary shuffles which we can decode the mask for. if (!HaveMask || !IsUnary) return false; assert(VT.getVectorNumElements() == OpMask.size() && "Different mask size from vector size!"); assert(((RootMask.size() > OpMask.size() && RootMask.size() % OpMask.size() == 0) || (OpMask.size() > RootMask.size() && OpMask.size() % RootMask.size() == 0) || OpMask.size() == RootMask.size()) && "The smaller number of elements must divide the larger."); int RootRatio = std::max<int>(1, OpMask.size() / RootMask.size()); int OpRatio = std::max<int>(1, RootMask.size() / OpMask.size()); assert(((RootRatio == 1 && OpRatio == 1) || (RootRatio == 1) != (OpRatio == 1)) && "Must not have a ratio for both incoming and op masks!"); SmallVector<int, 16> Mask; Mask.reserve(std::max(OpMask.size(), RootMask.size())); // Merge this shuffle operation's mask into our accumulated mask. Note that // this shuffle's mask will be the first applied to the input, followed by the // root mask to get us all the way to the root value arrangement. The reason // for this order is that we are recursing up the operation chain. for (int i = 0, e = std::max(OpMask.size(), RootMask.size()); i < e; ++i) { int RootIdx = i / RootRatio; if (RootMask[RootIdx] < 0) { // This is a zero or undef lane, we're done. Mask.push_back(RootMask[RootIdx]); continue; } int RootMaskedIdx = RootMask[RootIdx] * RootRatio + i % RootRatio; int OpIdx = RootMaskedIdx / OpRatio; if (OpMask[OpIdx] < 0) { // The incoming lanes are zero or undef, it doesn't matter which ones we // are using. Mask.push_back(OpMask[OpIdx]); continue; } // Ok, we have non-zero lanes, map them through. Mask.push_back(OpMask[OpIdx] * OpRatio + RootMaskedIdx % OpRatio); } // See if we can recurse into the operand to combine more things. switch (Op.getOpcode()) { case X86ISD::PSHUFB: HasPSHUFB = true; case X86ISD::PSHUFD: case X86ISD::PSHUFHW: case X86ISD::PSHUFLW: if (Op.getOperand(0).hasOneUse() && combineX86ShufflesRecursively(Op.getOperand(0), Root, Mask, Depth + 1, HasPSHUFB, DAG, DCI, Subtarget)) return true; break; case X86ISD::UNPCKL: case X86ISD::UNPCKH: assert(Op.getOperand(0) == Op.getOperand(1) && "We only combine unary shuffles!"); // We can't check for single use, we have to check that this shuffle is the // only user. if (Op->isOnlyUserOf(Op.getOperand(0).getNode()) && combineX86ShufflesRecursively(Op.getOperand(0), Root, Mask, Depth + 1, HasPSHUFB, DAG, DCI, Subtarget)) return true; break; } // Minor canonicalization of the accumulated shuffle mask to make it easier // to match below. All this does is detect masks with squential pairs of // elements, and shrink them to the half-width mask. It does this in a loop // so it will reduce the size of the mask to the minimal width mask which // performs an equivalent shuffle. SmallVector<int, 16> WidenedMask; while (Mask.size() > 1 && canWidenShuffleElements(Mask, WidenedMask)) { Mask = std::move(WidenedMask); WidenedMask.clear(); } return combineX86ShuffleChain(Op, Root, Mask, Depth, HasPSHUFB, DAG, DCI, Subtarget); } /// \brief Get the PSHUF-style mask from PSHUF node. /// /// This is a very minor wrapper around getTargetShuffleMask to easy forming v4 /// PSHUF-style masks that can be reused with such instructions. static SmallVector<int, 4> getPSHUFShuffleMask(SDValue N) { MVT VT = N.getSimpleValueType(); SmallVector<int, 4> Mask; bool IsUnary; bool HaveMask = getTargetShuffleMask(N.getNode(), VT, Mask, IsUnary); (void)HaveMask; assert(HaveMask); // If we have more than 128-bits, only the low 128-bits of shuffle mask // matter. Check that the upper masks are repeats and remove them. if (VT.getSizeInBits() > 128) { int LaneElts = 128 / VT.getScalarSizeInBits(); #ifndef NDEBUG for (int i = 1, NumLanes = VT.getSizeInBits() / 128; i < NumLanes; ++i) for (int j = 0; j < LaneElts; ++j) assert(Mask[j] == Mask[i * LaneElts + j] - (LaneElts * i) && "Mask doesn't repeat in high 128-bit lanes!"); #endif Mask.resize(LaneElts); } switch (N.getOpcode()) { case X86ISD::PSHUFD: return Mask; case X86ISD::PSHUFLW: Mask.resize(4); return Mask; case X86ISD::PSHUFHW: Mask.erase(Mask.begin(), Mask.begin() + 4); for (int &M : Mask) M -= 4; return Mask; default: llvm_unreachable("No valid shuffle instruction found!"); } } /// \brief Search for a combinable shuffle across a chain ending in pshufd. /// /// We walk up the chain and look for a combinable shuffle, skipping over /// shuffles that we could hoist this shuffle's transformation past without /// altering anything. static SDValue combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI) { assert(N.getOpcode() == X86ISD::PSHUFD && "Called with something other than an x86 128-bit half shuffle!"); SDLoc DL(N); // Walk up a single-use chain looking for a combinable shuffle. Keep a stack // of the shuffles in the chain so that we can form a fresh chain to replace // this one. SmallVector<SDValue, 8> Chain; SDValue V = N.getOperand(0); for (; V.hasOneUse(); V = V.getOperand(0)) { switch (V.getOpcode()) { default: return SDValue(); // Nothing combined! case ISD::BITCAST: // Skip bitcasts as we always know the type for the target specific // instructions. continue; case X86ISD::PSHUFD: // Found another dword shuffle. break; case X86ISD::PSHUFLW: // Check that the low words (being shuffled) are the identity in the // dword shuffle, and the high words are self-contained. if (Mask[0] != 0 || Mask[1] != 1 || !(Mask[2] >= 2 && Mask[2] < 4 && Mask[3] >= 2 && Mask[3] < 4)) return SDValue(); Chain.push_back(V); continue; case X86ISD::PSHUFHW: // Check that the high words (being shuffled) are the identity in the // dword shuffle, and the low words are self-contained. if (Mask[2] != 2 || Mask[3] != 3 || !(Mask[0] >= 0 && Mask[0] < 2 && Mask[1] >= 0 && Mask[1] < 2)) return SDValue(); Chain.push_back(V); continue; case X86ISD::UNPCKL: case X86ISD::UNPCKH: // For either i8 -> i16 or i16 -> i32 unpacks, we can combine a dword // shuffle into a preceding word shuffle. if (V.getSimpleValueType().getVectorElementType() != MVT::i8 && V.getSimpleValueType().getVectorElementType() != MVT::i16) return SDValue(); // Search for a half-shuffle which we can combine with. unsigned CombineOp = V.getOpcode() == X86ISD::UNPCKL ? X86ISD::PSHUFLW : X86ISD::PSHUFHW; if (V.getOperand(0) != V.getOperand(1) || !V->isOnlyUserOf(V.getOperand(0).getNode())) return SDValue(); Chain.push_back(V); V = V.getOperand(0); do { switch (V.getOpcode()) { default: return SDValue(); // Nothing to combine. case X86ISD::PSHUFLW: case X86ISD::PSHUFHW: if (V.getOpcode() == CombineOp) break; Chain.push_back(V); // Fallthrough! case ISD::BITCAST: V = V.getOperand(0); continue; } break; } while (V.hasOneUse()); break; } // Break out of the loop if we break out of the switch. break; } if (!V.hasOneUse()) // We fell out of the loop without finding a viable combining instruction. return SDValue(); // Merge this node's mask and our incoming mask. SmallVector<int, 4> VMask = getPSHUFShuffleMask(V); for (int &M : Mask) M = VMask[M]; V = DAG.getNode(V.getOpcode(), DL, V.getValueType(), V.getOperand(0), getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); // Rebuild the chain around this new shuffle. while (!Chain.empty()) { SDValue W = Chain.pop_back_val(); if (V.getValueType() != W.getOperand(0).getValueType()) V = DAG.getBitcast(W.getOperand(0).getValueType(), V); switch (W.getOpcode()) { default: llvm_unreachable("Only PSHUF and UNPCK instructions get here!"); case X86ISD::UNPCKL: case X86ISD::UNPCKH: V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, V); break; case X86ISD::PSHUFD: case X86ISD::PSHUFLW: case X86ISD::PSHUFHW: V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, W.getOperand(1)); break; } } if (V.getValueType() != N.getValueType()) V = DAG.getBitcast(N.getValueType(), V); // Return the new chain to replace N. return V; } /// \brief Search for a combinable shuffle across a chain ending in pshuflw or /// pshufhw. /// /// We walk up the chain, skipping shuffles of the other half and looking /// through shuffles which switch halves trying to find a shuffle of the same /// pair of dwords. static bool combineRedundantHalfShuffle(SDValue N, MutableArrayRef<int> Mask, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI) { assert( (N.getOpcode() == X86ISD::PSHUFLW || N.getOpcode() == X86ISD::PSHUFHW) && "Called with something other than an x86 128-bit half shuffle!"); SDLoc DL(N); unsigned CombineOpcode = N.getOpcode(); // Walk up a single-use chain looking for a combinable shuffle. SDValue V = N.getOperand(0); for (; V.hasOneUse(); V = V.getOperand(0)) { switch (V.getOpcode()) { default: return false; // Nothing combined! case ISD::BITCAST: // Skip bitcasts as we always know the type for the target specific // instructions. continue; case X86ISD::PSHUFLW: case X86ISD::PSHUFHW: if (V.getOpcode() == CombineOpcode) break; // Other-half shuffles are no-ops. continue; } // Break out of the loop if we break out of the switch. break; } if (!V.hasOneUse()) // We fell out of the loop without finding a viable combining instruction. return false; // Combine away the bottom node as its shuffle will be accumulated into // a preceding shuffle. DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true); // Record the old value. SDValue Old = V; // Merge this node's mask and our incoming mask (adjusted to account for all // the pshufd instructions encountered). SmallVector<int, 4> VMask = getPSHUFShuffleMask(V); for (int &M : Mask) M = VMask[M]; V = DAG.getNode(V.getOpcode(), DL, MVT::v8i16, V.getOperand(0), getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); // Check that the shuffles didn't cancel each other out. If not, we need to // combine to the new one. if (Old != V) // Replace the combinable shuffle with the combined one, updating all users // so that we re-evaluate the chain here. DCI.CombineTo(Old.getNode(), V, /*AddTo*/ true); return true; } /// \brief Try to combine x86 target specific shuffles. static SDValue PerformTargetShuffleCombine(SDValue N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { SDLoc DL(N); MVT VT = N.getSimpleValueType(); SmallVector<int, 4> Mask; switch (N.getOpcode()) { case X86ISD::PSHUFD: case X86ISD::PSHUFLW: case X86ISD::PSHUFHW: Mask = getPSHUFShuffleMask(N); assert(Mask.size() == 4); break; case X86ISD::UNPCKL: { // Combine X86ISD::UNPCKL and ISD::VECTOR_SHUFFLE into X86ISD::UNPCKH, in // which X86ISD::UNPCKL has a ISD::UNDEF operand, and ISD::VECTOR_SHUFFLE // moves upper half elements into the lower half part. For example: // // t2: v16i8 = vector_shuffle<8,9,10,11,12,13,14,15,u,u,u,u,u,u,u,u> t1, // undef:v16i8 // t3: v16i8 = X86ISD::UNPCKL undef:v16i8, t2 // // will be combined to: // // t3: v16i8 = X86ISD::UNPCKH undef:v16i8, t1 // This is only for 128-bit vectors. From SSE4.1 onward this combine may not // happen due to advanced instructions. if (!VT.is128BitVector()) return SDValue(); auto Op0 = N.getOperand(0); auto Op1 = N.getOperand(1); if (Op0.getOpcode() == ISD::UNDEF && Op1.getNode()->getOpcode() == ISD::VECTOR_SHUFFLE) { ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op1.getNode())->getMask(); unsigned NumElts = VT.getVectorNumElements(); SmallVector<int, 8> ExpectedMask(NumElts, -1); std::iota(ExpectedMask.begin(), ExpectedMask.begin() + NumElts / 2, NumElts / 2); auto ShufOp = Op1.getOperand(0); if (isShuffleEquivalent(Op1, ShufOp, Mask, ExpectedMask)) return DAG.getNode(X86ISD::UNPCKH, DL, VT, N.getOperand(0), ShufOp); } return SDValue(); } default: return SDValue(); } // Nuke no-op shuffles that show up after combining. if (isNoopShuffleMask(Mask)) return DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true); // Look for simplifications involving one or two shuffle instructions. SDValue V = N.getOperand(0); switch (N.getOpcode()) { default: break; case X86ISD::PSHUFLW: case X86ISD::PSHUFHW: assert(VT.getVectorElementType() == MVT::i16 && "Bad word shuffle type!"); if (combineRedundantHalfShuffle(N, Mask, DAG, DCI)) return SDValue(); // We combined away this shuffle, so we're done. // See if this reduces to a PSHUFD which is no more expensive and can // combine with more operations. Note that it has to at least flip the // dwords as otherwise it would have been removed as a no-op. if (makeArrayRef(Mask).equals({2, 3, 0, 1})) { int DMask[] = {0, 1, 2, 3}; int DOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 2; DMask[DOffset + 0] = DOffset + 1; DMask[DOffset + 1] = DOffset + 0; MVT DVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2); V = DAG.getBitcast(DVT, V); DCI.AddToWorklist(V.getNode()); V = DAG.getNode(X86ISD::PSHUFD, DL, DVT, V, getV4X86ShuffleImm8ForMask(DMask, DL, DAG)); DCI.AddToWorklist(V.getNode()); return DAG.getBitcast(VT, V); } // Look for shuffle patterns which can be implemented as a single unpack. // FIXME: This doesn't handle the location of the PSHUFD generically, and // only works when we have a PSHUFD followed by two half-shuffles. if (Mask[0] == Mask[1] && Mask[2] == Mask[3] && (V.getOpcode() == X86ISD::PSHUFLW || V.getOpcode() == X86ISD::PSHUFHW) && V.getOpcode() != N.getOpcode() && V.hasOneUse()) { SDValue D = V.getOperand(0); while (D.getOpcode() == ISD::BITCAST && D.hasOneUse()) D = D.getOperand(0); if (D.getOpcode() == X86ISD::PSHUFD && D.hasOneUse()) { SmallVector<int, 4> VMask = getPSHUFShuffleMask(V); SmallVector<int, 4> DMask = getPSHUFShuffleMask(D); int NOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 4; int VOffset = V.getOpcode() == X86ISD::PSHUFLW ? 0 : 4; int WordMask[8]; for (int i = 0; i < 4; ++i) { WordMask[i + NOffset] = Mask[i] + NOffset; WordMask[i + VOffset] = VMask[i] + VOffset; } // Map the word mask through the DWord mask. int MappedMask[8]; for (int i = 0; i < 8; ++i) MappedMask[i] = 2 * DMask[WordMask[i] / 2] + WordMask[i] % 2; if (makeArrayRef(MappedMask).equals({0, 0, 1, 1, 2, 2, 3, 3}) || makeArrayRef(MappedMask).equals({4, 4, 5, 5, 6, 6, 7, 7})) { // We can replace all three shuffles with an unpack. V = DAG.getBitcast(VT, D.getOperand(0)); DCI.AddToWorklist(V.getNode()); return DAG.getNode(MappedMask[0] == 0 ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL, VT, V, V); } } } break; case X86ISD::PSHUFD: if (SDValue NewN = combineRedundantDWordShuffle(N, Mask, DAG, DCI)) return NewN; break; } return SDValue(); } /// \brief Try to combine a shuffle into a target-specific add-sub node. /// /// We combine this directly on the abstract vector shuffle nodes so it is /// easier to generically match. We also insert dummy vector shuffle nodes for /// the operands which explicitly discard the lanes which are unused by this /// operation to try to flow through the rest of the combiner the fact that /// they're unused. static SDValue combineShuffleToAddSub(SDNode *N, SelectionDAG &DAG) { SDLoc DL(N); EVT VT = N->getValueType(0); // We only handle target-independent shuffles. // FIXME: It would be easy and harmless to use the target shuffle mask // extraction tool to support more. if (N->getOpcode() != ISD::VECTOR_SHUFFLE) return SDValue(); auto *SVN = cast<ShuffleVectorSDNode>(N); SmallVector<int, 8> Mask; for (int M : SVN->getMask()) Mask.push_back(M); SDValue V1 = N->getOperand(0); SDValue V2 = N->getOperand(1); // We require the first shuffle operand to be the FSUB node, and the second to // be the FADD node. if (V1.getOpcode() == ISD::FADD && V2.getOpcode() == ISD::FSUB) { ShuffleVectorSDNode::commuteMask(Mask); std::swap(V1, V2); } else if (V1.getOpcode() != ISD::FSUB || V2.getOpcode() != ISD::FADD) return SDValue(); // If there are other uses of these operations we can't fold them. if (!V1->hasOneUse() || !V2->hasOneUse()) return SDValue(); // Ensure that both operations have the same operands. Note that we can // commute the FADD operands. SDValue LHS = V1->getOperand(0), RHS = V1->getOperand(1); if ((V2->getOperand(0) != LHS || V2->getOperand(1) != RHS) && (V2->getOperand(0) != RHS || V2->getOperand(1) != LHS)) return SDValue(); // We're looking for blends between FADD and FSUB nodes. We insist on these // nodes being lined up in a specific expected pattern. if (!(isShuffleEquivalent(V1, V2, Mask, {0, 3}) || isShuffleEquivalent(V1, V2, Mask, {0, 5, 2, 7}) || isShuffleEquivalent(V1, V2, Mask, {0, 9, 2, 11, 4, 13, 6, 15}))) return SDValue(); // Only specific types are legal at this point, assert so we notice if and // when these change. assert((VT == MVT::v4f32 || VT == MVT::v2f64 || VT == MVT::v8f32 || VT == MVT::v4f64) && "Unknown vector type encountered!"); return DAG.getNode(X86ISD::ADDSUB, DL, VT, LHS, RHS); } /// PerformShuffleCombine - Performs several different shuffle combines. static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { SDLoc dl(N); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N->getValueType(0); // Don't create instructions with illegal types after legalize types has run. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType())) return SDValue(); // If we have legalized the vector types, look for blends of FADD and FSUB // nodes that we can fuse into an ADDSUB node. if (TLI.isTypeLegal(VT) && Subtarget->hasSSE3()) if (SDValue AddSub = combineShuffleToAddSub(N, DAG)) return AddSub; // Combine 256-bit vector shuffles. This is only profitable when in AVX mode if (TLI.isTypeLegal(VT) && Subtarget->hasFp256() && VT.is256BitVector() && N->getOpcode() == ISD::VECTOR_SHUFFLE) return PerformShuffleCombine256(N, DAG, DCI, Subtarget); // During Type Legalization, when promoting illegal vector types, // the backend might introduce new shuffle dag nodes and bitcasts. // // This code performs the following transformation: // fold: (shuffle (bitcast (BINOP A, B)), Undef, <Mask>) -> // (shuffle (BINOP (bitcast A), (bitcast B)), Undef, <Mask>) // // We do this only if both the bitcast and the BINOP dag nodes have // one use. Also, perform this transformation only if the new binary // operation is legal. This is to avoid introducing dag nodes that // potentially need to be further expanded (or custom lowered) into a // less optimal sequence of dag nodes. if (!DCI.isBeforeLegalize() && DCI.isBeforeLegalizeOps() && N1.getOpcode() == ISD::UNDEF && N0.hasOneUse() && N0.getOpcode() == ISD::BITCAST) { SDValue BC0 = N0.getOperand(0); EVT SVT = BC0.getValueType(); unsigned Opcode = BC0.getOpcode(); unsigned NumElts = VT.getVectorNumElements(); if (BC0.hasOneUse() && SVT.isVector() && SVT.getVectorNumElements() * 2 == NumElts && TLI.isOperationLegal(Opcode, VT)) { bool CanFold = false; switch (Opcode) { default : break; case ISD::ADD : case ISD::FADD : case ISD::SUB : case ISD::FSUB : case ISD::MUL : case ISD::FMUL : CanFold = true; } unsigned SVTNumElts = SVT.getVectorNumElements(); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); for (unsigned i = 0, e = SVTNumElts; i != e && CanFold; ++i) CanFold = SVOp->getMaskElt(i) == (int)(i * 2); for (unsigned i = SVTNumElts, e = NumElts; i != e && CanFold; ++i) CanFold = SVOp->getMaskElt(i) < 0; if (CanFold) { SDValue BC00 = DAG.getBitcast(VT, BC0.getOperand(0)); SDValue BC01 = DAG.getBitcast(VT, BC0.getOperand(1)); SDValue NewBinOp = DAG.getNode(BC0.getOpcode(), dl, VT, BC00, BC01); return DAG.getVectorShuffle(VT, dl, NewBinOp, N1, &SVOp->getMask()[0]); } } } // Combine a vector_shuffle that is equal to build_vector load1, load2, load3, // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are // consecutive, non-overlapping, and in the right order. SmallVector<SDValue, 16> Elts; for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) Elts.push_back(getShuffleScalarElt(N, i, DAG, 0)); if (SDValue LD = EltsFromConsecutiveLoads(VT, Elts, dl, DAG, true)) return LD; if (isTargetShuffle(N->getOpcode())) { SDValue Shuffle = PerformTargetShuffleCombine(SDValue(N, 0), DAG, DCI, Subtarget); if (Shuffle.getNode()) return Shuffle; // Try recursively combining arbitrary sequences of x86 shuffle // instructions into higher-order shuffles. We do this after combining // specific PSHUF instruction sequences into their minimal form so that we // can evaluate how many specialized shuffle instructions are involved in // a particular chain. SmallVector<int, 1> NonceMask; // Just a placeholder. NonceMask.push_back(0); if (combineX86ShufflesRecursively(SDValue(N, 0), SDValue(N, 0), NonceMask, /*Depth*/ 1, /*HasPSHUFB*/ false, DAG, DCI, Subtarget)) return SDValue(); // This routine will use CombineTo to replace N. } return SDValue(); } /// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target /// specific shuffle of a load can be folded into a single element load. /// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but /// shuffles have been custom lowered so we need to handle those here. static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI) { if (DCI.isBeforeLegalizeOps()) return SDValue(); SDValue InVec = N->getOperand(0); SDValue EltNo = N->getOperand(1); if (!isa<ConstantSDNode>(EltNo)) return SDValue(); EVT OriginalVT = InVec.getValueType(); if (InVec.getOpcode() == ISD::BITCAST) { // Don't duplicate a load with other uses. if (!InVec.hasOneUse()) return SDValue(); EVT BCVT = InVec.getOperand(0).getValueType(); if (!BCVT.isVector() || BCVT.getVectorNumElements() != OriginalVT.getVectorNumElements()) return SDValue(); InVec = InVec.getOperand(0); } EVT CurrentVT = InVec.getValueType(); if (!isTargetShuffle(InVec.getOpcode())) return SDValue(); // Don't duplicate a load with other uses. if (!InVec.hasOneUse()) return SDValue(); SmallVector<int, 16> ShuffleMask; bool UnaryShuffle; if (!getTargetShuffleMask(InVec.getNode(), CurrentVT.getSimpleVT(), ShuffleMask, UnaryShuffle)) return SDValue(); // Select the input vector, guarding against out of range extract vector. unsigned NumElems = CurrentVT.getVectorNumElements(); int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt]; SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1); // If inputs to shuffle are the same for both ops, then allow 2 uses unsigned AllowedUses = InVec.getNumOperands() > 1 && InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1; if (LdNode.getOpcode() == ISD::BITCAST) { // Don't duplicate a load with other uses. if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0)) return SDValue(); AllowedUses = 1; // only allow 1 load use if we have a bitcast LdNode = LdNode.getOperand(0); } if (!ISD::isNormalLoad(LdNode.getNode())) return SDValue(); LoadSDNode *LN0 = cast<LoadSDNode>(LdNode); if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile()) return SDValue(); EVT EltVT = N->getValueType(0); // If there's a bitcast before the shuffle, check if the load type