//===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a pass that optimizes call sequences on x86. // Currently, it converts movs of function parameters onto the stack into // pushes. This is beneficial for two main reasons: // 1) The push instruction encoding is much smaller than an esp-relative mov // 2) It is possible to push memory arguments directly. So, if the // the transformation is preformed pre-reg-alloc, it can help relieve // register pressure. // //===----------------------------------------------------------------------===// #include <algorithm> #include "X86.h" #include "X86InstrInfo.h" #include "X86Subtarget.h" #include "X86MachineFunctionInfo.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/IR/Function.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" using namespace llvm; #define DEBUG_TYPE "x86-cf-opt" static cl::opt<bool> NoX86CFOpt("no-x86-call-frame-opt", cl::desc("Avoid optimizing x86 call frames for size"), cl::init(false), cl::Hidden); namespace { class X86CallFrameOptimization : public MachineFunctionPass { public: X86CallFrameOptimization() : MachineFunctionPass(ID) {} bool runOnMachineFunction(MachineFunction &MF) override; private: // Information we know about a particular call site struct CallContext { CallContext() : FrameSetup(nullptr), Call(nullptr), SPCopy(nullptr), ExpectedDist(0), MovVector(4, nullptr), NoStackParams(false), UsePush(false){} // Iterator referring to the frame setup instruction MachineBasicBlock::iterator FrameSetup; // Actual call instruction MachineInstr *Call; // A copy of the stack pointer MachineInstr *SPCopy; // The total displacement of all passed parameters int64_t ExpectedDist; // The sequence of movs used to pass the parameters SmallVector<MachineInstr *, 4> MovVector; // True if this call site has no stack parameters bool NoStackParams; // True of this callsite can use push instructions bool UsePush; }; typedef SmallVector<CallContext, 8> ContextVector; bool isLegal(MachineFunction &MF); bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap); void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I, CallContext &Context); bool adjustCallSequence(MachineFunction &MF, const CallContext &Context); MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup, unsigned Reg); enum InstClassification { Convert, Skip, Exit }; InstClassification classifyInstruction(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs); const char *getPassName() const override { return "X86 Optimize Call Frame"; } const TargetInstrInfo *TII; const X86FrameLowering *TFL; const X86Subtarget *STI; const MachineRegisterInfo *MRI; static char ID; }; char X86CallFrameOptimization::ID = 0; } FunctionPass *llvm::createX86CallFrameOptimization() { return new X86CallFrameOptimization(); } // This checks whether the transformation is legal. // Also returns false in cases where it's potentially legal, but // we don't even want to try. bool X86CallFrameOptimization::isLegal(MachineFunction &MF) { if (NoX86CFOpt.getValue()) return false; // We currently only support call sequences where *all* parameters. // are passed on the stack. // No point in running this in 64-bit mode, since some arguments are // passed in-register in all common calling conventions, so the pattern // we're looking for will never match. if (STI->is64Bit()) return false; // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset // in the compact unwind encoding that Darwin uses. So, bail if there // is a danger of that being generated. if (STI->isTargetDarwin() && (!MF.getMMI().getLandingPads().empty() || (MF.getFunction()->needsUnwindTableEntry() && !TFL->hasFP(MF)))) return false; // You would expect straight-line code between call-frame setup and // call-frame destroy. You would be wrong. There are circumstances (e.g. // CMOV_GR8 expansion of a select that feeds a function call!) where we can // end up with the setup and the destroy in different basic blocks. // This is bad, and breaks SP adjustment. // So, check that all of the frames in the function are closed inside // the same block, and, for good measure, that there are no nested frames. unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); for (MachineBasicBlock &BB : MF) { bool InsideFrameSequence = false; for (MachineInstr &MI : BB) { if (MI.getOpcode() == FrameSetupOpcode) { if (InsideFrameSequence) return false; InsideFrameSequence = true; } else if (MI.getOpcode() == FrameDestroyOpcode) { if (!InsideFrameSequence) return false; InsideFrameSequence = false; } } if (InsideFrameSequence) return false; } return true; } // Check whether this trasnformation is profitable for a particular // function - in terms of code size. bool X86CallFrameOptimization::isProfitable(MachineFunction &MF, ContextVector &CallSeqVector) { // This transformation is always a win when we do not expect to have // a reserved call frame. Under other circumstances, it may be either // a win or a loss, and requires a heuristic. bool CannotReserveFrame = MF.getFrameInfo()->hasVarSizedObjects(); if (CannotReserveFrame) return true; // Don't do this when not optimizing for size. if (!MF.getFunction()->optForSize()) return false; unsigned StackAlign = TFL->getStackAlignment(); int64_t Advantage = 0; for (auto CC : CallSeqVector) { // Call sites where no parameters are passed on the stack // do not affect the cost, since there needs to be no // stack adjustment. if (CC.NoStackParams) continue; if (!CC.UsePush) { // If we don't use pushes for a particular call site, // we pay for not having a reserved call frame with an // additional sub/add esp