and // alignment is valid. unsigned Align = LN0->getAlignment(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( EltVT.getTypeForEVT(*DAG.getContext())); if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, EltVT)) return SDValue(); // All checks match so transform back to vector_shuffle so that DAG combiner // can finish the job SDLoc dl(N); // Create shuffle node taking into account the case that its a unary shuffle SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(CurrentVT) : InVec.getOperand(1); Shuffle = DAG.getVectorShuffle(CurrentVT, dl, InVec.getOperand(0), Shuffle, &ShuffleMask[0]); Shuffle = DAG.getBitcast(OriginalVT, Shuffle); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle, EltNo); } static SDValue PerformBITCASTCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // Detect bitcasts between i32 to x86mmx low word. Since MMX types are // special and don't usually play with other vector types, it's better to // handle them early to be sure we emit efficient code by avoiding // store-load conversions. if (VT == MVT::x86mmx && N0.getOpcode() == ISD::BUILD_VECTOR && N0.getValueType() == MVT::v2i32 && isNullConstant(N0.getOperand(1))) { SDValue N00 = N0->getOperand(0); if (N00.getValueType() == MVT::i32) return DAG.getNode(X86ISD::MMX_MOVW2D, SDLoc(N00), VT, N00); } // Convert a bitcasted integer logic operation that has one bitcasted // floating-point operand and one constant operand into a floating-point // logic operation. This may create a load of the constant, but that is // cheaper than materializing the constant in an integer register and // transferring it to an SSE register or transferring the SSE operand to // integer register and back. unsigned FPOpcode; switch (N0.getOpcode()) { case ISD::AND: FPOpcode = X86ISD::FAND; break; case ISD::OR: FPOpcode = X86ISD::FOR; break; case ISD::XOR: FPOpcode = X86ISD::FXOR; break; default: return SDValue(); } if (((Subtarget->hasSSE1() && VT == MVT::f32) || (Subtarget->hasSSE2() && VT == MVT::f64)) && isa<ConstantSDNode>(N0.getOperand(1)) && N0.getOperand(0).getOpcode() == ISD::BITCAST && N0.getOperand(0).getOperand(0).getValueType() == VT) { SDValue N000 = N0.getOperand(0).getOperand(0); SDValue FPConst = DAG.getBitcast(VT, N0.getOperand(1)); return DAG.getNode(FPOpcode, SDLoc(N0), VT, N000, FPConst); } return SDValue(); } /// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index /// generation and convert it from being a bunch of shuffles and extracts /// into a somewhat faster sequence. For i686, the best sequence is apparently /// storing the value and loading scalars back, while for x64 we should /// use 64-bit extracts and shifts. static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI) { if (SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI)) return NewOp; SDValue InputVector = N->getOperand(0); SDLoc dl(InputVector); // Detect mmx to i32 conversion through a v2i32 elt extract. if (InputVector.getOpcode() == ISD::BITCAST && InputVector.hasOneUse() && N->getValueType(0) == MVT::i32 && InputVector.getValueType() == MVT::v2i32) { // The bitcast source is a direct mmx result. SDValue MMXSrc = InputVector.getNode()->getOperand(0); if (MMXSrc.getValueType() == MVT::x86mmx) return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector), N->getValueType(0), InputVector.getNode()->getOperand(0)); // The mmx is indirect: (i64 extract_elt (v1i64 bitcast (x86mmx ...))). if (MMXSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT && MMXSrc.hasOneUse() && MMXSrc.getValueType() == MVT::i64) { SDValue MMXSrcOp = MMXSrc.getOperand(0); if (MMXSrcOp.hasOneUse() && MMXSrcOp.getOpcode() == ISD::BITCAST && MMXSrcOp.getValueType() == MVT::v1i64 && MMXSrcOp.getOperand(0).getValueType() == MVT::x86mmx) return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector), N->getValueType(0), MMXSrcOp.getOperand(0)); } } EVT VT = N->getValueType(0); if (VT == MVT::i1 && isa<ConstantSDNode>(N->getOperand(1)) && InputVector.getOpcode() == ISD::BITCAST && isa<ConstantSDNode>(InputVector.getOperand(0))) { uint64_t ExtractedElt = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); uint64_t InputValue = cast<ConstantSDNode>(InputVector.getOperand(0))->getZExtValue(); uint64_t Res = (InputValue >> ExtractedElt) & 1; return DAG.getConstant(Res, dl, MVT::i1); } // Only operate on vectors of 4 elements, where the alternative shuffling // gets to be more expensive. if (InputVector.getValueType() != MVT::v4i32) return SDValue(); // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a // single use which is a sign-extend or zero-extend, and all elements are // used. SmallVector<SDNode *, 4> Uses; unsigned ExtractedElements = 0; for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(), UE = InputVector.getNode()->use_end(); UI != UE; ++UI) { if (UI.getUse().getResNo() != InputVector.getResNo()) return SDValue(); SDNode *Extract = *UI; if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT) return SDValue(); if (Extract->getValueType(0) != MVT::i32) return SDValue(); if (!Extract->hasOneUse()) return SDValue(); if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND && Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND) return SDValue(); if (!isa<ConstantSDNode>(Extract->getOperand(1))) return SDValue(); // Record which element was extracted. ExtractedElements |= 1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue(); Uses.push_back(Extract); } // If not all the elements were used, this may not be worthwhile. if (ExtractedElements != 15) return SDValue(); // Ok, we've now decided to do the transformation. // If 64-bit shifts are legal, use the extract-shift sequence, // otherwise bounce the vector off the cache. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDValue Vals[4]; if (TLI.isOperationLegal(ISD::SRA, MVT::i64)) { SDValue Cst = DAG.getBitcast(MVT::v2i64, InputVector); auto &DL = DAG.getDataLayout(); EVT VecIdxTy = DAG.getTargetLoweringInfo().getVectorIdxTy(DL); SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst, DAG.getConstant(0, dl, VecIdxTy)); SDValue TopHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst, DAG.getConstant(1, dl, VecIdxTy)); SDValue ShAmt = DAG.getConstant( 32, dl, DAG.getTargetLoweringInfo().getShiftAmountTy(MVT::i64, DL)); Vals[0] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BottomHalf); Vals[1] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, DAG.getNode(ISD::SRA, dl, MVT::i64, BottomHalf, ShAmt)); Vals[2] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, TopHalf); Vals[3] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, DAG.getNode(ISD::SRA, dl, MVT::i64, TopHalf, ShAmt)); } else { // Store the value to a temporary stack slot. SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType()); SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, MachinePointerInfo(), false, false, 0); EVT ElementType = InputVector.getValueType().getVectorElementType(); unsigned EltSize = ElementType.getSizeInBits() / 8; // Replace each use (extract) with a load of the appropriate element. for (unsigned i = 0; i < 4; ++i) { uint64_t Offset = EltSize * i; auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); SDValue OffsetVal = DAG.getConstant(Offset, dl, PtrVT); SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, OffsetVal); // Load the scalar. Vals[i] = DAG.getLoad(ElementType, dl, Ch, ScalarAddr, MachinePointerInfo(), false, false, false, 0); } } // Replace the extracts for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(), UE = Uses.end(); UI != UE; ++UI) { SDNode *Extract = *UI; SDValue Idx = Extract->getOperand(1); uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), Vals[IdxVal]); } // The replacement was made in place; don't return anything. return SDValue(); } static SDValue transformVSELECTtoBlendVECTOR_SHUFFLE(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { SDLoc dl(N); SDValue Cond = N->getOperand(0); SDValue LHS = N->getOperand(1); SDValue RHS = N->getOperand(2); if (Cond.getOpcode() == ISD::SIGN_EXTEND) { SDValue CondSrc = Cond->getOperand(0); if (CondSrc->getOpcode() == ISD::SIGN_EXTEND_INREG) Cond = CondSrc->getOperand(0); } if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) return SDValue(); // A vselect where all conditions and data are constants can be optimized into // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR(). if (ISD::isBuildVectorOfConstantSDNodes(LHS.getNode()) && ISD::isBuildVectorOfConstantSDNodes(RHS.getNode())) return SDValue(); unsigned MaskValue = 0; if (!BUILD_VECTORtoBlendMask(cast<BuildVectorSDNode>(Cond), MaskValue)) return SDValue(); MVT VT = N->getSimpleValueType(0); unsigned NumElems = VT.getVectorNumElements(); SmallVector<int, 8> ShuffleMask(NumElems, -1); for (unsigned i = 0; i < NumElems; ++i) { // Be sure we emit undef where we can. if (Cond.getOperand(i)->getOpcode() == ISD::UNDEF) ShuffleMask[i] = -1; else ShuffleMask[i] = i + NumElems * ((MaskValue >> i) & 1); } const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (!TLI.isShuffleMaskLegal(ShuffleMask, VT)) return SDValue(); return DAG.getVectorShuffle(VT, dl, LHS, RHS, &ShuffleMask[0]); } /// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT /// nodes. static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { SDLoc DL(N); SDValue Cond = N->getOperand(0); // Get the LHS/RHS of the select. SDValue LHS = N->getOperand(1); SDValue RHS = N->getOperand(2); EVT VT = LHS.getValueType(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); // If we have SSE[12] support, try to form min/max nodes. SSE min/max // instructions match the semantics of the common C idiom x<y?x:y but not // x<=y?x:y, because of how they handle negative zero (which can be // ignored in unsafe-math mode). // We also try to create v2f32 min/max nodes, which we later widen to v4f32. if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() && VT != MVT::f80 && VT != MVT::f128 && (TLI.isTypeLegal(VT) || VT == MVT::v2f32) && (Subtarget->hasSSE2() || (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) { ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); unsigned Opcode = 0; // Check for x CC y ? x : y. if (DAG.isEqualTo(LHS, Cond.getOperand(0)) && DAG.isEqualTo(RHS, Cond.getOperand(1))) { switch (CC) { default: break; case ISD::SETULT: // Converting this to a min would handle NaNs incorrectly, and swapping // the operands would cause it to handle comparisons between positive // and negative zero incorrectly. if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) { if (!DAG.getTarget().Options.UnsafeFPMath && !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) break; std::swap(LHS, RHS); } Opcode = X86ISD::FMIN; break; case ISD::SETOLE: // Converting this to a min would handle comparisons between positive // and negative zero incorrectly. if (!DAG.getTarget().Options.UnsafeFPMath && !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) break; Opcode = X86ISD::FMIN; break; case ISD::SETULE: // Converting this to a min would handle both negative zeros and NaNs // incorrectly, but we can swap the operands to fix both. std::swap(LHS, RHS); case ISD::SETOLT: case ISD::SETLT: case ISD::SETLE: Opcode = X86ISD::FMIN; break; case ISD::SETOGE: // Converting this to a max would handle comparisons between positive // and negative zero incorrectly. if (!DAG.getTarget().Options.UnsafeFPMath && !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) break; Opcode = X86ISD::FMAX; break; case ISD::SETUGT: // Converting this to a max would handle NaNs incorrectly, and swapping // the operands would cause it to handle comparisons between positive // and negative zero incorrectly. if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) { if (!DAG.getTarget().Options.UnsafeFPMath && !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) break; std::swap(LHS, RHS); } Opcode = X86ISD::FMAX; break; case ISD::SETUGE: // Converting this to a max would handle both negative zeros and NaNs // incorrectly, but we can swap the operands to fix both. std::swap(LHS, RHS); case ISD::SETOGT: case ISD::SETGT: case ISD::SETGE: Opcode = X86ISD::FMAX; break; } // Check for x CC y ? y : x -- a min/max with reversed arms. } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) && DAG.isEqualTo(RHS, Cond.getOperand(0))) { switch (CC) { default: break; case ISD::SETOGE: // Converting this to a min would handle comparisons between positive // and negative zero incorrectly, and swapping the operands would // cause it to handle NaNs incorrectly. if (!DAG.getTarget().Options.UnsafeFPMath && !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) { if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) break; std::swap(LHS, RHS); } Opcode = X86ISD::FMIN; break; case ISD::SETUGT: // Converting this to a min would handle NaNs incorrectly. if (!DAG.getTarget().Options.UnsafeFPMath && (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) break; Opcode = X86ISD::FMIN; break; case ISD::SETUGE: // Converting this to a min would handle both negative zeros and NaNs // incorrectly, but we can swap the operands to fix both. std::swap(LHS, RHS); case ISD::SETOGT: case ISD::SETGT: case ISD::SETGE: Opcode = X86ISD::FMIN; break; case ISD::SETULT: // Converting this to a max would handle NaNs incorrectly. if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) break; Opcode = X86ISD::FMAX; break; case ISD::SETOLE: // Converting this to a max would handle comparisons between positive // and negative zero incorrectly, and swapping the operands would // cause it to handle NaNs incorrectly. if (!DAG.getTarget().Options.UnsafeFPMath && !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) { if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) break; std::swap(LHS, RHS); } Opcode = X86ISD::FMAX; break; case ISD::SETULE: // Converting this to a max would handle both negative zeros and NaNs // incorrectly, but we can swap the operands to fix both. std::swap(LHS, RHS); case ISD::SETOLT: case ISD::SETLT: case ISD::SETLE: Opcode = X86ISD::FMAX; break; } } if (Opcode) return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS); } EVT CondVT = Cond.getValueType(); if (Subtarget->hasAVX512() && VT.isVector() && CondVT.isVector() && CondVT.getVectorElementType() == MVT::i1) { // v16i8 (select v16i1, v16i8, v16i8) does not have a proper // lowering on KNL. In this case we convert it to // v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction. // The same situation for all 128 and 256-bit vectors of i8 and i16. // Since SKX these selects have a proper lowering. EVT OpVT = LHS.getValueType(); if ((OpVT.is128BitVector() || OpVT.is256BitVector()) && (OpVT.getVectorElementType() == MVT::i8 || OpVT.getVectorElementType() == MVT::i16) && !(Subtarget->hasBWI() && Subtarget->hasVLX())) { Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, OpVT, Cond); DCI.AddToWorklist(Cond.getNode()); return DAG.getNode(N->getOpcode(), DL, OpVT, Cond, LHS, RHS); } } // If this is a select between two integer constants, try to do some // optimizations. if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) { if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS)) // Don't do this for crazy integer types. if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) { // If this is efficiently invertible, canonicalize the LHSC/RHSC values // so that TrueC (the true value) is larger than FalseC. bool NeedsCondInvert = false; if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) && // Efficiently invertible. (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible. (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible. isa<ConstantSDNode>(Cond.getOperand(1))))) { NeedsCondInvert = true; std::swap(TrueC, FalseC); } // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0. if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) { if (NeedsCondInvert) // Invert the condition if needed. Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, DAG.getConstant(1, DL, Cond.getValueType())); // Zero extend the condition if needed. Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond); unsigned ShAmt = TrueC->getAPIntValue().logBase2(); return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond, DAG.getConstant(ShAmt, DL, MVT::i8)); } // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { if (NeedsCondInvert) // Invert the condition if needed. Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, DAG.getConstant(1, DL, Cond.getValueType())); // Zero extend the condition if needed. Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), Cond); return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, SDValue(FalseC, 0)); } // Optimize cases that will turn into an LEA instruction. This requires // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; bool isFastMultiplier = false; if (Diff < 10) { switch ((unsigned char)Diff) { default: break; case 1: // result = add base, cond case 2: // result = lea base( , cond*2) case 3: // result = lea base(cond, cond*2) case 4: // result = lea base( , cond*4) case 5: // result = lea base(cond, cond*4) case 8: // result = lea base( , cond*8) case 9: // result = lea base(cond, cond*8) isFastMultiplier = true; break; } } if (isFastMultiplier) { APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); if (NeedsCondInvert) // Invert the condition if needed. Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, DAG.getConstant(1, DL, Cond.getValueType())); // Zero extend the condition if needed. Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), Cond); // Scale the condition by the difference. if (Diff != 1) Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, DAG.getConstant(Diff, DL, Cond.getValueType())); // Add the base if non-zero. if (FalseC->getAPIntValue() != 0) Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, SDValue(FalseC, 0)); return Cond; } } } } // Canonicalize max and min: // (x > y) ? x : y -> (x >= y) ? x : y // (x < y) ? x : y -> (x <= y) ? x : y // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates // the need for an extra compare // against zero. e.g. // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0 // subl %esi, %edi // testl %edi, %edi // movl $0, %eax // cmovgl %edi, %eax // => // xorl %eax, %eax // subl %esi, $edi // cmovsl %eax, %edi if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC && DAG.isEqualTo(LHS, Cond.getOperand(0)) && DAG.isEqualTo(RHS, Cond.getOperand(1))) { ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); switch (CC) { default: break; case ISD::SETLT: case ISD::SETGT: { ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE; Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(), Cond.getOperand(0), Cond.getOperand(1), NewCC); return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS); } } } // Early exit check if (!TLI.isTypeLegal(VT)) return SDValue(); // Match VSELECTs into subs with unsigned saturation. if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC && // psubus is available in SSE2 and AVX2 for i8 and i16 vectors. ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) || (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) { ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); // Check if one of the arms of the VSELECT is a zero vector. If it's on the // left side invert the predicate to simplify logic below. SDValue Other; if (ISD::isBuildVectorAllZeros(LHS.getNode())) { Other = RHS; CC = ISD::getSetCCInverse(CC, true); } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) { Other = LHS; } if (Other.getNode() && Other->getNumOperands() == 2 && DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) { SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1); SDValue CondRHS = Cond->getOperand(1); // Look for a general sub with unsigned saturation first. // x >= y ? x-y : 0 --> subus x, y // x > y ? x-y : 0 --> subus x, y if ((CC == ISD::SETUGE || CC == ISD::SETUGT) && Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS)) return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS); if (auto *OpRHSBV = dyn_cast<BuildVectorSDNode>(OpRHS)) if (auto *OpRHSConst = OpRHSBV->getConstantSplatNode()) { if (auto *CondRHSBV = dyn_cast<BuildVectorSDNode>(CondRHS)) if (auto *CondRHSConst = CondRHSBV->getConstantSplatNode()) // If the RHS is a constant we have to reverse the const // canonicalization. // x > C-1 ? x+-C : 0 --> subus x, C if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD && CondRHSConst->getAPIntValue() == (-OpRHSConst->getAPIntValue() - 1)) return DAG.getNode( X86ISD::SUBUS, DL, VT, OpLHS, DAG.getConstant(-OpRHSConst->getAPIntValue(), DL, VT)); // Another special case: If C was a sign bit, the sub has been // canonicalized into a xor. // FIXME: Would it be better to use computeKnownBits to determine // whether it's safe to decanonicalize the xor? // x s< 0 ? x^C : 0 --> subus x, C if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR && ISD::isBuildVectorAllZeros(CondRHS.getNode()) && OpRHSConst->getAPIntValue().isSignBit()) // Note that we have to rebuild the RHS constant here to ensure we // don't rely on particular values of undef lanes. return DAG.getNode( X86ISD::SUBUS, DL, VT, OpLHS, DAG.getConstant(OpRHSConst->getAPIntValue(), DL, VT)); } } } // Simplify vector selection if condition value type matches vselect // operand type if (N->getOpcode() == ISD::VSELECT && CondVT == VT) { assert(Cond.getValueType().isVector() && "vector select expects a vector selector!"); bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode()); bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); // Try invert the condition if true value is not all 1s and false value // is not all 0s. if (!TValIsAllOnes && !FValIsAllZeros && // Check if the selector will be produced by CMPP*/PCMP* Cond.getOpcode() == ISD::SETCC && // Check if SETCC has already been promoted TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT) == CondVT) { bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode()); bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode()); if (TValIsAllZeros || FValIsAllOnes) { SDValue CC = Cond.getOperand(2); ISD::CondCode NewCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), Cond.getOperand(0).getValueType().isInteger()); Cond = DAG.getSetCC(DL, CondVT, Cond.getOperand(0), Cond.getOperand(1), NewCC); std::swap(LHS, RHS); TValIsAllOnes = FValIsAllOnes; FValIsAllZeros = TValIsAllZeros; } } if (TValIsAllOnes || FValIsAllZeros) { SDValue Ret; if (TValIsAllOnes && FValIsAllZeros) Ret = Cond; else if (TValIsAllOnes) Ret = DAG.getNode(ISD::OR, DL, CondVT, Cond, DAG.getBitcast(CondVT, RHS)); else if (FValIsAllZeros) Ret = DAG.getNode(ISD::AND, DL, CondVT, Cond, DAG.getBitcast(CondVT, LHS)); return DAG.getBitcast(VT, Ret); } } // We should generate an X86ISD::BLENDI from a vselect if its argument // is a sign_extend_inreg of an any_extend of a BUILD_VECTOR of // constants. This specific pattern gets generated when we split a // selector for a 512 bit vector in a machine without AVX512 (but with // 256-bit vectors), during legalization: // // (vselect (sign_extend (any_extend (BUILD_VECTOR)) i1) LHS RHS) // // Iff we find this pattern and the build_vectors are built from // constants, we translate the vselect into a shuffle_vector that we // know will be matched by LowerVECTOR_SHUFFLEtoBlend. if ((N->getOpcode() == ISD::VSELECT || N->getOpcode() == X86ISD::SHRUNKBLEND) && !DCI.isBeforeLegalize() && !VT.is512BitVector()) { SDValue Shuffle = transformVSELECTtoBlendVECTOR_SHUFFLE(N, DAG, Subtarget); if (Shuffle.getNode()) return Shuffle; } // If this is a *dynamic* select (non-constant condition) and we can match // this node with one of the variable blend instructions, restructure the // condition so that the blends can use the high bit of each element and use // SimplifyDemandedBits to simplify the condition operand. if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() && !DCI.isBeforeLegalize() && !ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) { unsigned BitWidth = Cond.getValueType().getScalarSizeInBits(); // Don't optimize vector selects that map to mask-registers. if (BitWidth == 1) return SDValue(); // We can only handle the cases where VSELECT is directly legal on the // subtarget. We custom lower VSELECT nodes with constant conditions and // this makes it hard to see whether a dynamic VSELECT will correctly // lower, so we both check the operation's status and explicitly handle the // cases where a *dynamic* blend will fail even though a constant-condition // blend could be custom lowered. // FIXME: We should find a better way to handle this class of problems. // Potentially, we should combine constant-condition vselect nodes // pre-legalization into shuffles and not mark as many types as custom // lowered. if (!TLI.isOperationLegalOrCustom(ISD::VSELECT, VT)) return SDValue(); // FIXME: We don't support i16-element blends currently. We could and // should support them by making *all* the bits in the condition be set // rather than just the high bit and using an i8-element blend. if (VT.getVectorElementType() == MVT::i16) return SDValue(); // Dynamic blending was only available from SSE4.1 onward. if (VT.is128BitVector() && !Subtarget->hasSSE41()) return SDValue(); // Byte blends are only available in AVX2 if (VT == MVT::v32i8 && !Subtarget->hasAVX2()) return SDValue(); assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size"); APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1); APInt KnownZero, KnownOne; TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(), DCI.isBeforeLegalizeOps()); if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) || TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO)) { // If we changed the computation somewhere in the DAG, this change // will affect all users of Cond. // Make sure it is fine and update all the nodes so that we do not // use the generic VSELECT anymore. Otherwise, we may perform // wrong optimizations as we messed up with the actual expectation // for the vector boolean values. if (Cond != TLO.Old) { // Check all uses of that condition operand to check whether it will be // consumed by non-BLEND instructions, which may depend on all bits are // set properly. for (SDNode::use_iterator I = Cond->use_begin(), E = Cond->use_end(); I != E; ++I) if (I->getOpcode() != ISD::VSELECT) // TODO: Add other opcodes eventually lowered into BLEND. return SDValue(); // Update all the users of the condition, before committing the change, // so that the VSELECT optimizations that expect the correct vector // boolean value will not be triggered. for (SDNode::use_iterator I = Cond->use_begin(), E = Cond->use_end(); I != E; ++I) DAG.ReplaceAllUsesOfValueWith( SDValue(*I, 0), DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(*I), I->getValueType(0), Cond, I->getOperand(1), I->getOperand(2))); DCI.CommitTargetLoweringOpt(TLO); return SDValue(); } // At this point, only Cond is changed. Change the condition // just for N to keep the opportunity to optimize all other // users their own way. DAG.ReplaceAllUsesOfValueWith( SDValue(N, 0), DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(N), N->getValueType(0), TLO.New, N->getOperand(1), N->getOperand(2))); return SDValue(); } } return SDValue(); } // Check whether a boolean test is testing a boolean value generated by // X86ISD::SETCC. If so, return the operand of that SETCC and proper condition // code. // // Simplify the following patterns: // (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or // (Op (CMP (SETCC Cond EFLAGS) 0) NEQ) // to (Op EFLAGS Cond) // // (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or // (Op (CMP (SETCC Cond EFLAGS) 1) NEQ) // to (Op EFLAGS !Cond) // // where Op could be BRCOND or CMOV. // static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) { // Quit if not CMP and SUB with its value result used. if (Cmp.getOpcode() != X86ISD::CMP && (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0))) return SDValue(); // Quit if not used as a boolean value. if (CC != X86::COND_E && CC != X86::COND_NE) return SDValue(); // Check CMP operands. One of them should be 0 or 1 and the other should be // an SetCC or extended from it. SDValue Op1 = Cmp.getOperand(0); SDValue Op2 = Cmp.getOperand(1); SDValue SetCC; const ConstantSDNode* C = nullptr; bool needOppositeCond = (CC == X86::COND_E); bool checkAgainstTrue = false; // Is it a comparison against 1? if ((C = dyn_cast<ConstantSDNode>(Op1))) SetCC = Op2; else if ((C = dyn_cast<ConstantSDNode>(Op2))) SetCC = Op1; else // Quit if all operands are not constants. return SDValue(); if (C->getZExtValue() == 1) { needOppositeCond = !needOppositeCond; checkAgainstTrue = true; } else if (C->getZExtValue() != 0) // Quit if the constant is neither 0 or 1. return SDValue(); bool truncatedToBoolWithAnd = false; // Skip (zext $x), (trunc $x), or (and $x, 1) node. while (SetCC.getOpcode() == ISD::ZERO_EXTEND || SetCC.getOpcode() == ISD::TRUNCATE || SetCC.getOpcode() == ISD::AND) { if (SetCC.getOpcode() == ISD::AND) { int OpIdx = -1; if (isOneConstant(SetCC.getOperand(0))) OpIdx = 1; if (isOneConstant(SetCC.getOperand(1))) OpIdx = 0; if (OpIdx == -1) break; SetCC = SetCC.getOperand(OpIdx); truncatedToBoolWithAnd = true; } else SetCC = SetCC.getOperand(0); } switch (SetCC.getOpcode()) { case X86ISD::SETCC_CARRY: // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1, // i.e. it's a comparison against true but the result of SETCC_CARRY is not // truncated to i1 using 'and'. if (checkAgainstTrue && !truncatedToBoolWithAnd) break; assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B && "Invalid use of SETCC_CARRY!"); // FALL THROUGH case X86ISD::SETCC: // Set the condition code or opposite one if necessary. CC = X86::CondCode(SetCC.getConstantOperandVal(0)); if (needOppositeCond) CC = X86::GetOppositeBranchCondition(CC); return SetCC.getOperand(1); case X86ISD::CMOV: { // Check whether false/true value has canonical one, i.e. 0 or 1. ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0)); ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1)); // Quit if true value is not a constant. if (!TVal) return SDValue(); // Quit if false value is not a constant. if (!FVal) { SDValue Op = SetCC.getOperand(0); // Skip 'zext' or 'trunc' node. if (Op.getOpcode() == ISD::ZERO_EXTEND || Op.getOpcode() == ISD::TRUNCATE) Op = Op.getOperand(0); // A special case for rdrand/rdseed, where 0 is set if false cond is // found. if ((Op.getOpcode() != X86ISD::RDRAND && Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0) return SDValue(); } // Quit if false value is not the constant 0 or 1. bool FValIsFalse = true; if (FVal && FVal->getZExtValue() != 0) { if (FVal->getZExtValue() != 1) return SDValue(); // If FVal is 1, opposite cond is needed. needOppositeCond = !needOppositeCond; FValIsFalse = false; } // Quit if TVal is not the constant opposite of FVal. if (FValIsFalse && TVal->getZExtValue() != 1) return SDValue(); if (!FValIsFalse && TVal->getZExtValue() != 0) return SDValue(); CC = X86::CondCode(SetCC.getConstantOperandVal(2)); if (needOppositeCond) CC = X86::GetOppositeBranchCondition(CC); return SetCC.getOperand(3); } } return SDValue(); } /// Check whether Cond is an AND/OR of SETCCs off of the same EFLAGS. /// Match: /// (X86or (X86setcc) (X86setcc)) /// (X86cmp (and (X86setcc) (X86setcc)), 0) static bool checkBoolTestAndOrSetCCCombine(SDValue Cond, X86::CondCode &CC0, X86::CondCode &CC1, SDValue &Flags, bool &isAnd) { if (Cond->getOpcode() == X86ISD::CMP) { if (!isNullConstant(Cond->getOperand(1))) return false; Cond = Cond->getOperand(0); } isAnd = false; SDValue SetCC0, SetCC1; switch (Cond->getOpcode()) { default: return false; case ISD::AND: case X86ISD::AND: isAnd = true; // fallthru case ISD::OR: case X86ISD::OR: SetCC0 = Cond->getOperand(0); SetCC1 = Cond->getOperand(1); break; }; // Make sure we have SETCC nodes, using the same flags value. if (SetCC0.getOpcode() != X86ISD::SETCC || SetCC1.getOpcode() != X86ISD::SETCC || SetCC0->getOperand(1) != SetCC1->getOperand(1)) return false; CC0 = (X86::CondCode)SetCC0->getConstantOperandVal(0); CC1 = (X86::CondCode)SetCC1->getConstantOperandVal(0); Flags = SetCC0->getOperand(1); return true; } /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL] static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { SDLoc DL(N); // If the flag operand isn't dead, don't touch this CMOV. if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty()) return SDValue(); SDValue FalseOp = N->getOperand(0); SDValue TrueOp = N->getOperand(1); X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2); SDValue Cond = N->getOperand(3); if (CC == X86::COND_E || CC == X86::COND_NE) { switch (Cond.getOpcode()) { default: break; case X86ISD::BSR: case X86ISD::BSF: // If operand of BSR / BSF are proven never zero, then ZF cannot be set. if (DAG.isKnownNeverZero(Cond.getOperand(0))) return (CC == X86::COND_E) ? FalseOp : TrueOp; } } SDValue Flags; Flags = checkBoolTestSetCCCombine(Cond, CC); if (Flags.getNode() && // Extra check as FCMOV only supports a subset of X86 cond. (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) { SDValue Ops[] = { FalseOp, TrueOp, DAG.getConstant(CC, DL, MVT::i8), Flags }; return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops); } // If this is a select between two integer constants, try to do some // optimizations. Note that the operands are ordered the opposite of SELECT // operands. if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) { if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) { // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is // larger than FalseC (the false value). if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) { CC = X86::GetOppositeBranchCondition(CC); std::swap(TrueC, FalseC); std::swap(TrueOp, FalseOp); } // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0. // This is efficient for any integer data type (including i8/i16) and // shift amount. if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) { Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, DAG.getConstant(CC, DL, MVT::i8), Cond); // Zero extend the condition if needed. Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond); unsigned ShAmt = TrueC->getAPIntValue().logBase2(); Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond, DAG.getConstant(ShAmt, DL, MVT::i8)); if (N->getNumValues() == 2) // Dead flag value? return DCI.CombineTo(N, Cond, SDValue()); return Cond; } // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient // for any integer data type, including i8/i16. if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, DAG.getConstant(CC, DL, MVT::i8), Cond); // Zero extend the condition if needed. Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), Cond); Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, SDValue(FalseC, 0)); if (N->getNumValues() == 2) // Dead flag value? return DCI.CombineTo(N, Cond, SDValue()); return Cond; } // Optimize cases that will turn into an LEA instruction. This requires // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; bool isFastMultiplier = false; if (Diff < 10) { switch ((unsigned char)Diff) { default: break; case 1: // result = add base, cond case 2: // result = lea base( , cond*2) case 3: // result = lea base(cond, cond*2) case 4: // result = lea base( , cond*4) case 5: // result = lea base(cond, cond*4) case 8: // result = lea base( , cond*8) case 9: // result = lea base(cond, cond*8) isFastMultiplier = true; break; } } if (isFastMultiplier) { APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, DAG.getConstant(CC, DL, MVT::i8), Cond); // Zero extend the condition if needed. Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), Cond); // Scale the condition by the difference. if (Diff != 1) Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, DAG.getConstant(Diff, DL, Cond.getValueType())); // Add the base if non-zero. if (FalseC->getAPIntValue() != 0) Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, SDValue(FalseC, 0)); if (N->getNumValues() == 2) // Dead flag value? return DCI.CombineTo(N, Cond, SDValue()); return Cond; } } } } // Handle these cases: // (select (x != c), e, c) -> select (x != c), e, x), // (select (x == c), c, e) -> select (x == c), x, e) // where the c is an integer constant, and the "select" is the combination // of CMOV and CMP. // // The rationale for this change is that the conditional-move from a constant // needs two instructions, however, conditional-move from a register needs // only one instruction. // // CAVEAT: By replacing a constant with a symbolic value, it may obscure // some instruction-combining opportunities. This opt needs to be // postponed as late as possible. // if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) { // the DCI.xxxx conditions are provided to postpone the optimization as // late as possible. ConstantSDNode *CmpAgainst = nullptr; if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) && (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) && !isa<ConstantSDNode>(Cond.getOperand(0))) { if (CC == X86::COND_NE && CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) { CC = X86::GetOppositeBranchCondition(CC); std::swap(TrueOp, FalseOp); } if (CC == X86::COND_E && CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) { SDValue Ops[] = { FalseOp, Cond.getOperand(0), DAG.getConstant(CC, DL, MVT::i8), Cond }; return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops); } } } // Fold and/or of setcc's to double CMOV: // (CMOV F, T, ((cc1 | cc2) != 0)) -> (CMOV (CMOV F, T, cc1), T, cc2) // (CMOV F, T, ((cc1 & cc2) != 0)) -> (CMOV (CMOV T, F, !cc1), F, !cc2) // // This combine lets us generate: // cmovcc1 (jcc1 if we don't have CMOV) // cmovcc2 (same) // instead of: // setcc1 // setcc2 // and/or // cmovne (jne if we don't have CMOV) // When we can't use the CMOV instruction, it might increase branch // mispredicts. // When we can use CMOV, or when there is no mispredict, this improves // throughput and reduces register pressure. // if (CC == X86::COND_NE) { SDValue Flags; X86::CondCode CC0, CC1; bool isAndSetCC; if (checkBoolTestAndOrSetCCCombine(Cond, CC0, CC1, Flags, isAndSetCC)) { if (isAndSetCC) { std::swap(FalseOp, TrueOp); CC0 = X86::GetOppositeBranchCondition(CC0); CC1 = X86::GetOppositeBranchCondition(CC1); } SDValue LOps[] = {FalseOp, TrueOp, DAG.getConstant(CC0, DL, MVT::i8), Flags}; SDValue LCMOV = DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), LOps); SDValue Ops[] = {LCMOV, TrueOp, DAG.getConstant(CC1, DL, MVT::i8), Flags}; SDValue CMOV = DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops); DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(CMOV.getNode(), 1)); return CMOV; } } return SDValue(); } /// PerformMulCombine - Optimize a single multiply with constant into two /// in order to implement it with two cheaper instructions, e.g. /// LEA + SHL, LEA + LEA. static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI) { // An imul is usually smaller than the alternative sequence. if (DAG.getMachineFunction().getFunction()->optForMinSize()) return SDValue(); if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) return SDValue(); EVT VT = N->getValueType(0); if (VT != MVT::i64 && VT != MVT::i32) return SDValue(); ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); if (!C) return SDValue(); uint64_t MulAmt = C->getZExtValue(); if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9) return SDValue(); uint64_t MulAmt1 = 0; uint64_t MulAmt2 = 0; if ((MulAmt % 9) == 0) { MulAmt1 = 9; MulAmt2 = MulAmt / 9; } else if ((MulAmt % 5) == 0) { MulAmt1 = 5; MulAmt2 = MulAmt / 5; } else if ((MulAmt % 3) == 0) { MulAmt1 = 3; MulAmt2 = MulAmt / 3; } SDLoc DL(N); SDValue NewMul; if (MulAmt2 && (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){ if (isPowerOf2_64(MulAmt2) && !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD)) // If second multiplifer is pow2, issue it first. We want the multiply by // 3, 5, or 9 to be folded into the addressing mode unless the lone use // is an add. std::swap(MulAmt1, MulAmt2); if (isPowerOf2_64(MulAmt1)) NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), DAG.getConstant(Log2_64(MulAmt1), DL, MVT::i8)); else NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0), DAG.getConstant(MulAmt1, DL, VT)); if (isPowerOf2_64(MulAmt2)) NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul, DAG.getConstant(Log2_64(MulAmt2), DL, MVT::i8)); else NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul, DAG.getConstant(MulAmt2, DL, VT)); } if (!NewMul) { assert(MulAmt != 0 && MulAmt != (VT == MVT::i64 ? UINT64_MAX : UINT32_MAX) && "Both cases that could cause potential overflows should have " "already been handled."); if (isPowerOf2_64(MulAmt - 1)) // (mul x, 2^N + 1) => (add (shl x, N), x) NewMul = DAG.getNode(ISD::ADD, DL, VT, N->getOperand(0), DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), DAG.getConstant(Log2_64(MulAmt - 1), DL, MVT::i8))); else if (isPowerOf2_64(MulAmt + 1)) // (mul x, 2^N - 1) => (sub (shl x, N), x) NewMul = DAG.getNode(ISD::SUB, DL, VT, DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), DAG.getConstant(Log2_64(MulAmt + 1), DL, MVT::i8)), N->getOperand(0)); } if (NewMul) // Do not add new nodes to DAG combiner worklist. DCI.CombineTo(N, NewMul, false); return SDValue(); } static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); EVT VT = N0.getValueType(); // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2)) // since the result of setcc_c is all zero's or all ones. if (VT.isInteger() && !VT.isVector() && N1C && N0.getOpcode() == ISD::AND && N0.getOperand(1).getOpcode() == ISD::Constant) { SDValue N00 = N0.getOperand(0); APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); APInt ShAmt = N1C->getAPIntValue(); Mask = Mask.shl(ShAmt); bool MaskOK = false; // We can handle cases concerning bit-widening nodes containing setcc_c if // we carefully interrogate the mask to make sure we are semantics // preserving. // The transform is not safe if the result of C1 << C2 exceeds the bitwidth // of the underlying setcc_c operation if the setcc_c was zero extended. // Consider the following example: // zext(setcc_c) -> i32 0x0000FFFF // c1 -> i32 0x0000FFFF // c2 -> i32 0x00000001 // (shl (and (setcc_c), c1), c2) -> i32 0x0001FFFE // (and setcc_c, (c1 << c2)) -> i32 0x0000FFFE if (N00.getOpcode() == X86ISD::SETCC_CARRY) { MaskOK = true; } else if (N00.getOpcode() == ISD::SIGN_EXTEND && N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { MaskOK = true; } else if ((N00.getOpcode() == ISD::ZERO_EXTEND || N00.getOpcode() == ISD::ANY_EXTEND) && N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { MaskOK = Mask.isIntN(N00.getOperand(0).getValueSizeInBits()); } if (MaskOK && Mask != 0) { SDLoc DL(N); return DAG.getNode(ISD::AND, DL, VT, N00, DAG.getConstant(Mask, DL, VT)); } } // Hardware support for vector shifts is sparse which makes us scalarize the // vector operations in many cases. Also, on sandybridge ADD is faster than // shl. // (shl V, 1) -> add V,V if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) if (auto *N1SplatC = N1BV->getConstantSplatNode()) { assert(N0.getValueType().isVector() && "Invalid vector shift type"); // We shift all of the values by one. In many cases we do not have // hardware support for this operation. This is better expressed as an ADD // of two values. if (N1SplatC->getAPIntValue() == 1) return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0); } return SDValue(); } static SDValue PerformSRACombine(SDNode *N, SelectionDAG &DAG) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N0.getValueType(); unsigned Size = VT.getSizeInBits(); // fold (ashr (shl, a, [56,48,32,24,16]), SarConst) // into (shl, (sext (a), [56,48,32,24,16] - SarConst)) or // into (lshr, (sext (a), SarConst - [56,48,32,24,16])) // depending on sign of (SarConst - [56,48,32,24,16]) // sexts in X86 are MOVs. The MOVs have the same code size // as above SHIFTs (only SHIFT on 1 has lower code size). // However the MOVs have 2 advantages to a SHIFT: // 1. MOVs can write to a register that differs from source // 2. MOVs accept memory operands if (!VT.isInteger() || VT.isVector() || N1.getOpcode() != ISD::Constant || N0.getOpcode() != ISD::SHL || !N0.hasOneUse() || N0.getOperand(1).getOpcode() != ISD::Constant) return SDValue(); SDValue N00 = N0.getOperand(0); SDValue N01 = N0.getOperand(1); APInt ShlConst = (cast<ConstantSDNode>(N01))->getAPIntValue(); APInt SarConst = (cast<ConstantSDNode>(N1))->getAPIntValue(); EVT CVT = N1.getValueType(); if (SarConst.isNegative()) return SDValue(); for (MVT SVT : MVT::integer_valuetypes()) { unsigned ShiftSize = SVT.getSizeInBits(); // skipping types without corresponding sext/zext and // ShlConst that is not one of [56,48,32,24,16] if (ShiftSize < 8 || ShiftSize > 64 || ShlConst != Size - ShiftSize) continue; SDLoc DL(N); SDValue NN = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, N00, DAG.getValueType(SVT)); SarConst = SarConst - (Size - ShiftSize); if (SarConst == 0) return NN; else if (SarConst.isNegative()) return DAG.getNode(ISD::SHL, DL, VT, NN, DAG.getConstant(-SarConst, DL, CVT)); else return DAG.getNode(ISD::SRA, DL, VT, NN, DAG.getConstant(SarConst, DL, CVT)); } return SDValue(); } /// \brief Returns a vector of 0s if the node in input is a vector logical /// shift by a constant amount which is known to be bigger than or equal /// to the vector element size in bits. static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 && (!Subtarget->hasInt256() || (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16))) return SDValue(); SDValue Amt = N->getOperand(1); SDLoc DL(N); if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Amt)) if (auto *AmtSplat = AmtBV->getConstantSplatNode()) { APInt ShiftAmt = AmtSplat->getAPIntValue(); unsigned MaxAmount = VT.getSimpleVT().getVectorElementType().getSizeInBits(); // SSE2/AVX2 logical shifts always return a vector of 0s // if the shift amount is bigger than or equal to // the element size. The constant shift amount will be // encoded as a 8-bit immediate. if (ShiftAmt.trunc(8).uge(MaxAmount)) return getZeroVector(VT.getSimpleVT(), Subtarget, DAG, DL); } return SDValue(); } /// PerformShiftCombine - Combine shifts. static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { if (N->getOpcode() == ISD::SHL) if (SDValue V = PerformSHLCombine(N, DAG)) return V; if (N->getOpcode() == ISD::SRA) if (SDValue V = PerformSRACombine(N, DAG)) return V; // Try to fold this logical shift into a zero vector. if (N->getOpcode() != ISD::SRA) if (SDValue V = performShiftToAllZeros(N, DAG, Subtarget)) return V; return SDValue(); } // CMPEQCombine - Recognize the distinctive (AND (setcc ...) (setcc ..)) // where both setccs reference the same FP CMP, and rewrite for CMPEQSS // and friends. Likewise for OR -> CMPNEQSS. static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { unsigned opcode; // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but // we're requiring SSE2 for both. if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue CMP0 = N0->getOperand(1); SDValue CMP1 = N1->getOperand(1); SDLoc DL(N); // The SETCCs should both refer to the same CMP. if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1) return SDValue(); SDValue CMP00 = CMP0->getOperand(0); SDValue CMP01 = CMP0->getOperand(1); EVT VT = CMP00.getValueType(); if (VT == MVT::f32 || VT == MVT::f64) { bool ExpectingFlags = false; // Check for any users that want flags: for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); !ExpectingFlags && UI != UE; ++UI) switch (UI->getOpcode()) { default: case ISD::BR_CC: case ISD::BRCOND: case ISD::SELECT: ExpectingFlags = true; break; case ISD::CopyToReg: case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: break; } if (!ExpectingFlags) { enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0); enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0); if (cc1 == X86::COND_E || cc1 == X86::COND_NE) { X86::CondCode tmp = cc0; cc0 = cc1; cc1 = tmp; } if ((cc0 == X86::COND_E && cc1 == X86::COND_NP) || (cc0 == X86::COND_NE && cc1 == X86::COND_P)) { // FIXME: need symbolic constants for these magic numbers. // See X86ATTInstPrinter.cpp:printSSECC(). unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4; if (Subtarget->hasAVX512()) { SDValue FSetCC = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CMP00, CMP01, DAG.getConstant(x86cc, DL, MVT::i8)); if (N->getValueType(0) != MVT::i1) return DAG.getNode(ISD::ZERO_EXTEND, DL, N->getValueType(0), FSetCC); return FSetCC; } SDValue OnesOrZeroesF = DAG.getNode(X86ISD::FSETCC, DL, CMP00.getValueType(), CMP00, CMP01, DAG.getConstant(x86cc, DL, MVT::i8)); bool is64BitFP = (CMP00.getValueType() == MVT::f64); MVT IntVT = is64BitFP ? MVT::i64 : MVT::i32; if (is64BitFP && !Subtarget->is64Bit()) { // On a 32-bit target, we cannot bitcast the 64-bit float to a // 64-bit integer, since that's not a legal type. Since // OnesOrZeroesF is all ones of all zeroes, we don't need all the // bits, but can do this little dance to extract the lowest 32 bits // and work with those going forward. SDValue Vector64 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, OnesOrZeroesF); SDValue Vector32 = DAG.getBitcast(MVT::v4f32, Vector64); OnesOrZeroesF = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Vector32, DAG.getIntPtrConstant(0, DL)); IntVT = MVT::i32; } SDValue OnesOrZeroesI = DAG.getBitcast(IntVT, OnesOrZeroesF); SDValue ANDed = DAG.getNode(ISD::AND, DL, IntVT, OnesOrZeroesI, DAG.getConstant(1, DL, IntVT)); SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed); return OneBitOfTruth; } } } } return SDValue(); } /// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector /// so it can be folded inside ANDNP. static bool CanFoldXORWithAllOnes(const SDNode *N) { EVT VT = N->getValueType(0); // Match direct AllOnes for 128 and 256-bit vectors if (ISD::isBuildVectorAllOnes(N)) return true; // Look through a bit convert. if (N->getOpcode() == ISD::BITCAST) N = N->getOperand(0).getNode(); // Sometimes the operand may come from a insert_subvector building a 256-bit // allones vector if (VT.is256BitVector() && N->getOpcode() == ISD::INSERT_SUBVECTOR) { SDValue V1 = N->getOperand(0); SDValue V2 = N->getOperand(1); if (V1.getOpcode() == ISD::INSERT_SUBVECTOR && V1.getOperand(0).getOpcode() == ISD::UNDEF && ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) && ISD::isBuildVectorAllOnes(V2.getNode())) return true; } return false; } // On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized // register. In most cases we actually compare or select YMM-sized registers // and mixing the two types creates horrible code. This method optimizes // some of the transition sequences. static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); if (!VT.is256BitVector()) return SDValue(); assert((N->getOpcode() == ISD::ANY_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node"); SDValue Narrow = N->getOperand(0); EVT NarrowVT = Narrow->getValueType(0); if (!NarrowVT.is128BitVector()) return SDValue(); if (Narrow->getOpcode() != ISD::XOR && Narrow->getOpcode() != ISD::AND && Narrow->getOpcode() != ISD::OR) return SDValue(); SDValue N0 = Narrow->getOperand(0); SDValue N1 = Narrow->getOperand(1); SDLoc DL(Narrow); // The Left side has to be a trunc. if (N0.getOpcode() != ISD::TRUNCATE) return SDValue(); // The type of the truncated inputs. EVT WideVT = N0->getOperand(0)->getValueType(0); if (WideVT != VT) return SDValue(); // The right side has to be a 'trunc' or a constant vector. bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE; ConstantSDNode *RHSConstSplat = nullptr; if (auto *RHSBV = dyn_cast<BuildVectorSDNode>(N1)) RHSConstSplat = RHSBV->getConstantSplatNode(); if (!RHSTrunc && !RHSConstSplat) return SDValue(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT)) return SDValue(); // Set N0 and N1 to hold the inputs to the new wide operation. N0 = N0->getOperand(0); if (RHSConstSplat) { N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getVectorElementType(), SDValue(RHSConstSplat, 0)); SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1); N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, C); } else if (RHSTrunc) { N1 = N1->getOperand(0); } // Generate the wide operation. SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1); unsigned Opcode = N->getOpcode(); switch (Opcode) { case ISD::ANY_EXTEND: return Op; case ISD::ZERO_EXTEND: { unsigned InBits = NarrowVT.getScalarSizeInBits(); APInt Mask = APInt::getAllOnesValue(InBits); Mask = Mask.zext(VT.getScalarSizeInBits()); return DAG.getNode(ISD::AND, DL, VT, Op, DAG.getConstant(Mask, DL, VT)); } case ISD::SIGN_EXTEND: return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op, DAG.getValueType(NarrowVT)); default: llvm_unreachable("Unexpected opcode"); } } static SDValue VectorZextCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDLoc DL(N); // A vector zext_in_reg may be represented as a shuffle, // feeding into a bitcast (this represents anyext) feeding into // an and with a mask. // We'd like to try to combine that into a shuffle with zero // plus a bitcast, removing the and. if (N0.getOpcode() != ISD::BITCAST || N0.getOperand(0).getOpcode() != ISD::VECTOR_SHUFFLE) return SDValue(); // The other side of the AND should be a splat of 2^C, where C // is the number of bits in the source type. if (N1.getOpcode() == ISD::BITCAST) N1 = N1.getOperand(0); if (N1.getOpcode() != ISD::BUILD_VECTOR) return SDValue(); BuildVectorSDNode *Vector = cast<BuildVectorSDNode>(N1); ShuffleVectorSDNode *Shuffle = cast<ShuffleVectorSDNode>(N0.getOperand(0)); EVT SrcType = Shuffle->getValueType(0); // We expect a single-source shuffle if (Shuffle->getOperand(1)->getOpcode() != ISD::UNDEF) return SDValue(); unsigned SrcSize = SrcType.getScalarSizeInBits(); APInt SplatValue, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (!Vector->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs)) return SDValue(); unsigned ResSize = N1.getValueType().getScalarSizeInBits(); // Make sure the splat matches the mask we expect if (SplatBitSize > ResSize || (SplatValue + 1).exactLogBase2() != (int)SrcSize) return SDValue(); // Make sure the input and output size make sense if (SrcSize >= ResSize || ResSize % SrcSize) return SDValue(); // We expect a shuffle of the form <0, u, u, u, 1, u, u, u...> // The number of u's between each two values depends on the ratio between // the source and dest type. unsigned ZextRatio = ResSize / SrcSize; bool IsZext = true; for (unsigned i = 0; i < SrcType.getVectorNumElements(); ++i) { if (i % ZextRatio) { if (Shuffle->getMaskElt(i) > 0) { // Expected undef IsZext = false; break; } } else { if (Shuffle->getMaskElt(i) != (int)(i / ZextRatio)) { // Expected element number IsZext = false; break; } } } if (!IsZext) return SDValue(); // Ok, perform the transformation - replace the shuffle with // a shuffle of the form <0, k, k, k, 1, k, k, k> with zero // (instead of undef) where the k elements come from the zero vector. SmallVector<int, 8> Mask; unsigned NumElems = SrcType.getVectorNumElements(); for (unsigned i = 0; i < NumElems; ++i) if (i % ZextRatio) Mask.push_back(NumElems); else Mask.push_back(i / ZextRatio); SDValue NewShuffle = DAG.getVectorShuffle(Shuffle->getValueType(0), DL, Shuffle->getOperand(0), DAG.getConstant(0, DL, SrcType), Mask); return DAG.getBitcast(N0.getValueType(), NewShuffle); } /// If both input operands of a logic op are being cast from floating point /// types, try to convert this into a floating point logic node to avoid /// unnecessary moves from SSE to integer registers. static SDValue convertIntLogicToFPLogic(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { unsigned FPOpcode = ISD::DELETED_NODE; if (N->getOpcode() == ISD::AND) FPOpcode = X86ISD::FAND; else if (N->getOpcode() == ISD::OR) FPOpcode = X86ISD::FOR; else if (N->getOpcode() == ISD::XOR) FPOpcode = X86ISD::FXOR; assert(FPOpcode != ISD::DELETED_NODE && "Unexpected input node for FP logic conversion"); EVT VT = N->getValueType(0); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDLoc DL(N); if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST && ((Subtarget->hasSSE1() && VT == MVT::i32) || (Subtarget->hasSSE2() && VT == MVT::i64))) { SDValue N00 = N0.getOperand(0); SDValue N10 = N1.getOperand(0); EVT N00Type = N00.getValueType(); EVT N10Type = N10.getValueType(); if (N00Type.isFloatingPoint() && N10Type.isFloatingPoint()) { SDValue FPLogic = DAG.getNode(FPOpcode, DL, N00Type, N00, N10); return DAG.getBitcast(VT, FPLogic); } } return SDValue(); } static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { if (DCI.isBeforeLegalizeOps()) return SDValue(); if (SDValue Zext = VectorZextCombine(N, DAG, DCI, Subtarget)) return Zext; if (SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget)) return R; if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget)) return FPLogic; EVT VT = N->getValueType(0); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDLoc DL(N); // Create BEXTR instructions // BEXTR is ((X >> imm) & (2**size-1)) if (VT == MVT::i32 || VT == MVT::i64) { // Check for BEXTR. if ((Subtarget->hasBMI() || Subtarget->hasTBM()) && (N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::SRL)) { ConstantSDNode *MaskNode = dyn_cast<ConstantSDNode>(N1); ConstantSDNode *ShiftNode = dyn_cast<ConstantSDNode>(N0.getOperand(1)); if (MaskNode && ShiftNode) { uint64_t Mask = MaskNode->getZExtValue(); uint64_t Shift = ShiftNode->getZExtValue(); if (isMask_64(Mask)) { uint64_t MaskSize = countPopulation(Mask); if (Shift + MaskSize <= VT.getSizeInBits()) return DAG.getNode(X86ISD::BEXTR, DL, VT, N0.getOperand(0), DAG.getConstant(Shift | (MaskSize << 8), DL, VT)); } } } // BEXTR return SDValue(); } // Want to form ANDNP nodes: // 1) In the hopes of then easily combining them with OR and AND nodes // to form PBLEND/PSIGN. // 2) To match ANDN packed intrinsics if (VT != MVT::v2i64 && VT != MVT::v4i64) return SDValue(); // Check LHS for vnot if (N0.getOpcode() == ISD::XOR && //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode())) CanFoldXORWithAllOnes(N0.getOperand(1).getNode())) return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1); // Check RHS for vnot if (N1.getOpcode() == ISD::XOR && //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode())) CanFoldXORWithAllOnes(N1.getOperand(1).getNode())) return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0); return SDValue(); } static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { if (DCI.isBeforeLegalizeOps()) return SDValue(); if (SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget)) return R; if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget)) return FPLogic; SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N->getValueType(0); // look for psign/blend if (VT == MVT::v2i64 || VT == MVT::v4i64) { if (!Subtarget->hasSSSE3() || (VT == MVT::v4i64 && !Subtarget->hasInt256())) return SDValue(); // Canonicalize pandn to RHS if (N0.getOpcode() == X86ISD::ANDNP) std::swap(N0, N1); // or (and (m, y), (pandn m, x)) if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) { SDValue Mask = N1.getOperand(0); SDValue X = N1.getOperand(1); SDValue Y; if (N0.getOperand(0) == Mask) Y = N0.getOperand(1); if (N0.getOperand(1) == Mask) Y = N0.getOperand(0); // Check to see if the mask appeared in both the AND and ANDNP and if (!Y.getNode()) return SDValue(); // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them. // Look through mask bitcast. if (Mask.getOpcode() == ISD::BITCAST) Mask = Mask.getOperand(0); if (X.getOpcode() == ISD::BITCAST) X = X.getOperand(0); if (Y.getOpcode() == ISD::BITCAST) Y = Y.getOperand(0); EVT MaskVT = Mask.getValueType(); // Validate that the Mask operand is a vector sra node. // FIXME: what to do for bytes, since there is a psignb/pblendvb, but // there is no psrai.b unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits(); unsigned SraAmt = ~0; if (Mask.getOpcode() == ISD::SRA) { if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Mask.getOperand(1))) if (auto *AmtConst = AmtBV->getConstantSplatNode()) SraAmt = AmtConst->getZExtValue(); } else if (Mask.getOpcode() == X86ISD::VSRAI) { SDValue SraC = Mask.getOperand(1); SraAmt = cast<ConstantSDNode>(SraC)->getZExtValue(); } if ((SraAmt + 1) != EltBits) return SDValue(); SDLoc DL(N); // Now we know we at least have a plendvb with the mask val. See if // we can form a psignb/w/d. // psign = x.type == y.type == mask.type && y = sub(0, x); if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X && ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) && X.getValueType() == MaskVT && Y.getValueType() == MaskVT) { assert((EltBits == 8 || EltBits == 16 || EltBits == 32) && "Unsupported VT for PSIGN"); Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0)); return DAG.getBitcast(VT, Mask); } // PBLENDVB only available on SSE 4.1 if (!Subtarget->hasSSE41()) return SDValue(); MVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8; X = DAG.getBitcast(BlendVT, X); Y = DAG.getBitcast(BlendVT, Y); Mask = DAG.getBitcast(BlendVT, Mask); Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X); return DAG.getBitcast(VT, Mask); } } if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) return SDValue(); // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c) bool OptForSize = DAG.getMachineFunction().getFunction()->optForSize(); // SHLD/SHRD instructions have lower register pressure, but on some // platforms they have higher latency than the equivalent // series of shifts/or that would otherwise be generated. // Don't fold (or (x << c) | (y >> (64 - c))) if SHLD/SHRD instructions // have higher latencies and we are not optimizing for size. if (!OptForSize && Subtarget->isSHLDSlow()) return SDValue(); if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) std::swap(N0, N1); if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) return SDValue(); if (!N0.hasOneUse() || !N1.hasOneUse()) return SDValue(); SDValue ShAmt0 = N0.getOperand(1); if (ShAmt0.getValueType() != MVT::i8) return SDValue(); SDValue ShAmt1 = N1.getOperand(1); if (ShAmt1.getValueType() != MVT::i8) return SDValue(); if (ShAmt0.getOpcode() == ISD::TRUNCATE) ShAmt0 = ShAmt0.getOperand(0); if (ShAmt1.getOpcode() == ISD::TRUNCATE) ShAmt1 = ShAmt1.getOperand(0); SDLoc DL(N); unsigned Opc = X86ISD::SHLD; SDValue Op0 = N0.getOperand(0); SDValue Op1 = N1.getOperand(0); if (ShAmt0.getOpcode() == ISD::SUB) { Opc = X86ISD::SHRD; std::swap(Op0, Op1); std::swap(ShAmt0, ShAmt1); } unsigned Bits = VT.getSizeInBits(); if (ShAmt1.getOpcode() == ISD::SUB) { SDValue Sum = ShAmt1.getOperand(0); if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) { SDValue ShAmt1Op1 = ShAmt1.getOperand(1); if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE) ShAmt1Op1 = ShAmt1Op1.getOperand(0); if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0) return DAG.getNode(Opc, DL, VT, Op0, Op1, DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ShAmt0)); } } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) { ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0); if (ShAmt0C && ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits) return DAG.getNode(Opc, DL, VT, N0.getOperand(0), N1.getOperand(0), DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ShAmt0)); } return SDValue(); } // Generate NEG and CMOV for integer abs. static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); // Since X86 does not have CMOV for 8-bit integer, we don't convert // 8-bit integer abs to NEG and CMOV. if (VT.isInteger() && VT.getSizeInBits() == 8) return SDValue(); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDLoc DL(N); // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1) // and change it to SUB and CMOV. if (VT.isInteger() && N->getOpcode() == ISD::XOR && N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 && N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0)) if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) { // Generate SUB & CMOV. SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32), DAG.getConstant(0, DL, VT), N0.getOperand(0)); SDValue Ops[] = { N0.getOperand(0), Neg, DAG.getConstant(X86::COND_GE, DL, MVT::i8), SDValue(Neg.getNode(), 1) }; return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue), Ops); } return SDValue(); } // Try to turn tests against the signbit in the form of: // XOR(TRUNCATE(SRL(X, size(X)-1)), 1) // into: // SETGT(X, -1) static SDValue foldXorTruncShiftIntoCmp(SDNode *N, SelectionDAG &DAG) { // This is only worth doing if the output type is i8. if (N->getValueType(0) != MVT::i8) return SDValue(); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); // We should be performing an xor against a truncated shift. if (N0.getOpcode() != ISD::TRUNCATE || !N0.hasOneUse()) return SDValue(); // Make sure we are performing an xor against one. if (!isOneConstant(N1)) return SDValue(); // SetCC on x86 zero extends so only act on this if it's a logical shift. SDValue Shift = N0.getOperand(0); if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse()) return SDValue(); // Make sure we are truncating from one of i16, i32 or i64. EVT ShiftTy = Shift.getValueType(); if (ShiftTy != MVT::i16 && ShiftTy != MVT::i32 && ShiftTy != MVT::i64) return SDValue(); // Make sure the shift amount extracts the sign bit. if (!isa<ConstantSDNode>(Shift.getOperand(1)) || Shift.getConstantOperandVal(1) != ShiftTy.getSizeInBits() - 1) return SDValue(); // Create a greater-than comparison against -1. // N.B. Using SETGE against 0 works but we want a canonical looking // comparison, using SETGT matches up with what TranslateX86CC. SDLoc DL(N); SDValue ShiftOp = Shift.getOperand(0); EVT ShiftOpTy = ShiftOp.getValueType(); SDValue Cond = DAG.getSetCC(DL, MVT::i8, ShiftOp, DAG.getConstant(-1, DL, ShiftOpTy), ISD::SETGT); return Cond; } static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { if (DCI.isBeforeLegalizeOps()) return SDValue(); if (SDValue RV = foldXorTruncShiftIntoCmp(N, DAG)) return RV; if (Subtarget->hasCMov()) if (SDValue RV = performIntegerAbsCombine(N, DAG)) return RV; if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget)) return FPLogic; return SDValue(); } /// This function detects the AVG pattern between vectors of unsigned i8/i16, /// which is c = (a + b + 1) / 2, and replace this operation with the efficient /// X86ISD::AVG instruction. static SDValue detectAVGPattern(SDValue In, EVT VT, SelectionDAG &DAG, const X86Subtarget *Subtarget, SDLoc DL) { if (!VT.isVector() || !VT.isSimple()) return SDValue(); EVT InVT = In.getValueType(); unsigned NumElems = VT.getVectorNumElements(); EVT ScalarVT = VT.getVectorElementType(); if (!