pair. The cost is ~3 bytes per instruction, // depending on the size of the constant. // TODO: Callee-pop functions should have a smaller penalty, because // an add is needed even with a reserved call frame. Advantage -= 6; } else { // We can use pushes. First, account for the fixed costs. // We'll need a add after the call. Advantage -= 3; // If we have to realign the stack, we'll also need and sub before if (CC.ExpectedDist % StackAlign) Advantage -= 3; // Now, for each push, we save ~3 bytes. For small constants, we actually, // save more (up to 5 bytes), but 3 should be a good approximation. Advantage += (CC.ExpectedDist / 4) * 3; } } return (Advantage >= 0); } bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) { STI = &MF.getSubtarget<X86Subtarget>(); TII = STI->getInstrInfo(); TFL = STI->getFrameLowering(); MRI = &MF.getRegInfo(); if (!isLegal(MF)) return false; unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); bool Changed = false; ContextVector CallSeqVector; for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB) for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) if (I->getOpcode() == FrameSetupOpcode) { CallContext Context; collectCallInfo(MF, *BB, I, Context); CallSeqVector.push_back(Context); } if (!isProfitable(MF, CallSeqVector)) return false; for (auto CC : CallSeqVector) if (CC.UsePush) Changed |= adjustCallSequence(MF, CC); return Changed; } X86CallFrameOptimization::InstClassification X86CallFrameOptimization::classifyInstruction( MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) { if (MI == MBB.end()) return Exit; // The instructions we actually care about are movs onto the stack int Opcode = MI->getOpcode(); if (Opcode == X86::MOV32mi || Opcode == X86::MOV32mr) return Convert; // Not all calling conventions have only stack MOVs between the stack // adjust and the call. // We want to tolerate other instructions, to cover more cases. // In particular: // a) PCrel calls, where we expect an additional COPY of the basereg. // b) Passing frame-index addresses. // c) Calling conventions that have inreg parameters. These generate // both copies and movs into registers. // To avoid creating lots of special cases, allow any instruction // that does not write into memory, does not def or use the stack // pointer, and does not def any register that was used by a preceding // push. // (Reading from memory is allowed, even if referenced through a // frame index, since these will get adjusted properly in PEI) // The reason for the last condition is that the pushes can't replace // the movs in place, because the order must be reversed. // So if we have a MOV32mr that uses EDX, then an instruction that defs // EDX, and then the call, after the transformation the push will use // the modified version of EDX, and not the original one. // Since we are still in SSA form at this point, we only need to // make sure we don't clobber any *physical* registers that were // used by an earlier mov that will become a push. if (MI->isCall() || MI->mayStore()) return Exit; for (const MachineOperand &MO : MI->operands()) { if (!MO.isReg()) continue; unsigned int Reg = MO.getReg(); if (!RegInfo.isPhysicalRegister(Reg)) continue; if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister())) return Exit; if (MO.isDef()) { for (unsigned int U : UsedRegs) if (RegInfo.regsOverlap(Reg, U)) return Exit; } } return Skip; } void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I, CallContext &Context) { // Check that this particular call sequence is amenable to the // transformation. const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>( STI->getRegisterInfo()); unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); // We expect to enter this at the beginning of a call sequence assert(I->getOpcode() == TII->getCallFrameSetupOpcode()); MachineBasicBlock::iterator FrameSetup = I++; Context.FrameSetup = FrameSetup; // How much do we adjust the stack? This puts an upper bound on // the number of parameters actually passed on it. unsigned int MaxAdjust = FrameSetup->getOperand(0).getImm() / 4; // A zero adjustment means no stack parameters if (!MaxAdjust) { Context.NoStackParams = true; return; } // For globals in PIC mode, we can have some LEAs here. // Ignore them, they don't bother us. // TODO: Extend this to something that covers more cases. while (I->getOpcode() == X86::LEA32r) ++I; // We expect a copy instruction here. // TODO: The copy instruction is a lowering artifact. // We should also support a copy-less version, where the stack // pointer is used directly. if (!I->isCopy() || !I->getOperand(0).isReg()) return; Context.SPCopy = I++; unsigned StackPtr = Context.SPCopy->getOperand(0).getReg(); // Scan the call setup sequence for the pattern we're looking for. // We only handle a simple case - a sequence of MOV32mi or MOV32mr // instructions, that push a sequence of 32-bit values onto the stack, with // no gaps between them. if (MaxAdjust > 4) Context.MovVector.resize(MaxAdjust, nullptr); InstClassification Classification; DenseSet<unsigned int> UsedRegs; while ((Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs)) != Exit) { if (Classification == Skip) { ++I; continue; } // We know the instruction is a MOV32mi/MOV32mr. // We only want movs of the form: // movl imm/r32, k(%esp) // If we run into something else, bail. // Note that AddrBaseReg may, counter to its name, not be a register, // but rather a frame index. // TODO: Support the fi case. This should probably work now that we // have the infrastructure to track the stack pointer within a call // sequence. if (!I->getOperand(X86::AddrBaseReg).isReg() || (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) || !I->getOperand(X86::AddrScaleAmt).isImm() || (I->getOperand(X86::AddrScaleAmt).getImm() != 1) || (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) || (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) || !I->getOperand(X86::AddrDisp).isImm()) return; int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm(); assert(StackDisp >= 0 && "Negative stack displacement when passing parameters"); // We really don't want to consider the unaligned case. if (StackDisp % 4) return; StackDisp /= 4; assert((size_t)StackDisp < Context.MovVector.size() && "Function call has more parameters than the stack is adjusted for."); // If the same stack slot is being filled twice, something's fishy. if (Context.MovVector[StackDisp] != nullptr) return; Context.MovVector[StackDisp] = I; for (const MachineOperand &MO : I->uses()) { if (!MO.isReg()) continue; unsigned int Reg = MO.getReg(); if (RegInfo.isPhysicalRegister(Reg)) UsedRegs.insert(Reg); } ++I; } // We now expect the end of the sequence. If we stopped early, // or reached the end of the block without finding a call, bail. if (I == MBB.end() || !I->isCall()) return; Context.Call = I; if ((++I)->getOpcode() != FrameDestroyOpcode) return; // Now, go through the vector, and see that we don't have any gaps, // but only a series of 32-bit MOVs. auto MMI = Context.MovVector.begin(), MME = Context.MovVector.end(); for (; MMI != MME; ++MMI, Context.ExpectedDist += 4) if (*MMI == nullptr) break; // If the call had no parameters, do nothing if (MMI == Context.MovVector.begin()) return; // We are either at the last parameter, or a gap. // Make sure it's not a gap for (; MMI != MME; ++MMI) if (*MMI != nullptr) return; Context.UsePush = true; return; } bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF, const CallContext &Context) { // Ok, we can in fact do the transformation for this call. // Do not remove the FrameSetup instruction, but adjust the parameters. // PEI will end up finalizing the handling of this. MachineBasicBlock::iterator FrameSetup = Context.FrameSetup; MachineBasicBlock &MBB = *(FrameSetup->getParent()); FrameSetup->getOperand(1).setImm(Context.ExpectedDist); DebugLoc DL = FrameSetup->getDebugLoc(); // Now, iterate through the vector in reverse order, and replace the movs // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to // replace uses. for (int Idx = (Context.ExpectedDist / 4) - 1; Idx >= 0; --Idx) { MachineBasicBlock::iterator MOV = *Context.MovVector[Idx]; MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands); MachineBasicBlock::iterator Push = nullptr; if (MOV->getOpcode() == X86::MOV32mi) { unsigned PushOpcode = X86::PUSHi32; // If the operand is a small (8-bit) immediate, we can use a // PUSH instruction with a shorter encoding. // Note that isImm() may fail even though this is a MOVmi, because // the operand can also be a symbol. if (PushOp.isImm()) { int64_t Val = PushOp.getImm(); if (isInt<8>(Val)) PushOpcode = X86::PUSH32i8; } Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)) .addOperand(PushOp); } else { unsigned int Reg = PushOp.getReg(); // If PUSHrmm is not slow on this target, try to fold the source of the // push into the instruction. bool SlowPUSHrmm = STI->isAtom() || STI->isSLM(); // Check that this is legal to fold. Right now, we're extremely // conservative about that. MachineInstr *DefMov = nullptr; if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) { Push = BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32rmm)); unsigned NumOps = DefMov->getDesc().getNumOperands(); for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) Push->addOperand(DefMov->getOperand(i)); DefMov->eraseFromParent(); } else { Push = BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32r)) .addReg(Reg) .getInstr(); } } // For debugging, when using SP-based CFA, we need to adjust the CFA // offset after each push. // TODO: This is needed only if we require precise CFA. if (!TFL->hasFP(MF)) TFL->BuildCFI(MBB, std::next(Push), DL, MCCFIInstruction::createAdjustCfaOffset(nullptr, 4)); MBB.erase(MOV); } // The stack-pointer copy is no longer used in the call sequences. // There should not be any other users, but we can't commit to that, so: if (MRI->use_empty(Context.SPCopy->getOperand(0).getReg())) Context.SPCopy->eraseFromParent(); // Once we've done this, we need to make sure PEI doesn't assume a reserved // frame. X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); FuncInfo->setHasPushSequences(true); return true; } MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush( MachineBasicBlock::iterator FrameSetup, unsigned Reg) { // Do an extremely restricted form of load folding. // ISel will often create patterns like: // movl 4(%edi), %eax // movl 8(%edi), %ecx // movl 12(%edi), %edx // movl %edx, 8(%esp) // movl %ecx, 4(%esp) // movl %eax, (%esp) // call // Get rid of those with prejudice. if (!TargetRegisterInfo::isVirtualRegister(Reg)) return nullptr; // Make sure this is the only use of Reg. if (!MRI->hasOneNonDBGUse(Reg)) return nullptr; MachineBasicBlock::iterator DefMI = MRI->getVRegDef(Reg); // Make sure the def is a MOV from memory. // If the def is an another block, give up. if (DefMI->getOpcode() != X86::MOV32rm || DefMI->getParent() != FrameSetup->getParent()) return nullptr; // Make sure we don't have any instructions between DefMI and the // push that make folding the load illegal. for (auto I = DefMI; I != FrameSetup; ++I) if (I->isLoadFoldBarrier()) return nullptr; return DefMI; }