((ScalarVT == MVT::i8 || ScalarVT == MVT::i16) && isPowerOf2_32(NumElems))) return SDValue(); // InScalarVT is the intermediate type in AVG pattern and it should be greater // than the original input type (i8/i16). EVT InScalarVT = InVT.getVectorElementType(); if (InScalarVT.getSizeInBits() <= ScalarVT.getSizeInBits()) return SDValue(); if (Subtarget->hasAVX512()) { if (VT.getSizeInBits() > 512) return SDValue(); } else if (Subtarget->hasAVX2()) { if (VT.getSizeInBits() > 256) return SDValue(); } else { if (VT.getSizeInBits() > 128) return SDValue(); } // Detect the following pattern: // // %1 = zext <N x i8> %a to <N x i32> // %2 = zext <N x i8> %b to <N x i32> // %3 = add nuw nsw <N x i32> %1, <i32 1 x N> // %4 = add nuw nsw <N x i32> %3, %2 // %5 = lshr <N x i32> %N, <i32 1 x N> // %6 = trunc <N x i32> %5 to <N x i8> // // In AVX512, the last instruction can also be a trunc store. if (In.getOpcode() != ISD::SRL) return SDValue(); // A lambda checking the given SDValue is a constant vector and each element // is in the range [Min, Max]. auto IsConstVectorInRange = [](SDValue V, unsigned Min, unsigned Max) { BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(V); if (!BV || !BV->isConstant()) return false; for (unsigned i = 0, e = V.getNumOperands(); i < e; i++) { ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(i)); if (!C) return false; uint64_t Val = C->getZExtValue(); if (Val < Min || Val > Max) return false; } return true; }; // Check if each element of the vector is left-shifted by one. auto LHS = In.getOperand(0); auto RHS = In.getOperand(1); if (!IsConstVectorInRange(RHS, 1, 1)) return SDValue(); if (LHS.getOpcode() != ISD::ADD) return SDValue(); // Detect a pattern of a + b + 1 where the order doesn't matter. SDValue Operands[3]; Operands[0] = LHS.getOperand(0); Operands[1] = LHS.getOperand(1); // Take care of the case when one of the operands is a constant vector whose // element is in the range [1, 256]. if (IsConstVectorInRange(Operands[1], 1, ScalarVT == MVT::i8 ? 256 : 65536) && Operands[0].getOpcode() == ISD::ZERO_EXTEND && Operands[0].getOperand(0).getValueType() == VT) { // The pattern is detected. Subtract one from the constant vector, then // demote it and emit X86ISD::AVG instruction. SDValue One = DAG.getConstant(1, DL, InScalarVT); SDValue Ones = DAG.getNode(ISD::BUILD_VECTOR, DL, InVT, SmallVector<SDValue, 8>(NumElems, One)); Operands[1] = DAG.getNode(ISD::SUB, DL, InVT, Operands[1], Ones); Operands[1] = DAG.getNode(ISD::TRUNCATE, DL, VT, Operands[1]); return DAG.getNode(X86ISD::AVG, DL, VT, Operands[0].getOperand(0), Operands[1]); } if (Operands[0].getOpcode() == ISD::ADD) std::swap(Operands[0], Operands[1]); else if (Operands[1].getOpcode() != ISD::ADD) return SDValue(); Operands[2] = Operands[1].getOperand(0); Operands[1] = Operands[1].getOperand(1); // Now we have three operands of two additions. Check that one of them is a // constant vector with ones, and the other two are promoted from i8/i16. for (int i = 0; i < 3; ++i) { if (!IsConstVectorInRange(Operands[i], 1, 1)) continue; std::swap(Operands[i], Operands[2]); // Check if Operands[0] and Operands[1] are results of type promotion. for (int j = 0; j < 2; ++j) if (Operands[j].getOpcode() != ISD::ZERO_EXTEND || Operands[j].getOperand(0).getValueType() != VT) return SDValue(); // The pattern is detected, emit X86ISD::AVG instruction. return DAG.getNode(X86ISD::AVG, DL, VT, Operands[0].getOperand(0), Operands[1].getOperand(0)); } return SDValue(); } /// PerformLOADCombine - Do target-specific dag combines on LOAD nodes. static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { LoadSDNode *Ld = cast<LoadSDNode>(N); EVT RegVT = Ld->getValueType(0); EVT MemVT = Ld->getMemoryVT(); SDLoc dl(Ld); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); // For chips with slow 32-byte unaligned loads, break the 32-byte operation // into two 16-byte operations. ISD::LoadExtType Ext = Ld->getExtensionType(); bool Fast; unsigned AddressSpace = Ld->getAddressSpace(); unsigned Alignment = Ld->getAlignment(); if (RegVT.is256BitVector() && !DCI.isBeforeLegalizeOps() && Ext == ISD::NON_EXTLOAD && TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), RegVT, AddressSpace, Alignment, &Fast) && !Fast) { unsigned NumElems = RegVT.getVectorNumElements(); if (NumElems < 2) return SDValue(); SDValue Ptr = Ld->getBasePtr(); SDValue Increment = DAG.getConstant(16, dl, TLI.getPointerTy(DAG.getDataLayout())); EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), NumElems/2); SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), Alignment); Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), std::min(16U, Alignment)); SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Load1.getValue(1), Load2.getValue(1)); SDValue NewVec = DAG.getUNDEF(RegVT); NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl); NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl); return DCI.CombineTo(N, NewVec, TF, true); } return SDValue(); } /// PerformMLOADCombine - Resolve extending loads static SDValue PerformMLOADCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { MaskedLoadSDNode *Mld = cast<MaskedLoadSDNode>(N); if (Mld->getExtensionType() != ISD::SEXTLOAD) return SDValue(); EVT VT = Mld->getValueType(0); unsigned NumElems = VT.getVectorNumElements(); EVT LdVT = Mld->getMemoryVT(); SDLoc dl(Mld); assert(LdVT != VT && "Cannot extend to the same type"); unsigned ToSz = VT.getVectorElementType().getSizeInBits(); unsigned FromSz = LdVT.getVectorElementType().getSizeInBits(); // From, To sizes and ElemCount must be pow of two assert (isPowerOf2_32(NumElems * FromSz * ToSz) && "Unexpected size for extending masked load"); unsigned SizeRatio = ToSz / FromSz; assert(SizeRatio * NumElems * FromSz == VT.getSizeInBits()); // Create a type on which we perform the shuffle EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), LdVT.getScalarType(), NumElems*SizeRatio); assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); // Convert Src0 value SDValue WideSrc0 = DAG.getBitcast(WideVecVT, Mld->getSrc0()); if (Mld->getSrc0().getOpcode() != ISD::UNDEF) { SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1); for (unsigned i = 0; i != NumElems; ++i) ShuffleVec[i] = i * SizeRatio; // Can't shuffle using an illegal type. assert(DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) && "WideVecVT should be legal"); WideSrc0 = DAG.getVectorShuffle(WideVecVT, dl, WideSrc0, DAG.getUNDEF(WideVecVT), &ShuffleVec[0]); } // Prepare the new mask SDValue NewMask; SDValue Mask = Mld->getMask(); if (Mask.getValueType() == VT) { // Mask and original value have the same type NewMask = DAG.getBitcast(WideVecVT, Mask); SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1); for (unsigned i = 0; i != NumElems; ++i) ShuffleVec[i] = i * SizeRatio; for (unsigned i = NumElems; i != NumElems * SizeRatio; ++i) ShuffleVec[i] = NumElems * SizeRatio; NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask, DAG.getConstant(0, dl, WideVecVT), &ShuffleVec[0]); } else { assert(Mask.getValueType().getVectorElementType() == MVT::i1); unsigned WidenNumElts = NumElems*SizeRatio; unsigned MaskNumElts = VT.getVectorNumElements(); EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, WidenNumElts); unsigned NumConcat = WidenNumElts / MaskNumElts; SmallVector<SDValue, 16> Ops(NumConcat); SDValue ZeroVal = DAG.getConstant(0, dl, Mask.getValueType()); Ops[0] = Mask; for (unsigned i = 1; i != NumConcat; ++i) Ops[i] = ZeroVal; NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops); } SDValue WideLd = DAG.getMaskedLoad(WideVecVT, dl, Mld->getChain(), Mld->getBasePtr(), NewMask, WideSrc0, Mld->getMemoryVT(), Mld->getMemOperand(), ISD::NON_EXTLOAD); SDValue NewVec = DAG.getNode(X86ISD::VSEXT, dl, VT, WideLd); return DCI.CombineTo(N, NewVec, WideLd.getValue(1), true); } /// PerformMSTORECombine - Resolve truncating stores static SDValue PerformMSTORECombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { MaskedStoreSDNode *Mst = cast<MaskedStoreSDNode>(N); if (!Mst->isTruncatingStore()) return SDValue(); EVT VT = Mst->getValue().getValueType(); unsigned NumElems = VT.getVectorNumElements(); EVT StVT = Mst->getMemoryVT(); SDLoc dl(Mst); assert(StVT != VT && "Cannot truncate to the same type"); unsigned FromSz = VT.getVectorElementType().getSizeInBits(); unsigned ToSz = StVT.getVectorElementType().getSizeInBits(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); // The truncating store is legal in some cases. For example // vpmovqb, vpmovqw, vpmovqd, vpmovdb, vpmovdw // are designated for truncate store. // In this case we don't need any further transformations. if (TLI.isTruncStoreLegal(VT, StVT)) return SDValue(); // From, To sizes and ElemCount must be pow of two assert (isPowerOf2_32(NumElems * FromSz * ToSz) && "Unexpected size for truncating masked store"); // We are going to use the original vector elt for storing. // Accumulated smaller vector elements must be a multiple of the store size. assert (((NumElems * FromSz) % ToSz) == 0 && "Unexpected ratio for truncating masked store"); unsigned SizeRatio = FromSz / ToSz; assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits()); // Create a type on which we perform the shuffle EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(), NumElems*SizeRatio); assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); SDValue WideVec = DAG.getBitcast(WideVecVT, Mst->getValue()); SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1); for (unsigned i = 0; i != NumElems; ++i) ShuffleVec[i] = i * SizeRatio; // Can't shuffle using an illegal type. assert(DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) && "WideVecVT should be legal"); SDValue TruncatedVal = DAG.getVectorShuffle(WideVecVT, dl, WideVec, DAG.getUNDEF(WideVecVT), &ShuffleVec[0]); SDValue NewMask; SDValue Mask = Mst->getMask(); if (Mask.getValueType() == VT) { // Mask and original value have the same type NewMask = DAG.getBitcast(WideVecVT, Mask); for (unsigned i = 0; i != NumElems; ++i) ShuffleVec[i] = i * SizeRatio; for (unsigned i = NumElems; i != NumElems*SizeRatio; ++i) ShuffleVec[i] = NumElems*SizeRatio; NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask, DAG.getConstant(0, dl, WideVecVT), &ShuffleVec[0]); } else { assert(Mask.getValueType().getVectorElementType() == MVT::i1); unsigned WidenNumElts = NumElems*SizeRatio; unsigned MaskNumElts = VT.getVectorNumElements(); EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, WidenNumElts); unsigned NumConcat = WidenNumElts / MaskNumElts; SmallVector<SDValue, 16> Ops(NumConcat); SDValue ZeroVal = DAG.getConstant(0, dl, Mask.getValueType()); Ops[0] = Mask; for (unsigned i = 1; i != NumConcat; ++i) Ops[i] = ZeroVal; NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops); } return DAG.getMaskedStore(Mst->getChain(), dl, TruncatedVal, Mst->getBasePtr(), NewMask, StVT, Mst->getMemOperand(), false); } /// PerformSTORECombine - Do target-specific dag combines on STORE nodes. static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { StoreSDNode *St = cast<StoreSDNode>(N); EVT VT = St->getValue().getValueType(); EVT StVT = St->getMemoryVT(); SDLoc dl(St); SDValue StoredVal = St->getOperand(1); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); // If we are saving a concatenation of two XMM registers and 32-byte stores // are slow, such as on Sandy Bridge, perform two 16-byte stores. bool Fast; unsigned AddressSpace = St->getAddressSpace(); unsigned Alignment = St->getAlignment(); if (VT.is256BitVector() && StVT == VT && TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, AddressSpace, Alignment, &Fast) && !Fast) { unsigned NumElems = VT.getVectorNumElements(); if (NumElems < 2) return SDValue(); SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl); SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl); SDValue Stride = DAG.getConstant(16, dl, TLI.getPointerTy(DAG.getDataLayout())); SDValue Ptr0 = St->getBasePtr(); SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride); SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0, St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), Alignment); SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1, St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), std::min(16U, Alignment)); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1); } // Optimize trunc store (of multiple scalars) to shuffle and store. // First, pack all of the elements in one place. Next, store to memory // in fewer chunks. if (St->isTruncatingStore() && VT.isVector()) { // Check if we can detect an AVG pattern from the truncation. If yes, // replace the trunc store by a normal store with the result of X86ISD::AVG // instruction. SDValue Avg = detectAVGPattern(St->getValue(), St->getMemoryVT(), DAG, Subtarget, dl); if (Avg.getNode()) return DAG.getStore(St->getChain(), dl, Avg, St->getBasePtr(), St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), St->getAlignment()); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); unsigned NumElems = VT.getVectorNumElements(); assert(StVT != VT && "Cannot truncate to the same type"); unsigned FromSz = VT.getVectorElementType().getSizeInBits(); unsigned ToSz = StVT.getVectorElementType().getSizeInBits(); // The truncating store is legal in some cases. For example // vpmovqb, vpmovqw, vpmovqd, vpmovdb, vpmovdw // are designated for truncate store. // In this case we don't need any further transformations. if (TLI.isTruncStoreLegal(VT, StVT)) return SDValue(); // From, To sizes and ElemCount must be pow of two if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue(); // We are going to use the original vector elt for storing. // Accumulated smaller vector elements must be a multiple of the store size. if (0 != (NumElems * FromSz) % ToSz) return SDValue(); unsigned SizeRatio = FromSz / ToSz; assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits()); // Create a type on which we perform the shuffle EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(), NumElems*SizeRatio); assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); SDValue WideVec = DAG.getBitcast(WideVecVT, St->getValue()); SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1); for (unsigned i = 0; i != NumElems; ++i) ShuffleVec[i] = i * SizeRatio; // Can't shuffle using an illegal type. if (!TLI.isTypeLegal(WideVecVT)) return SDValue(); SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec, DAG.getUNDEF(WideVecVT), &ShuffleVec[0]); // At this point all of the data is stored at the bottom of the // register. We now need to save it to mem. // Find the largest store unit MVT StoreType = MVT::i8; for (MVT Tp : MVT::integer_valuetypes()) { if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz) StoreType = Tp; } // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64. if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 && (64 <= NumElems * ToSz)) StoreType = MVT::f64; // Bitcast the original vector into a vector of store-size units EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(), StoreType, VT.getSizeInBits()/StoreType.getSizeInBits()); assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits()); SDValue ShuffWide = DAG.getBitcast(StoreVecVT, Shuff); SmallVector<SDValue, 8> Chains; SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, dl, TLI.getPointerTy(DAG.getDataLayout())); SDValue Ptr = St->getBasePtr(); // Perform one or more big stores into memory. for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) { SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, StoreType, ShuffWide, DAG.getIntPtrConstant(i, dl)); SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr, St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), St->getAlignment()); Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); Chains.push_back(Ch); } return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); } // Turn load->store of MMX types into GPR load/stores. This avoids clobbering // the FP state in cases where an emms may be missing. // A preferable solution to the general problem is to figure out the right // places to insert EMMS. This qualifies as a quick hack. // Similarly, turn load->store of i64 into double load/stores in 32-bit mode. if (VT.getSizeInBits() != 64) return SDValue(); const Function *F = DAG.getMachineFunction().getFunction(); bool NoImplicitFloatOps = F->hasFnAttribute(Attribute::NoImplicitFloat); bool F64IsLegal = !Subtarget->useSoftFloat() && !NoImplicitFloatOps && Subtarget->hasSSE2(); if ((VT.isVector() || (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) && isa<LoadSDNode>(St->getValue()) && !cast<LoadSDNode>(St->getValue())->isVolatile() && St->getChain().hasOneUse() && !St->isVolatile()) { SDNode* LdVal = St->getValue().getNode(); LoadSDNode *Ld = nullptr; int TokenFactorIndex = -1; SmallVector<SDValue, 8> Ops; SDNode* ChainVal = St->getChain().getNode(); // Must be a store of a load. We currently handle two cases: the load // is a direct child, and it's under an intervening TokenFactor. It is // possible to dig deeper under nested TokenFactors. if (ChainVal == LdVal) Ld = cast<LoadSDNode>(St->getChain()); else if (St->getValue().hasOneUse() && ChainVal->getOpcode() == ISD::TokenFactor) { for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) { if (ChainVal->getOperand(i).getNode() == LdVal) { TokenFactorIndex = i; Ld = cast<LoadSDNode>(St->getValue()); } else Ops.push_back(ChainVal->getOperand(i)); } } if (!Ld || !ISD::isNormalLoad(Ld)) return SDValue(); // If this is not the MMX case, i.e. we are just turning i64 load/store // into f64 load/store, avoid the transformation if there are multiple // uses of the loaded value. if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0)) return SDValue(); SDLoc LdDL(Ld); SDLoc StDL(N); // If we are a 64-bit capable x86, lower to a single movq load/store pair. // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store // pair instead. if (Subtarget->is64Bit() || F64IsLegal) { MVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64; SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), Ld->getAlignment()); SDValue NewChain = NewLd.getValue(1); if (TokenFactorIndex != -1) { Ops.push_back(NewChain); NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops); } return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(), St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), St->getAlignment()); } // Otherwise, lower to two pairs of 32-bit loads / stores. SDValue LoAddr = Ld->getBasePtr(); SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr, DAG.getConstant(4, LdDL, MVT::i32)); SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr, Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), Ld->getAlignment()); SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr, Ld->getPointerInfo().getWithOffset(4), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), MinAlign(Ld->getAlignment(), 4)); SDValue NewChain = LoLd.getValue(1); if (TokenFactorIndex != -1) { Ops.push_back(LoLd); Ops.push_back(HiLd); NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops); } LoAddr = St->getBasePtr(); HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr, DAG.getConstant(4, StDL, MVT::i32)); SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr, St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), St->getAlignment()); SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr, St->getPointerInfo().getWithOffset(4), St->isVolatile(), St->isNonTemporal(), MinAlign(St->getAlignment(), 4)); return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt); } // This is similar to the above case, but here we handle a scalar 64-bit // integer store that is extracted from a vector on a 32-bit target. // If we have SSE2, then we can treat it like a floating-point double // to get past legalization. The execution dependencies fixup pass will // choose the optimal machine instruction for the store if this really is // an integer or v2f32 rather than an f64. if (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit() && St->getOperand(1).getOpcode() == ISD::EXTRACT_VECTOR_ELT) { SDValue OldExtract = St->getOperand(1); SDValue ExtOp0 = OldExtract.getOperand(0); unsigned VecSize = ExtOp0.getValueSizeInBits(); EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, VecSize / 64); SDValue BitCast = DAG.getBitcast(VecVT, ExtOp0); SDValue NewExtract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, BitCast, OldExtract.getOperand(1)); return DAG.getStore(St->getChain(), dl, NewExtract, St->getBasePtr(), St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), St->getAlignment()); } return SDValue(); } /// Return 'true' if this vector operation is "horizontal" /// and return the operands for the horizontal operation in LHS and RHS. A /// horizontal operation performs the binary operation on successive elements /// of its first operand, then on successive elements of its second operand, /// returning the resulting values in a vector. For example, if /// A = < float a0, float a1, float a2, float a3 > /// and /// B = < float b0, float b1, float b2, float b3 > /// then the result of doing a horizontal operation on A and B is /// A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >. /// In short, LHS and RHS are inspected to see if LHS op RHS is of the form /// A horizontal-op B, for some already available A and B, and if so then LHS is /// set to A, RHS to B, and the routine returns 'true'. /// Note that the binary operation should have the property that if one of the /// operands is UNDEF then the result is UNDEF. static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) { // Look for the following pattern: if // A = < float a0, float a1, float a2, float a3 > // B = < float b0, float b1, float b2, float b3 > // and // LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6> // RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7> // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 > // which is A horizontal-op B. // At least one of the operands should be a vector shuffle. if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE && RHS.getOpcode() != ISD::VECTOR_SHUFFLE) return false; MVT VT = LHS.getSimpleValueType(); assert((VT.is128BitVector() || VT.is256BitVector()) && "Unsupported vector type for horizontal add/sub"); // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to // operate independently on 128-bit lanes. unsigned NumElts = VT.getVectorNumElements(); unsigned NumLanes = VT.getSizeInBits()/128; unsigned NumLaneElts = NumElts / NumLanes; assert((NumLaneElts % 2 == 0) && "Vector type should have an even number of elements in each lane"); unsigned HalfLaneElts = NumLaneElts/2; // View LHS in the form // LHS = VECTOR_SHUFFLE A, B, LMask // If LHS is not a shuffle then pretend it is the shuffle // LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1> // NOTE: in what follows a default initialized SDValue represents an UNDEF of // type VT. SDValue A, B; SmallVector<int, 16> LMask(NumElts); if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) { if (LHS.getOperand(0).getOpcode() != ISD::UNDEF) A = LHS.getOperand(0); if (LHS.getOperand(1).getOpcode() != ISD::UNDEF) B = LHS.getOperand(1); ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(); std::copy(Mask.begin(), Mask.end(), LMask.begin()); } else { if (LHS.getOpcode() != ISD::UNDEF) A = LHS; for (unsigned i = 0; i != NumElts; ++i) LMask[i] = i; } // Likewise, view RHS in the form // RHS = VECTOR_SHUFFLE C, D, RMask SDValue C, D; SmallVector<int, 16> RMask(NumElts); if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) { if (RHS.getOperand(0).getOpcode() != ISD::UNDEF) C = RHS.getOperand(0); if (RHS.getOperand(1).getOpcode() != ISD::UNDEF) D = RHS.getOperand(1); ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(); std::copy(Mask.begin(), Mask.end(), RMask.begin()); } else { if (RHS.getOpcode() != ISD::UNDEF) C = RHS; for (unsigned i = 0; i != NumElts; ++i) RMask[i] = i; } // Check that the shuffles are both shuffling the same vectors. if (!(A == C && B == D) && !(A == D && B == C)) return false; // If everything is UNDEF then bail out: it would be better to fold to UNDEF. if (!A.getNode() && !B.getNode()) return false; // If A and B occur in reverse order in RHS, then "swap" them (which means // rewriting the mask). if (A != C) ShuffleVectorSDNode::commuteMask(RMask); // At this point LHS and RHS are equivalent to // LHS = VECTOR_SHUFFLE A, B, LMask // RHS = VECTOR_SHUFFLE A, B, RMask // Check that the masks correspond to performing a horizontal operation. for (unsigned l = 0; l != NumElts; l += NumLaneElts) { for (unsigned i = 0; i != NumLaneElts; ++i) { int LIdx = LMask[i+l], RIdx = RMask[i+l]; // Ignore any UNDEF components. if (LIdx < 0 || RIdx < 0 || (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) || (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts))) continue; // Check that successive elements are being operated on. If not, this is // not a horizontal operation. unsigned Src = (i/HalfLaneElts); // each lane is split between srcs int Index = 2*(i%HalfLaneElts) + NumElts*Src + l; if (!(LIdx == Index && RIdx == Index + 1) && !(IsCommutative && LIdx == Index + 1 && RIdx == Index)) return false; } } LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it. RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it. return true; } /// Do target-specific dag combines on floating point adds. static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); // Try to synthesize horizontal adds from adds of shuffles. if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) || (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) && isHorizontalBinOp(LHS, RHS, true)) return DAG.getNode(X86ISD::FHADD, SDLoc(N), VT, LHS, RHS); return SDValue(); } /// Do target-specific dag combines on floating point subs. static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); // Try to synthesize horizontal subs from subs of shuffles. if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) || (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) && isHorizontalBinOp(LHS, RHS, false)) return DAG.getNode(X86ISD::FHSUB, SDLoc(N), VT, LHS, RHS); return SDValue(); } /// Truncate a group of v4i32 into v16i8/v8i16 using X86ISD::PACKUS. static SDValue combineVectorTruncationWithPACKUS(SDNode *N, SelectionDAG &DAG, SmallVector<SDValue, 8> &Regs) { assert(Regs.size() > 0 && (Regs[0].getValueType() == MVT::v4i32 || Regs[0].getValueType() == MVT::v2i64)); EVT OutVT = N->getValueType(0); EVT OutSVT = OutVT.getVectorElementType(); EVT InVT = Regs[0].getValueType(); EVT InSVT = InVT.getVectorElementType(); SDLoc DL(N); // First, use mask to unset all bits that won't appear in the result. assert((OutSVT == MVT::i8 || OutSVT == MVT::i16) && "OutSVT can only be either i8 or i16."); SDValue MaskVal = DAG.getConstant(OutSVT == MVT::i8 ? 0xFF : 0xFFFF, DL, InSVT); SDValue MaskVec = DAG.getNode( ISD::BUILD_VECTOR, DL, InVT, SmallVector<SDValue, 8>(InVT.getVectorNumElements(), MaskVal)); for (auto &Reg : Regs) Reg = DAG.getNode(ISD::AND, DL, InVT, MaskVec, Reg); MVT UnpackedVT, PackedVT; if (OutSVT == MVT::i8) { UnpackedVT = MVT::v8i16; PackedVT = MVT::v16i8; } else { UnpackedVT = MVT::v4i32; PackedVT = MVT::v8i16; } // In each iteration, truncate the type by a half size. auto RegNum = Regs.size(); for (unsigned j = 1, e = InSVT.getSizeInBits() / OutSVT.getSizeInBits(); j < e; j *= 2, RegNum /= 2) { for (unsigned i = 0; i < RegNum; i++) Regs[i] = DAG.getNode(ISD::BITCAST, DL, UnpackedVT, Regs[i]); for (unsigned i = 0; i < RegNum / 2; i++) Regs[i] = DAG.getNode(X86ISD::PACKUS, DL, PackedVT, Regs[i * 2], Regs[i * 2 + 1]); } // If the type of the result is v8i8, we need do one more X86ISD::PACKUS, and // then extract a subvector as the result since v8i8 is not a legal type. if (OutVT == MVT::v8i8) { Regs[0] = DAG.getNode(X86ISD::PACKUS, DL, PackedVT, Regs[0], Regs[0]); Regs[0] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, Regs[0], DAG.getIntPtrConstant(0, DL)); return Regs[0]; } else if (RegNum > 1) { Regs.resize(RegNum); return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Regs); } else return Regs[0]; } /// Truncate a group of v4i32 into v8i16 using X86ISD::PACKSS. static SDValue combineVectorTruncationWithPACKSS(SDNode *N, SelectionDAG &DAG, SmallVector<SDValue, 8> &Regs) { assert(Regs.size() > 0 && Regs[0].getValueType() == MVT::v4i32); EVT OutVT = N->getValueType(0); SDLoc DL(N); // Shift left by 16 bits, then arithmetic-shift right by 16 bits. SDValue ShAmt = DAG.getConstant(16, DL, MVT::i32); for (auto &Reg : Regs) { Reg = getTargetVShiftNode(X86ISD::VSHLI, DL, MVT::v4i32, Reg, ShAmt, DAG); Reg = getTargetVShiftNode(X86ISD::VSRAI, DL, MVT::v4i32, Reg, ShAmt, DAG); } for (unsigned i = 0, e = Regs.size() / 2; i < e; i++) Regs[i] = DAG.getNode(X86ISD::PACKSS, DL, MVT::v8i16, Regs[i * 2], Regs[i * 2 + 1]); if (Regs.size() > 2) { Regs.resize(Regs.size() / 2); return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Regs); } else return Regs[0]; } /// This function transforms truncation from vXi32/vXi64 to vXi8/vXi16 into /// X86ISD::PACKUS/X86ISD::PACKSS operations. We do it here because after type /// legalization the truncation will be translated into a BUILD_VECTOR with each /// element that is extracted from a vector and then truncated, and it is /// diffcult to do this optimization based on them. static SDValue combineVectorTruncation(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { EVT OutVT = N->getValueType(0); if (!OutVT.isVector()) return SDValue(); SDValue In = N->getOperand(0); if (!In.getValueType().isSimple()) return SDValue(); EVT InVT = In.getValueType(); unsigned NumElems = OutVT.getVectorNumElements(); // TODO: On AVX2, the behavior of X86ISD::PACKUS is different from that on // SSE2, and we need to take care of it specially. // AVX512 provides vpmovdb. if (!Subtarget->hasSSE2() || Subtarget->hasAVX2()) return SDValue(); EVT OutSVT = OutVT.getVectorElementType(); EVT InSVT = InVT.getVectorElementType(); if (!((InSVT == MVT::i32 || InSVT == MVT::i64) && (OutSVT == MVT::i8 || OutSVT == MVT::i16) && isPowerOf2_32(NumElems) && NumElems >= 8)) return SDValue(); // SSSE3's pshufb results in less instructions in the cases below. if (Subtarget->hasSSSE3() && NumElems == 8 && ((OutSVT == MVT::i8 && InSVT != MVT::i64) || (InSVT == MVT::i32 && OutSVT == MVT::i16))) return SDValue(); SDLoc DL(N); // Split a long vector into vectors of legal type. unsigned RegNum = InVT.getSizeInBits() / 128; SmallVector<SDValue, 8> SubVec(RegNum); if (InSVT == MVT::i32) { for (unsigned i = 0; i < RegNum; i++) SubVec[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In, DAG.getIntPtrConstant(i * 4, DL)); } else { for (unsigned i = 0; i < RegNum; i++) SubVec[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, DAG.getIntPtrConstant(i * 2, DL)); } // SSE2 provides PACKUS for only 2 x v8i16 -> v16i8 and SSE4.1 provides PAKCUS // for 2 x v4i32 -> v8i16. For SSSE3 and below, we need to use PACKSS to // truncate 2 x v4i32 to v8i16. if (Subtarget->hasSSE41() || OutSVT == MVT::i8) return combineVectorTruncationWithPACKUS(N, DAG, SubVec); else if (InSVT == MVT::i32) return combineVectorTruncationWithPACKSS(N, DAG, SubVec); else return SDValue(); } static SDValue PerformTRUNCATECombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { // Try to detect AVG pattern first. SDValue Avg = detectAVGPattern(N->getOperand(0), N->getValueType(0), DAG, Subtarget, SDLoc(N)); if (Avg.getNode()) return Avg; return combineVectorTruncation(N, DAG, Subtarget); } /// Do target-specific dag combines on floating point negations. static SDValue PerformFNEGCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); EVT SVT = VT.getScalarType(); SDValue Arg = N->getOperand(0); SDLoc DL(N); // Let legalize expand this if it isn't a legal type yet. if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) return SDValue(); // If we're negating a FMUL node on a target with FMA, then we can avoid the // use of a constant by performing (-0 - A*B) instead. // FIXME: Check rounding control flags as well once it becomes available. if (Arg.getOpcode() == ISD::FMUL && (SVT == MVT::f32 || SVT == MVT::f64) && Arg->getFlags()->hasNoSignedZeros() && Subtarget->hasAnyFMA()) { SDValue Zero = DAG.getConstantFP(0.0, DL, VT); return DAG.getNode(X86ISD::FNMSUB, DL, VT, Arg.getOperand(0), Arg.getOperand(1), Zero); } // If we're negating a FMA node, then we can adjust the // instruction to include the extra negation. if (Arg.hasOneUse()) { switch (Arg.getOpcode()) { case X86ISD::FMADD: return DAG.getNode(X86ISD::FNMSUB, DL, VT, Arg.getOperand(0), Arg.getOperand(1), Arg.getOperand(2)); case X86ISD::FMSUB: return DAG.getNode(X86ISD::FNMADD, DL, VT, Arg.getOperand(0), Arg.getOperand(1), Arg.getOperand(2)); case X86ISD::FNMADD: return DAG.getNode(X86ISD::FMSUB, DL, VT, Arg.getOperand(0), Arg.getOperand(1), Arg.getOperand(2)); case X86ISD::FNMSUB: return DAG.getNode(X86ISD::FMADD, DL, VT, Arg.getOperand(0), Arg.getOperand(1), Arg.getOperand(2)); } } return SDValue(); } static SDValue lowerX86FPLogicOp(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); if (VT.is512BitVector() && !Subtarget->hasDQI()) { // VXORPS, VORPS, VANDPS, VANDNPS are supported only under DQ extention. // These logic operations may be executed in the integer domain. SDLoc dl(N); MVT IntScalar = MVT::getIntegerVT(VT.getScalarSizeInBits()); MVT IntVT = MVT::getVectorVT(IntScalar, VT.getVectorNumElements()); SDValue Op0 = DAG.getNode(ISD::BITCAST, dl, IntVT, N->getOperand(0)); SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, IntVT, N->getOperand(1)); unsigned IntOpcode = 0; switch (N->getOpcode()) { default: llvm_unreachable("Unexpected FP logic op"); case X86ISD::FOR: IntOpcode = ISD::OR; break; case X86ISD::FXOR: IntOpcode = ISD::XOR; break; case X86ISD::FAND: IntOpcode = ISD::AND; break; case X86ISD::FANDN: IntOpcode = X86ISD::ANDNP; break; } SDValue IntOp = DAG.getNode(IntOpcode, dl, IntVT, Op0, Op1); return DAG.getNode(ISD::BITCAST, dl, VT, IntOp); } return SDValue(); } /// Do target-specific dag combines on X86ISD::FOR and X86ISD::FXOR nodes. static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR); // F[X]OR(0.0, x) -> x if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) if (C->getValueAPF().isPosZero()) return N->getOperand(1); // F[X]OR(x, 0.0) -> x if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) if (C->getValueAPF().isPosZero()) return N->getOperand(0); return lowerX86FPLogicOp(N, DAG, Subtarget); } /// Do target-specific dag combines on X86ISD::FMIN and X86ISD::FMAX nodes. static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) { assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX); // Only perform optimizations if UnsafeMath is used. if (!DAG.getTarget().Options.UnsafeFPMath) return SDValue(); // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes // into FMINC and FMAXC, which are Commutative operations. unsigned NewOp = 0; switch (N->getOpcode()) { default: llvm_unreachable("unknown opcode"); case X86ISD::FMIN: NewOp = X86ISD::FMINC; break; case X86ISD::FMAX: NewOp = X86ISD::FMAXC; break; } return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0), N->getOperand(0), N->getOperand(1)); } static SDValue performFMaxNumCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { // This takes at least 3 instructions, so favor a library call when // minimizing code size. if (DAG.getMachineFunction().getFunction()->optForMinSize()) return SDValue(); EVT VT = N->getValueType(0); // TODO: Check for global or instruction-level "nnan". In that case, we // should be able to lower to FMAX/FMIN alone. // TODO: If an operand is already known to be a NaN or not a NaN, this // should be an optional swap and FMAX/FMIN. // TODO: Allow f64, vectors, and fminnum. if (VT != MVT::f32 || !Subtarget->hasSSE1() || Subtarget->useSoftFloat()) return SDValue(); SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); SDLoc DL(N); EVT SetCCType = DAG.getTargetLoweringInfo().getSetCCResultType( DAG.getDataLayout(), *DAG.getContext(), VT); // There are 4 possibilities involving NaN inputs, and these are the required // outputs: // Op1 // Num NaN // ---------------- // Num | Max | Op0 | // Op0 ---------------- // NaN | Op1 | NaN | // ---------------- // // The SSE FP max/min instructions were not designed for this case, but rather // to implement: // Max = Op1 > Op0 ? Op1 : Op0 // // So they always return Op0 if either input is a NaN. However, we can still // use those instructions for fmaxnum by selecting away a NaN input. // If either operand is NaN, the 2nd source operand (Op0) is passed through. SDValue Max = DAG.getNode(X86ISD::FMAX, DL, VT, Op1, Op0); SDValue IsOp0Nan = DAG.getSetCC(DL, SetCCType , Op0, Op0, ISD::SETUO); // If Op0 is a NaN, select Op1. Otherwise, select the max. If both operands // are NaN, the NaN value of Op1 is the result. return DAG.getNode(ISD::SELECT, DL, VT, IsOp0Nan, Op1, Max); } /// Do target-specific dag combines on X86ISD::FAND nodes. static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { // FAND(0.0, x) -> 0.0 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) if (C->getValueAPF().isPosZero()) return N->getOperand(0); // FAND(x, 0.0) -> 0.0 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) if (C->getValueAPF().isPosZero()) return N->getOperand(1); return lowerX86FPLogicOp(N, DAG, Subtarget); } /// Do target-specific dag combines on X86ISD::FANDN nodes static SDValue PerformFANDNCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { // FANDN(0.0, x) -> x if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) if (C->getValueAPF().isPosZero()) return N->getOperand(1); // FANDN(x, 0.0) -> 0.0 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) if (C->getValueAPF().isPosZero()) return N->getOperand(1); return lowerX86FPLogicOp(N, DAG, Subtarget); } static SDValue PerformBTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI) { // BT ignores high bits in the bit index operand. SDValue Op1 = N->getOperand(1); if (Op1.hasOneUse()) { unsigned BitWidth = Op1.getValueSizeInBits(); APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth)); APInt KnownZero, KnownOne; TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), !DCI.isBeforeLegalizeOps()); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) || TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO)) DCI.CommitTargetLoweringOpt(TLO); } return SDValue(); } static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) { SDValue Op = N->getOperand(0); if (Op.getOpcode() == ISD::BITCAST) Op = Op.getOperand(0); EVT VT = N->getValueType(0), OpVT = Op.getValueType(); if (Op.getOpcode() == X86ISD::VZEXT_LOAD && VT.getVectorElementType().getSizeInBits() == OpVT.getVectorElementType().getSizeInBits()) { return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); } return SDValue(); } static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); if (!VT.isVector()) return SDValue(); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT ExtraVT = cast<VTSDNode>(N1)->getVT(); SDLoc dl(N); // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the // both SSE and AVX2 since there is no sign-extended shift right // operation on a vector with 64-bit elements. //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) -> // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT))) if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND)) { SDValue N00 = N0.getOperand(0); // EXTLOAD has a better solution on AVX2, // it may be replaced with X86ISD::VSEXT node. if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256()) if (!ISD::isNormalLoad(N00.getNode())) return SDValue(); if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) { SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, N00, N1); return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp); } } return SDValue(); } /// sext(add_nsw(x, C)) --> add(sext(x), C_sext) /// Promoting a sign extension ahead of an 'add nsw' exposes opportunities /// to combine math ops, use an LEA, or use a complex addressing mode. This can /// eliminate extend, add, and shift instructions. static SDValue promoteSextBeforeAddNSW(SDNode *Sext, SelectionDAG &DAG, const X86Subtarget *Subtarget) { // TODO: This should be valid for other integer types. EVT VT = Sext->getValueType(0); if (VT != MVT::i64) return SDValue(); // We need an 'add nsw' feeding into the 'sext'. SDValue Add = Sext->getOperand(0); if (Add.getOpcode() != ISD::ADD || !Add->getFlags()->hasNoSignedWrap()) return SDValue(); // Having a constant operand to the 'add' ensures that we are not increasing // the instruction count because the constant is extended for free below. // A constant operand can also become the displacement field of an LEA. auto *AddOp1 = dyn_cast<ConstantSDNode>(Add.getOperand(1)); if (!AddOp1) return SDValue(); // Don't make the 'add' bigger if there's no hope of combining it with some // other 'add' or 'shl' instruction. // TODO: It may be profitable to generate simpler LEA instructions in place // of single 'add' instructions, but the cost model for selecting an LEA // currently has a high threshold. bool HasLEAPotential = false; for (auto *User : Sext->uses()) { if (User->getOpcode() == ISD::ADD || User->getOpcode() == ISD::SHL) { HasLEAPotential = true; break; } } if (!HasLEAPotential) return SDValue(); // Everything looks good, so pull the 'sext' ahead of the 'add'. int64_t AddConstant = AddOp1->getSExtValue(); SDValue AddOp0 = Add.getOperand(0); SDValue NewSext = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(Sext), VT, AddOp0); SDValue NewConstant = DAG.getConstant(AddConstant, SDLoc(Add), VT); // The wider add is guaranteed to not wrap because both operands are // sign-extended. SDNodeFlags Flags; Flags.setNoSignedWrap(true); return DAG.getNode(ISD::ADD, SDLoc(Add), VT, NewSext, NewConstant, &Flags); } static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); EVT SVT = VT.getScalarType(); EVT InVT = N0.getValueType(); EVT InSVT = InVT.getScalarType(); SDLoc DL(N); // (i8,i32 sext (sdivrem (i8 x, i8 y)) -> // (i8,i32 (sdivrem_sext_hreg (i8 x, i8 y) // This exposes the sext to the sdivrem lowering, so that it directly extends // from AH (which we otherwise need to do contortions to access). if (N0.getOpcode() == ISD::SDIVREM && N0.getResNo() == 1 && InVT == MVT::i8 && VT == MVT::i32) { SDVTList NodeTys = DAG.getVTList(MVT::i8, VT); SDValue R = DAG.getNode(X86ISD::SDIVREM8_SEXT_HREG, DL, NodeTys, N0.getOperand(0), N0.getOperand(1)); DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0)); return R.getValue(1); } if (!DCI.isBeforeLegalizeOps()) { if (InVT == MVT::i1) { SDValue Zero = DAG.getConstant(0, DL, VT); SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT); return DAG.getNode(ISD::SELECT, DL, VT, N0, AllOnes, Zero); } return SDValue(); } if (VT.isVector() && Subtarget->hasSSE2()) { auto ExtendVecSize = [&DAG](SDLoc DL, SDValue N, unsigned Size) { EVT InVT = N.getValueType(); EVT OutVT = EVT::getVectorVT(*DAG.getContext(), InVT.getScalarType(), Size / InVT.getScalarSizeInBits()); SmallVector<SDValue, 8> Opnds(Size / InVT.getSizeInBits(), DAG.getUNDEF(InVT)); Opnds[0] = N; return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Opnds); }; // If target-size is less than 128-bits, extend to a type that would extend // to 128 bits, extend that and extract the original target vector. if (VT.getSizeInBits() < 128 && !(128 % VT.getSizeInBits()) && (SVT == MVT::i64 || SVT == MVT::i32 || SVT == MVT::i16) && (InSVT == MVT::i32 || InSVT == MVT::i16 || InSVT == MVT::i8)) { unsigned Scale = 128 / VT.getSizeInBits(); EVT ExVT = EVT::getVectorVT(*DAG.getContext(), SVT, 128 / SVT.getSizeInBits()); SDValue Ex = ExtendVecSize(DL, N0, Scale * InVT.getSizeInBits()); SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, ExVT, Ex); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SExt, DAG.getIntPtrConstant(0, DL)); } // If target-size is 128-bits, then convert to ISD::SIGN_EXTEND_VECTOR_INREG // which ensures lowering to X86ISD::VSEXT (pmovsx*). if (VT.getSizeInBits() == 128 && (SVT == MVT::i64 || SVT == MVT::i32 || SVT == MVT::i16) && (InSVT == MVT::i32 || InSVT == MVT::i16 || InSVT == MVT::i8)) { SDValue ExOp = ExtendVecSize(DL, N0, 128); return DAG.getSignExtendVectorInReg(ExOp, DL, VT); } // On pre-AVX2 targets, split into 128-bit nodes of // ISD::SIGN_EXTEND_VECTOR_INREG. if (!Subtarget->hasInt256() && !(VT.getSizeInBits() % 128) && (SVT == MVT::i64 || SVT == MVT::i32 || SVT == MVT::i16) && (InSVT == MVT::i32 || InSVT == MVT::i16 || InSVT == MVT::i8)) { unsigned NumVecs = VT.getSizeInBits() / 128; unsigned NumSubElts = 128 / SVT.getSizeInBits(); EVT SubVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumSubElts); EVT InSubVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumSubElts); SmallVector<SDValue, 8> Opnds; for (unsigned i = 0, Offset = 0; i != NumVecs; ++i, Offset += NumSubElts) { SDValue SrcVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InSubVT, N0, DAG.getIntPtrConstant(Offset, DL)); SrcVec = ExtendVecSize(DL, SrcVec, 128); SrcVec = DAG.getSignExtendVectorInReg(SrcVec, DL, SubVT); Opnds.push_back(SrcVec); } return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Opnds); } } if (Subtarget->hasAVX() && VT.is256BitVector()) if (SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget)) return R; if (SDValue NewAdd = promoteSextBeforeAddNSW(N, DAG, Subtarget)) return NewAdd; return SDValue(); } static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget* Subtarget) { SDLoc dl(N); EVT VT = N->getValueType(0); // Let legalize expand this if it isn't a legal type yet. if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) return SDValue(); EVT ScalarVT = VT.getScalarType(); if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) || !Subtarget->hasAnyFMA()) return SDValue(); SDValue A = N->getOperand(0); SDValue B = N->getOperand(1); SDValue C = N->getOperand(2); bool NegA = (A.getOpcode() == ISD::FNEG); bool NegB = (B.getOpcode() == ISD::FNEG); bool NegC = (C.getOpcode() == ISD::FNEG); // Negative multiplication when NegA xor NegB bool NegMul = (NegA != NegB); if (NegA) A = A.getOperand(0); if (NegB) B = B.getOperand(0); if (NegC) C = C.getOperand(0); unsigned Opcode; if (!NegMul) Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB; else Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB; return DAG.getNode(Opcode, dl, VT, A, B, C); } static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { // (i32 zext (and (i8 x86isd::setcc_carry), 1)) -> // (and (i32 x86isd::setcc_carry), 1) // This eliminates the zext. This transformation is necessary because // ISD::SETCC is always legalized to i8. SDLoc dl(N); SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); if (N0.getOpcode() == ISD::AND && N0.hasOneUse() && N0.getOperand(0).hasOneUse()) { SDValue N00 = N0.getOperand(0); if (N00.getOpcode() == X86ISD::SETCC_CARRY) { if (!isOneConstant(N0.getOperand(1))) return SDValue(); return DAG.getNode(ISD::AND, dl, VT, DAG.getNode(X86ISD::SETCC_CARRY, dl, VT, N00.getOperand(0), N00.getOperand(1)), DAG.getConstant(1, dl, VT)); } } if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && N0.getOperand(0).hasOneUse()) { SDValue N00 = N0.getOperand(0); if (N00.getOpcode() == X86ISD::SETCC_CARRY) { return DAG.getNode(ISD::AND, dl, VT, DAG.getNode(X86ISD::SETCC_CARRY, dl, VT, N00.getOperand(0), N00.getOperand(1)), DAG.getConstant(1, dl, VT)); } } if (VT.is256BitVector()) if (SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget)) return R; // (i8,i32 zext (udivrem (i8 x, i8 y)) -> // (i8,i32 (udivrem_zext_hreg (i8 x, i8 y) // This exposes the zext to the udivrem lowering, so that it directly extends // from AH (which we otherwise need to do contortions to access). if (N0.getOpcode() == ISD::UDIVREM && N0.getResNo() == 1 && N0.getValueType() == MVT::i8 && (VT == MVT::i32 || VT == MVT::i64)) { SDVTList NodeTys = DAG.getVTList(MVT::i8, VT); SDValue R = DAG.getNode(X86ISD::UDIVREM8_ZEXT_HREG, dl, NodeTys, N0.getOperand(0), N0.getOperand(1)); DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0)); return R.getValue(1); } return SDValue(); } // Optimize x == -y --> x+y == 0 // x != -y --> x+y != 0 static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget* Subtarget) { ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); EVT VT = N->getValueType(0); SDLoc DL(N); if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB) if (isNullConstant(LHS.getOperand(0)) && LHS.hasOneUse()) { SDValue addV = DAG.getNode(ISD::ADD, DL, LHS.getValueType(), RHS, LHS.getOperand(1)); return DAG.getSetCC(DL, N->getValueType(0), addV, DAG.getConstant(0, DL, addV.getValueType()), CC); } if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB) if (isNullConstant(RHS.getOperand(0)) && RHS.hasOneUse()) { SDValue addV = DAG.getNode(ISD::ADD, DL, RHS.getValueType(), LHS, RHS.getOperand(1)); return DAG.getSetCC(DL, N->getValueType(0), addV, DAG.getConstant(0, DL, addV.getValueType()), CC); } if (VT.getScalarType() == MVT::i1 && (CC == ISD::SETNE || CC == ISD::SETEQ || ISD::isSignedIntSetCC(CC))) { bool IsSEXT0 = (LHS.getOpcode() == ISD::SIGN_EXTEND) && (LHS.getOperand(0).getValueType().getScalarType() == MVT::i1); bool IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode()); if (!IsSEXT0 || !IsVZero1) { // Swap the operands and update the condition code. std::swap(LHS, RHS); CC = ISD::getSetCCSwappedOperands(CC); IsSEXT0 = (LHS.getOpcode() == ISD::SIGN_EXTEND) && (LHS.getOperand(0).getValueType().getScalarType() == MVT::i1); IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode()); } if (IsSEXT0 && IsVZero1) { assert(VT == LHS.getOperand(0).getValueType() && "Uexpected operand type"); if (CC == ISD::SETGT) return DAG.getConstant(0, DL, VT); if (CC == ISD::SETLE) return DAG.getConstant(1, DL, VT); if (CC == ISD::SETEQ || CC == ISD::SETGE) return DAG.getNOT(DL, LHS.getOperand(0), VT); assert((CC == ISD::SETNE || CC == ISD::SETLT) && "Unexpected condition code!"); return LHS.getOperand(0); } } return SDValue(); } static SDValue PerformBLENDICombine(SDNode *N, SelectionDAG &DAG) { SDValue V0 = N->getOperand(0); SDValue V1 = N->getOperand(1); SDLoc DL(N); EVT VT = N->getValueType(0); // Canonicalize a v2f64 blend with a mask of 2 by swapping the vector // operands and changing the mask to 1. This saves us a bunch of // pattern-matching possibilities related to scalar math ops in SSE/AVX. // x86InstrInfo knows how to commute this back after instruction selection // if it would help register allocation. // TODO: If optimizing for size or a processor that doesn't suffer from // partial register update stalls, this should be transformed into a MOVSD // instruction because a MOVSD is 1-2 bytes smaller than a BLENDPD. if (VT == MVT::v2f64) if (auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(2))) if (Mask->getZExtValue() == 2 && !isShuffleFoldableLoad(V0)) { SDValue NewMask = DAG.getConstant(1, DL, MVT::i8); return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V0, NewMask); } return SDValue(); } static SDValue PerformGatherScatterCombine(SDNode *N, SelectionDAG &DAG) { SDLoc DL(N); // Gather and Scatter instructions use k-registers for masks. The type of // the masks is v*i1. So the mask will be truncated anyway. // The SIGN_EXTEND_INREG my be dropped. SDValue Mask = N->getOperand(2); if (Mask.getOpcode() == ISD::SIGN_EXTEND_INREG) { SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end()); NewOps[2] = Mask.getOperand(0); DAG.UpdateNodeOperands(N, NewOps); } return SDValue(); } // Helper function of PerformSETCCCombine. It is to materialize "setb reg" // as "sbb reg,reg", since it can be extended without zext and produces // an all-ones bit which is more useful than 0/1 in some cases. static SDValue MaterializeSETB(SDLoc DL, SDValue EFLAGS, SelectionDAG &DAG, MVT VT) { if (VT == MVT::i8) return DAG.getNode(ISD::AND, DL, VT, DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8, DAG.getConstant(X86::COND_B, DL, MVT::i8), EFLAGS), DAG.getConstant(1, DL, VT)); assert (VT == MVT::i1 && "Unexpected type for SECCC node"); return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8, DAG.getConstant(X86::COND_B, DL, MVT::i8), EFLAGS)); } // Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { SDLoc DL(N); X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0)); SDValue EFLAGS = N->getOperand(1); if (CC == X86::COND_A) { // Try to convert COND_A into COND_B in an attempt to facilitate // materializing "setb reg". // // Do not flip "e > c", where "c" is a constant, because Cmp instruction // cannot take an immediate as its first operand. // if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() && EFLAGS.getValueType().isInteger() && !isa<ConstantSDNode>(EFLAGS.getOperand(1))) { SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS), EFLAGS.getNode()->getVTList(), EFLAGS.getOperand(1), EFLAGS.getOperand(0)); SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo()); return MaterializeSETB(DL, NewEFLAGS, DAG, N->getSimpleValueType(0)); } } // Materialize "setb reg" as "sbb reg,reg", since it can be extended without // a zext and produces an all-ones bit which is more useful than 0/1 in some // cases. if (CC == X86::COND_B) return MaterializeSETB(DL, EFLAGS, DAG, N->getSimpleValueType(0)); if (SDValue Flags = checkBoolTestSetCCCombine(EFLAGS, CC)) { SDValue Cond = DAG.getConstant(CC, DL, MVT::i8); return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags); } return SDValue(); } // Optimize branch condition evaluation. // static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { SDLoc DL(N); SDValue Chain = N->getOperand(0); SDValue Dest = N->getOperand(1); SDValue EFLAGS = N->getOperand(3); X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2)); if (SDValue Flags = checkBoolTestSetCCCombine(EFLAGS, CC)) { SDValue Cond = DAG.getConstant(CC, DL, MVT::i8); return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond, Flags); } return SDValue(); } static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N, SelectionDAG &DAG) { // Take advantage of vector comparisons producing 0 or -1 in each lane to // optimize away operation when it's from a constant. // // The general transformation is: // UNARYOP(AND(VECTOR_CMP(x,y), constant)) --> // AND(VECTOR_CMP(x,y), constant2) // constant2 = UNARYOP(constant) // Early exit if this isn't a vector operation, the operand of the // unary operation isn't a bitwise AND, or if the sizes of the operations // aren't the same. EVT VT = N->getValueType(0); if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND || N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC || VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits()) return SDValue(); // Now check that the other operand of the AND is a constant. We could // make the transformation for non-constant splats as well, but it's unclear // that would be a benefit as it would not eliminate any operations, just // perform one more step in scalar code before moving to the vector unit. if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) { // Bail out if the vector isn't a constant. if (!BV->isConstant()) return SDValue(); // Everything checks out. Build up the new and improved node. SDLoc DL(N); EVT IntVT = BV->getValueType(0); // Create a new constant of the appropriate type for the transformed // DAG. SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0)); // The AND node needs bitcasts to/from an integer vector type around it. SDValue MaskConst = DAG.getBitcast(IntVT, SourceConst); SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT, N->getOperand(0)->getOperand(0), MaskConst); SDValue Res = DAG.getBitcast(VT, NewAnd); return Res; } return SDValue(); } static SDValue PerformUINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { SDValue Op0 = N->getOperand(0); EVT VT = N->getValueType(0); EVT InVT = Op0.getValueType(); EVT InSVT = InVT.getScalarType(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); // UINT_TO_FP(vXi8) -> SINT_TO_FP(ZEXT(vXi8 to vXi32)) // UINT_TO_FP(vXi16) -> SINT_TO_FP(ZEXT(vXi16 to vXi32)) if (InVT.isVector() && (InSVT == MVT::i8 || InSVT == MVT::i16)) { SDLoc dl(N); EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, InVT.getVectorNumElements()); SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0); if (TLI.isOperationLegal(ISD::UINT_TO_FP, DstVT)) return DAG.getNode(ISD::UINT_TO_FP, dl, VT, P); return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P); } return SDValue(); } static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { // First try to optimize away the conversion entirely when it's // conditionally from a constant. Vectors only. if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG)) return Res; // Now move on to more general possibilities. SDValue Op0 = N->getOperand(0); EVT VT = N->getValueType(0); EVT InVT = Op0.getValueType(); EVT InSVT = InVT.getScalarType(); // SINT_TO_FP(vXi8) -> SINT_TO_FP(SEXT(vXi8 to vXi32)) // SINT_TO_FP(vXi16) -> SINT_TO_FP(SEXT(vXi16 to vXi32)) if (InVT.isVector() && (InSVT == MVT::i8 || InSVT == MVT::i16)) { SDLoc dl(N); EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, InVT.getVectorNumElements()); SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0); return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P); } // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have // a 32-bit target where SSE doesn't support i64->FP operations. if (!Subtarget->useSoftFloat() && Op0.getOpcode() == ISD::LOAD) { LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode()); EVT LdVT = Ld->getValueType(0); // This transformation is not supported if the result type is f16 if (VT == MVT::f16) return SDValue(); if (!Ld->isVolatile() && !VT.isVector() && ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() && !Subtarget->is64Bit() && LdVT == MVT::i64) { SDValue FILDChain = Subtarget->getTargetLowering()->BuildFILD( SDValue(N, 0), LdVT, Ld->getChain(), Op0, DAG); DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1)); return FILDChain; } } return SDValue(); } // Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG, X86TargetLowering::DAGCombinerInfo &DCI) { // If the LHS and RHS of the ADC node are zero, then it can't overflow and // the result is either zero or one (depending on the input carry bit). // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1. if (X86::isZeroNode(N->getOperand(0)) && X86::isZeroNode(N->getOperand(1)) && // We don't have a good way to replace an EFLAGS use, so only do this when // dead right now. SDValue(N, 1).use_empty()) { SDLoc DL(N); EVT VT = N->getValueType(0); SDValue CarryOut = DAG.getConstant(0, DL, N->getValueType(1)); SDValue Res1 = DAG.getNode(ISD::AND, DL, VT, DAG.getNode(X86ISD::SETCC_CARRY, DL, VT, DAG.getConstant(X86::COND_B, DL, MVT::i8), N->getOperand(2)), DAG.getConstant(1, DL, VT)); return DCI.CombineTo(N, Res1, CarryOut); } return SDValue(); } // fold (add Y, (sete X, 0)) -> adc 0, Y // (add Y, (setne X, 0)) -> sbb -1, Y // (sub (sete X, 0), Y) -> sbb 0, Y // (sub (setne X, 0), Y) -> adc -1, Y static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) { SDLoc DL(N); // Look through ZExts. SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0); if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse()) return SDValue(); SDValue SetCC = Ext.getOperand(0); if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse()) return SDValue(); X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0); if (CC != X86::COND_E && CC != X86::COND_NE) return SDValue(); SDValue Cmp = SetCC.getOperand(1); if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() || !X86::isZeroNode(Cmp.getOperand(1)) || !Cmp.getOperand(0).getValueType().isInteger()) return SDValue(); SDValue CmpOp0 = Cmp.getOperand(0); SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0, DAG.getConstant(1, DL, CmpOp0.getValueType())); SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1); if (CC == X86::COND_NE) return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB, DL, OtherVal.getValueType(), OtherVal, DAG.getConstant(-1ULL, DL, OtherVal.getValueType()), NewCmp); return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC, DL, OtherVal.getValueType(), OtherVal, DAG.getConstant(0, DL, OtherVal.getValueType()), NewCmp); } /// PerformADDCombine - Do target-specific dag combines on integer adds. static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { EVT VT = N->getValueType(0); SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); // Try to synthesize horizontal adds from adds of shuffles. if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) || (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) && isHorizontalBinOp(Op0, Op1, true)) return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1); return OptimizeConditionalInDecrement(N, DAG); } static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG, const X86Subtarget *Subtarget) { SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); // X86 can't encode an immediate LHS of a sub. See if we can push the // negation into a preceding instruction. if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) { // If the RHS of the sub is a XOR with one use and a constant, invert the // immediate. Then add one to the LHS of the sub so we can turn // X-Y -> X+~Y+1, saving one register. if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR && isa<ConstantSDNode>(Op1.getOperand(1))) { APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue(); EVT VT = Op0.getValueType(); SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT, Op1.getOperand(0), DAG.getConstant(~XorC, SDLoc(Op1), VT)); return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor, DAG.getConstant(C->getAPIntValue() + 1, SDLoc(N), VT)); } } // Try to synthesize horizontal adds from adds of shuffles. EVT VT = N->getValueType(0); if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) || (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) && isHorizontalBinOp(Op0, Op1, true)) return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1); return OptimizeConditionalInDecrement(N, DAG); } /// performVZEXTCombine - Performs build vector combines static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { SDLoc DL(N); MVT VT = N->getSimpleValueType(0); SDValue Op = N->getOperand(0); MVT OpVT = Op.getSimpleValueType(); MVT OpEltVT = OpVT.getVectorElementType(); unsigned InputBits = OpEltVT.getSizeInBits() * VT.getVectorNumElements(); // (vzext (bitcast (vzext (x)) -> (vzext x) SDValue V = Op; while (V.getOpcode() == ISD::BITCAST) V = V.getOperand(0); if (V != Op && V.getOpcode() == X86ISD::VZEXT) { MVT InnerVT = V.getSimpleValueType(); MVT InnerEltVT = InnerVT.getVectorElementType(); // If the element sizes match exactly, we can just do one larger vzext. This // is always an exact type match as vzext operates on integer types. if (OpEltVT == InnerEltVT) { assert(OpVT == InnerVT && "Types must match for vzext!"); return DAG.getNode(X86ISD::VZEXT, DL, VT, V.getOperand(0)); } // The only other way we can combine them is if only a single element of the // inner vzext is used in the input to the outer vzext. if (InnerEltVT.getSizeInBits() < InputBits) return SDValue(); // In this case, the inner vzext is completely dead because we're going to // only look at bits inside of the low element. Just do the outer vzext on // a bitcast of the input to the inner. return DAG.getNode(X86ISD::VZEXT, DL, VT, DAG.getBitcast(OpVT, V)); } // Check if we can bypass extracting and re-inserting an element of an input // vector. Essentially: // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x) if (V.getOpcode() == ISD::SCALAR_TO_VECTOR && V.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && V.getOperand(0).getSimpleValueType().getSizeInBits() == InputBits) { SDValue ExtractedV = V.getOperand(0); SDValue OrigV = ExtractedV.getOperand(0); if (isNullConstant(ExtractedV.getOperand(1))) { MVT OrigVT = OrigV.getSimpleValueType(); // Extract a subvector if necessary... if (OrigVT.getSizeInBits() > OpVT.getSizeInBits()) { int Ratio = OrigVT.getSizeInBits() / OpVT.getSizeInBits(); OrigVT = MVT::getVectorVT(OrigVT.getVectorElementType(), OrigVT.getVectorNumElements() / Ratio); OrigV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigVT, OrigV, DAG.getIntPtrConstant(0, DL)); } Op = DAG.getBitcast(OpVT, OrigV); return DAG.getNode(X86ISD::VZEXT, DL, VT, Op); } } return SDValue(); } SDValue X86TargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; switch (N->getOpcode()) { default: break; case ISD::EXTRACT_VECTOR_ELT: return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI); case ISD::VSELECT: case ISD::SELECT: case X86ISD::SHRUNKBLEND: return PerformSELECTCombine(N, DAG, DCI, Subtarget); case ISD::BITCAST: return PerformBITCASTCombine(N, DAG, Subtarget); case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI, Subtarget); case ISD::ADD: return PerformAddCombine(N, DAG, Subtarget); case ISD::SUB: return PerformSubCombine(N, DAG, Subtarget); case X86ISD::ADC: return PerformADCCombine(N, DAG, DCI); case ISD::MUL: return PerformMulCombine(N, DAG, DCI); case ISD::SHL: case ISD::SRA: case ISD::SRL: return PerformShiftCombine(N, DAG, DCI, Subtarget); case ISD::AND: return PerformAndCombine(N, DAG, DCI, Subtarget); case ISD::OR: return PerformOrCombine(N, DAG, DCI, Subtarget); case ISD::XOR: return PerformXorCombine(N, DAG, DCI, Subtarget); case ISD::LOAD: return PerformLOADCombine(N, DAG, DCI, Subtarget); case ISD::MLOAD: return PerformMLOADCombine(N, DAG, DCI, Subtarget); case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget); case ISD::MSTORE: return PerformMSTORECombine(N, DAG, Subtarget); case ISD::SINT_TO_FP: return PerformSINT_TO_FPCombine(N, DAG, Subtarget); case ISD::UINT_TO_FP: return PerformUINT_TO_FPCombine(N, DAG, Subtarget); case ISD::FADD: return PerformFADDCombine(N, DAG, Subtarget); case ISD::FSUB: return PerformFSUBCombine(N, DAG, Subtarget); case ISD::FNEG: return PerformFNEGCombine(N, DAG, Subtarget); case ISD::TRUNCATE: return PerformTRUNCATECombine(N, DAG, Subtarget); case X86ISD::FXOR: case X86ISD::FOR: return PerformFORCombine(N, DAG, Subtarget); case X86ISD::FMIN: case X86ISD::FMAX: return PerformFMinFMaxCombine(N, DAG); case ISD::FMAXNUM: return performFMaxNumCombine(N, DAG, Subtarget); case X86ISD::FAND: return PerformFANDCombine(N, DAG, Subtarget); case X86ISD::FANDN: return PerformFANDNCombine(N, DAG, Subtarget); case X86ISD::BT: return PerformBTCombine(N, DAG, DCI); case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG); case ISD::ANY_EXTEND: case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG, DCI, Subtarget); case ISD::SIGN_EXTEND: return PerformSExtCombine(N, DAG, DCI, Subtarget); case ISD::SIGN_EXTEND_INREG: return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget); case ISD::SETCC: return PerformISDSETCCCombine(N, DAG, Subtarget); case X86ISD::SETCC: return PerformSETCCCombine(N, DAG, DCI, Subtarget); case X86ISD::BRCOND: return PerformBrCondCombine(N, DAG, DCI, Subtarget); case X86ISD::VZEXT: return performVZEXTCombine(N, DAG, DCI, Subtarget); case X86ISD::SHUFP: // Handle all target specific shuffles case X86ISD::PALIGNR: case X86ISD::UNPCKH: case X86ISD::UNPCKL: case X86ISD::MOVHLPS: case X86ISD::MOVLHPS: case X86ISD::PSHUFB: case X86ISD::PSHUFD: case X86ISD::PSHUFHW: case X86ISD::PSHUFLW: case X86ISD::MOVSS: case X86ISD::MOVSD: case X86ISD::VPERMILPI: case X86ISD::VPERM2X128: case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget); case ISD::FMA: return PerformFMACombine(N, DAG, Subtarget); case X86ISD::BLENDI: return PerformBLENDICombine(N, DAG); case ISD::MGATHER: case ISD::MSCATTER: return PerformGatherScatterCombine(N, DAG); } return SDValue(); } /// isTypeDesirableForOp - Return true if the target has native support for /// the specified value type and it is 'desirable' to use the type for the /// given node type. e.g. On x86 i16 is legal, but undesirable since i16 /// instruction encodings are longer and some i16 instructions are slow. bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const { if (!isTypeLegal(VT)) return false; if (VT != MVT::i16) return true; switch (Opc) { default: return true; case ISD::LOAD: case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: case ISD::SHL: case ISD::SRL: case ISD::SUB: case ISD::ADD: case ISD::MUL: case ISD::AND: case ISD::OR: case ISD::XOR: return false; } } /// IsDesirableToPromoteOp - This method query the target whether it is /// beneficial for dag combiner to promote the specified node. If true, it /// should return the desired promotion type by reference. bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const { EVT VT = Op.getValueType(); if (VT != MVT::i16) return false; bool Promote = false; bool Commute = false; switch (Op.getOpcode()) { default: break; case ISD::LOAD: { LoadSDNode *LD = cast<LoadSDNode>(Op); // If the non-extending load has a single use and it's not live out, then it // might be folded. if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&& Op.hasOneUse()*/) { for (SDNode::use_iterator UI = Op.getNode()->use_begin(), UE = Op.getNode()->use_end(); UI != UE; ++UI) { // The only case where we'd want to promote LOAD (rather then it being // promoted as an operand is when it's only use is liveout. if (UI->getOpcode() != ISD::CopyToReg) return false; } } Promote = true; break; } case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: Promote = true; break; case ISD::SHL: case ISD::SRL: { SDValue N0 = Op.getOperand(0); // Look out for (store (shl (load), x)). if (MayFoldLoad(N0) && MayFoldIntoStore(Op)) return false; Promote = true; break; } case ISD::ADD: case ISD::MUL: case ISD::AND: case ISD::OR: case ISD::XOR: Commute = true; // fallthrough case ISD::SUB: { SDValue N0 = Op.getOperand(0); SDValue N1 = Op.getOperand(1); if (!Commute && MayFoldLoad(N1)) return false; // Avoid disabling potential load folding opportunities. if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op))) return false; if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op))) return false; Promote = true; } } PVT = MVT::i32; return Promote; } //===----------------------------------------------------------------------===// // X86 Inline Assembly Support //===----------------------------------------------------------------------===// // Helper to match a string separated by whitespace. static bool matchAsm(StringRef S, ArrayRef<const char *> Pieces) { S = S.substr(S.find_first_not_of(" \t")); // Skip leading whitespace. for (StringRef Piece : Pieces) { if (!S.startswith(Piece)) // Check if the piece matches. return false; S = S.substr(Piece.size()); StringRef::size_type Pos = S.find_first_not_of(" \t"); if (Pos == 0) // We matched a prefix. return false; S = S.substr(Pos); } return S.empty(); } static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) { if (AsmPieces.size() == 3 || AsmPieces.size() == 4) { if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") && std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") && std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) { if (AsmPieces.size() == 3) return true; else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}")) return true; } } return false; } bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const { InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue()); std::string AsmStr = IA->getAsmString(); IntegerType *Ty = dyn_cast<IntegerType>(CI->getType()); if (!Ty || Ty->getBitWidth() % 16 != 0) return false; // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a" SmallVector<StringRef, 4> AsmPieces; SplitString(AsmStr, AsmPieces, ";\n"); switch (AsmPieces.size()) { default: return false; case 1: // FIXME: this should verify that we are targeting a 486 or better. If not, // we will turn this bswap into something that will be lowered to logical // ops instead of emitting the bswap asm. For now, we don't support 486 or // lower so don't worry about this. // bswap $0 if (matchAsm(AsmPieces[0], {"bswap", "$0"}) || matchAsm(AsmPieces[0], {"bswapl", "$0"}) || matchAsm(AsmPieces[0], {"bswapq", "$0"}) || matchAsm(AsmPieces[0], {"bswap", "${0:q}"}) || matchAsm(AsmPieces[0], {"bswapl", "${0:q}"}) || matchAsm(AsmPieces[0], {"bswapq", "${0:q}"})) { // No need to check constraints, nothing other than the equivalent of // "=r,0" would be valid here. return IntrinsicLowering::LowerToByteSwap(CI); } // rorw $$8, ${0:w} --> llvm.bswap.i16 if (CI->getType()->isIntegerTy(16) && IA->getConstraintString().compare(0, 5, "=r,0,") == 0 && (matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) || matchAsm(AsmPieces[0], {"rolw", "$$8,", "${0:w}"}))) { AsmPieces.clear(); StringRef ConstraintsStr = IA->getConstraintString(); SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ","); array_pod_sort(AsmPieces.begin(), AsmPieces.end()); if (clobbersFlagRegisters(AsmPieces)) return IntrinsicLowering::LowerToByteSwap(CI); } break; case 3: if (CI->getType()->isIntegerTy(32) && IA->getConstraintString().compare(0, 5, "=r,0,") == 0 && matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) && matchAsm(AsmPieces[1], {"rorl", "$$16,", "$0"}) && matchAsm(AsmPieces[2], {"rorw", "$$8,", "${0:w}"})) { AsmPieces.clear(); StringRef ConstraintsStr = IA->getConstraintString(); SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ","); array_pod_sort(AsmPieces.begin(), AsmPieces.end()); if (clobbersFlagRegisters(AsmPieces)) return IntrinsicLowering::LowerToByteSwap(CI); } if (CI->getType()->isIntegerTy(64)) { InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); if (Constraints.size() >= 2 && Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" && Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") { // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64 if (matchAsm(AsmPieces[0], {"bswap", "%eax"}) && matchAsm(AsmPieces[1], {"bswap", "%edx"}) && matchAsm(AsmPieces[2], {"xchgl", "%eax,", "%edx"})) return IntrinsicLowering::LowerToByteSwap(CI); } } break; } return false; } /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. X86TargetLowering::ConstraintType X86TargetLowering::getConstraintType(StringRef Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 'R': case 'q': case 'Q': case 'f': case 't': case 'u': case 'y': case 'x': case 'Y': case 'l': return C_RegisterClass; case 'a': case 'b': case 'c': case 'd': case 'S': case 'D': case 'A': return C_Register; case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'G': case 'C': case 'e': case 'Z': return C_Other; default: break; } } return TargetLowering::getConstraintType(Constraint); } /// Examine constraint type and operand type and determine a weight value. /// This object must already have been set up with the operand type /// and the current alternative constraint selected. TargetLowering::ConstraintWeight X86TargetLowering::getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const { ConstraintWeight weight = CW_Invalid; Value *CallOperandVal = info.CallOperandVal; // If we don't have a value, we can't do a match, // but allow it at the lowest weight. if (!CallOperandVal) return CW_Default; Type *type = CallOperandVal->getType(); // Look at the constraint type. switch (*constraint) { default: weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); case 'R': case 'q': case 'Q': case 'a': case 'b': case 'c': case 'd': case 'S': case 'D': case 'A': if (CallOperandVal->getType()->isIntegerTy()) weight = CW_SpecificReg; break; case 'f': case 't': case 'u': if (type->isFloatingPointTy()) weight = CW_SpecificReg; break; case 'y': if (type->isX86_MMXTy() && Subtarget->hasMMX()) weight = CW_SpecificReg; break; case 'x': case 'Y': if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) || ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256())) weight = CW_Register; break; case 'I': if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) { if (C->getZExtValue() <= 31) weight = CW_Constant; } break; case 'J': if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { if (C->getZExtValue() <= 63) weight = CW_Constant; } break; case 'K': if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f)) weight = CW_Constant; } break; case 'L': if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff)) weight = CW_Constant; } break; case 'M': if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { if (C->getZExtValue() <= 3) weight = CW_Constant; } break; case 'N': if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { if (C->getZExtValue() <= 0xff) weight = CW_Constant; } break; case 'G': case 'C': if (isa<ConstantFP>(CallOperandVal)) { weight = CW_Constant; } break; case 'e': if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { if ((C->getSExtValue() >= -0x80000000LL) && (C->getSExtValue() <= 0x7fffffffLL)) weight = CW_Constant; } break; case 'Z': if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { if (C->getZExtValue() <= 0xffffffff) weight = CW_Constant; } break; } return weight; } /// LowerXConstraint - try to replace an X constraint, which matches anything, /// with another that has more specific requirements based on the type of the /// corresponding operand. const char *X86TargetLowering:: LowerXConstraint(EVT ConstraintVT) const { // FP X constraints get lowered to SSE1/2 registers if available, otherwise // 'f' like normal targets. if (ConstraintVT.isFloatingPoint()) { if (Subtarget->hasSSE2()) return "Y"; if (Subtarget->hasSSE1()) return "x"; } return TargetLowering::LowerXConstraint(ConstraintVT); } /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector<SDValue>&Ops, SelectionDAG &DAG) const { SDValue Result; // Only support length 1 constraints for now. if (Constraint.length() > 1) return; char ConstraintLetter = Constraint[0]; switch (ConstraintLetter) { default: break; case 'I': if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { if (C->getZExtValue() <= 31) { Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), Op.getValueType()); break; } } return; case 'J': if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { if (C->getZExtValue() <= 63) { Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), Op.getValueType()); break; } } return; case 'K': if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { if (isInt<8>(C->getSExtValue())) { Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), Op.getValueType()); break; } } return; case 'L': if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { if (C->getZExtValue() == 0xff || C->getZExtValue() == 0xffff || (Subtarget->is64Bit() && C->getZExtValue() == 0xffffffff)) { Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), Op.getValueType()); break; } } return; case 'M': if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { if (C->getZExtValue() <= 3) { Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), Op.getValueType()); break; } } return; case 'N': if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { if (C->getZExtValue() <= 255) { Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), Op.getValueType()); break; } } return; case 'O': if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { if (C->getZExtValue() <= 127) { Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), Op.getValueType()); break; } } return; case 'e': { // 32-bit signed value if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), C->getSExtValue())) { // Widen to 64 bits here to get it sign extended. Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), MVT::i64); break; } // FIXME gcc accepts some relocatable values here too, but only in certain // memory models; it's complicated. } return; } case 'Z': { // 32-bit unsigned value if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), C->getZExtValue())) { Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), Op.getValueType()); break; } } // FIXME gcc accepts some relocatable values here too, but only in certain // memory models; it's complicated. return; } case 'i': { // Literal immediates are always ok. if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) { // Widen to 64 bits here to get it sign extended. Result = DAG.getTargetConstant(CST->getSExtValue(), SDLoc(Op), MVT::i64); break; } // In any sort of PIC mode addresses need to be computed at runtime by // adding in a register or some sort of table lookup. These can't // be used as immediates. if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC()) return; // If we are in non-pic codegen mode, we allow the address of a global (with // an optional displacement) to be used with 'i'. GlobalAddressSDNode *GA = nullptr; int64_t Offset = 0; // Match either (GA), (GA+C), (GA+C1+C2), etc. while (1) { if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) { Offset += GA->getOffset(); break; } else if (Op.getOpcode() == ISD::ADD) { if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { Offset += C->getZExtValue(); Op = Op.getOperand(0); continue; } } else if (Op.getOpcode() == ISD::SUB) { if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { Offset += -C->getZExtValue(); Op = Op.getOperand(0); continue; } } // Otherwise, this isn't something we can handle, reject it. return; } const GlobalValue *GV = GA->getGlobal(); // If we require an extra load to get this address, as in PIC mode, we // can't accept it. if (isGlobalStubReference( Subtarget->ClassifyGlobalReference(GV, DAG.getTarget()))) return; Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), GA->getValueType(0), Offset); break; } } if (Result.getNode()) { Ops.push_back(Result); return; } return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } std::pair<unsigned, const TargetRegisterClass *> X86TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { // First, see if this is a constraint that directly corresponds to an LLVM // register class. if (Constraint.size() == 1) { // GCC Constraint Letters switch (Constraint[0]) { default: break; // TODO: Slight differences here in allocation order and leaving // RIP in the class. Do they matter any more here than they do // in the normal allocation? case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode. if (Subtarget->is64Bit()) { if (VT == MVT::i32 || VT == MVT::f32) return std::make_pair(0U, &X86::GR32RegClass); if (VT == MVT::i16) return std::make_pair(0U, &X86::GR16RegClass); if (VT == MVT::i8 || VT == MVT::i1) return std::make_pair(0U, &X86::GR8RegClass); if (VT == MVT::i64 || VT == MVT::f64) return std::make_pair(0U, &X86::GR64RegClass); break; } // 32-bit fallthrough case 'Q': // Q_REGS if (VT == MVT::i32 || VT == MVT::f32) return std::make_pair(0U, &X86::GR32_ABCDRegClass); if (VT == MVT::i16) return std::make_pair(0U, &X86::GR16_ABCDRegClass); if (VT == MVT::i8 || VT == MVT::i1) return std::make_pair(0U, &X86::GR8_ABCD_LRegClass); if (VT == MVT::i64) return std::make_pair(0U, &X86::GR64_ABCDRegClass); break; case 'r': // GENERAL_REGS case 'l': // INDEX_REGS if (VT == MVT::i8 || VT == MVT::i1) return std::make_pair(0U, &X86::GR8RegClass); if (VT == MVT::i16) return std::make_pair(0U, &X86::GR16RegClass); if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit()) return std::make_pair(0U, &X86::GR32RegClass); return std::make_pair(0U, &X86::GR64RegClass); case 'R': // LEGACY_REGS if (VT == MVT::i8 || VT == MVT::i1) return std::make_pair(0U, &X86::GR8_NOREXRegClass); if (VT == MVT::i16) return std::make_pair(0U, &X86::GR16_NOREXRegClass); if (VT == MVT::i32 || !Subtarget->is64Bit()) return std::make_pair(0U, &X86::GR32_NOREXRegClass); return std::make_pair(0U, &X86::GR64_NOREXRegClass); case 'f': // FP Stack registers. // If SSE is enabled for this VT, use f80 to ensure the isel moves the // value to the correct fpstack register class. if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT)) return std::make_pair(0U, &X86::RFP32RegClass); if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT)) return std::make_pair(0U, &X86::RFP64RegClass); return std::make_pair(0U, &X86::RFP80RegClass); case 'y': // MMX_REGS if MMX allowed. if (!Subtarget->hasMMX()) break; return std::make_pair(0U, &X86::VR64RegClass); case 'Y': // SSE_REGS if SSE2 allowed if (!Subtarget->hasSSE2()) break; // FALL THROUGH. case 'x': // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed if (!Subtarget->hasSSE1()) break; switch (VT.SimpleTy) { default: break; // Scalar SSE types. case MVT::f32: case MVT::i32: return std::make_pair(0U, &X86::FR32RegClass); case MVT::f64: case MVT::i64: return std::make_pair(0U, &X86::FR64RegClass); // TODO: Handle f128 and i128 in FR128RegClass after it is tested well. // Vector types. case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: return std::make_pair(0U, &X86::VR128RegClass); // AVX types. case MVT::v32i8: case MVT::v16i16: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32: case MVT::v4f64: return std::make_pair(0U, &X86::VR256RegClass); case MVT::v8f64: case MVT::v16f32: case MVT::v16i32: case MVT::v8i64: return std::make_pair(0U, &X86::VR512RegClass); } break; } } // Use the default implementation in TargetLowering to convert the register // constraint into a member of a register class. std::pair<unsigned, const TargetRegisterClass*> Res; Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); // Not found as a standard register? if (!Res.second) { // Map st(0) -> st(7) -> ST0 if (Constraint.size() == 7 && Constraint[0] == '{' && tolower(Constraint[1]) == 's' && tolower(Constraint[2]) == 't' && Constraint[3] == '(' && (Constraint[4] >= '0' && Constraint[4] <= '7') && Constraint[5] == ')' && Constraint[6] == '}') { Res.first = X86::FP0+Constraint[4]-'0'; Res.second = &X86::RFP80RegClass; return Res; } // GCC allows "st(0)" to be called just plain "st". if (StringRef("{st}").equals_lower(Constraint)) { Res.first = X86::FP0; Res.second = &X86::RFP80RegClass; return Res; } // flags -> EFLAGS if (StringRef("{flags}").equals_lower(Constraint)) { Res.first = X86::EFLAGS; Res.second = &X86::CCRRegClass; return Res; } // 'A' means EAX + EDX. if (Constraint == "A") { Res.first = X86::EAX; Res.second = &X86::GR32_ADRegClass; return Res; } return Res; } // Otherwise, check to see if this is a register class of the wrong value // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to // turn into {ax},{dx}. // MVT::Other is used to specify clobber names. if (Res.second->hasType(VT) || VT == MVT::Other) return Res; // Correct type already, nothing to do. // Get a matching integer of the correct size. i.e. "ax" with MVT::32 should // return "eax". This should even work for things like getting 64bit integer // registers when given an f64 type. const TargetRegisterClass *Class = Res.second; if (Class == &X86::GR8RegClass || Class == &X86::GR16RegClass || Class == &X86::GR32RegClass || Class == &X86::GR64RegClass) { unsigned Size = VT.getSizeInBits(); MVT::SimpleValueType SimpleTy = Size == 1 || Size == 8 ? MVT::i8 : Size == 16 ? MVT::i16 : Size == 32 ? MVT::i32 : Size == 64 ? MVT::i64 : MVT::Other; unsigned DestReg = getX86SubSuperRegisterOrZero(Res.first, SimpleTy); if (DestReg > 0) { Res.first = DestReg; Res.second = SimpleTy == MVT::i8 ? &X86::GR8RegClass : SimpleTy == MVT::i16 ? &X86::GR16RegClass : SimpleTy == MVT::i32 ? &X86::GR32RegClass : &X86::GR64RegClass; assert(Res.second->contains(Res.first) && "Register in register class"); } else { // No register found/type mismatch. Res.first = 0; Res.second = nullptr; } } else if (Class == &X86::FR32RegClass || Class == &X86::FR64RegClass || Class == &X86::VR128RegClass || Class == &X86::VR256RegClass || Class == &X86::FR32XRegClass || Class == &X86::FR64XRegClass || Class == &X86::VR128XRegClass || Class == &X86::VR256XRegClass || Class == &X86::VR512RegClass) { // Handle references to XMM physical registers that got mapped into the // wrong class. This can happen with constraints like {xmm0} where the // target independent register mapper will just pick the first match it can // find, ignoring the required type. // TODO: Handle f128 and i128 in FR128RegClass after it is tested well. if (VT == MVT::f32 || VT == MVT::i32) Res.second = &X86::FR32RegClass; else if (VT == MVT::f64 || VT == MVT::i64) Res.second = &X86::FR64RegClass; else if (X86::VR128RegClass.hasType(VT)) Res.second = &X86::VR128RegClass; else if (X86::VR256RegClass.hasType(VT)) Res.second = &X86::VR256RegClass; else if (X86::VR512RegClass.hasType(VT)) Res.second = &X86::VR512RegClass; else { // Type mismatch and not a clobber: Return an error; Res.first = 0; Res.second = nullptr; } } return Res; } int X86TargetLowering::getScalingFactorCost(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS) const { // Scaling factors are not free at all. // An indexed folded instruction, i.e., inst (reg1, reg2, scale), // will take 2 allocations in the out of order engine instead of 1 // for plain addressing mode, i.e. inst (reg1). // E.g., // vaddps (%rsi,%drx), %ymm0, %ymm1 // Requires two allocations (one for the load, one for the computation) // whereas: // vaddps (%rsi), %ymm0, %ymm1 // Requires just 1 allocation, i.e., freeing allocations for other operations // and having less micro operations to execute. // // For some X86 architectures, this is even worse because for instance for // stores, the complex addressing mode forces the instruction to use the // "load" ports instead of the dedicated "store" port. // E.g., on Haswell: // vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3. // vmovaps %ymm1, (%r8) can use port 2, 3, or 7. if (isLegalAddressingMode(DL, AM, Ty, AS)) // Scale represents reg2 * scale, thus account for 1 // as soon as we use a second register. return AM.Scale != 0; return -1; } bool X86TargetLowering::isIntDivCheap(EVT VT, AttributeSet Attr) const { // Integer division on x86 is expensive. However, when aggressively optimizing // for code size, we prefer to use a div instruction, as it is usually smaller // than the alternative sequence. // The exception to this is vector division. Since x86 doesn't have vector // integer division, leaving the division as-is is a loss even in terms of // size, because it will have to be scalarized, while the alternative code // sequence can be performed in vector form. bool OptSize = Attr.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize); return OptSize && !VT.isVector(); } void X86TargetLowering::markInRegArguments(SelectionDAG &DAG, TargetLowering::ArgListTy& Args) const { // The MCU psABI requires some arguments to be passed in-register. // For regular calls, the inreg arguments are marked by the front-end. // However, for compiler generated library calls, we have to patch this // up here. if (!Subtarget->isTargetMCU() || !Args.size()) return; unsigned FreeRegs = 3; for (auto &Arg : Args) { // For library functions, we do not expect any fancy types. unsigned Size = DAG.getDataLayout().getTypeSizeInBits(Arg.Ty); unsigned SizeInRegs = (Size + 31) / 32; if (SizeInRegs > 2 || SizeInRegs > FreeRegs) continue; Arg.isInReg = true; FreeRegs -= SizeInRegs; if (!FreeRegs) break; } }