//===-- X86ShuffleDecode.cpp - X86 shuffle decode logic -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Define several functions to decode x86 specific shuffle semantics into a // generic vector mask. // //===----------------------------------------------------------------------===// #include "X86ShuffleDecode.h" #include "llvm/IR/Constants.h" #include "llvm/CodeGen/MachineValueType.h" //===----------------------------------------------------------------------===// // Vector Mask Decoding //===----------------------------------------------------------------------===// namespace llvm { void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { // Defaults the copying the dest value. ShuffleMask.push_back(0); ShuffleMask.push_back(1); ShuffleMask.push_back(2); ShuffleMask.push_back(3); // Decode the immediate. unsigned ZMask = Imm & 15; unsigned CountD = (Imm >> 4) & 3; unsigned CountS = (Imm >> 6) & 3; // CountS selects which input element to use. unsigned InVal = 4 + CountS; // CountD specifies which element of destination to update. ShuffleMask[CountD] = InVal; // ZMask zaps values, potentially overriding the CountD elt. if (ZMask & 1) ShuffleMask[0] = SM_SentinelZero; if (ZMask & 2) ShuffleMask[1] = SM_SentinelZero; if (ZMask & 4) ShuffleMask[2] = SM_SentinelZero; if (ZMask & 8) ShuffleMask[3] = SM_SentinelZero; } // <3,1> or <6,7,2,3> void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) { for (unsigned i = NElts / 2; i != NElts; ++i) ShuffleMask.push_back(NElts + i); for (unsigned i = NElts / 2; i != NElts; ++i) ShuffleMask.push_back(i); } // <0,2> or <0,1,4,5> void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) { for (unsigned i = 0; i != NElts / 2; ++i) ShuffleMask.push_back(i); for (unsigned i = 0; i != NElts / 2; ++i) ShuffleMask.push_back(NElts + i); } void DecodeMOVSLDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { unsigned NumElts = VT.getVectorNumElements(); for (int i = 0, e = NumElts / 2; i < e; ++i) { ShuffleMask.push_back(2 * i); ShuffleMask.push_back(2 * i); } } void DecodeMOVSHDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { unsigned NumElts = VT.getVectorNumElements(); for (int i = 0, e = NumElts / 2; i < e; ++i) { ShuffleMask.push_back(2 * i + 1); ShuffleMask.push_back(2 * i + 1); } } void DecodeMOVDDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { unsigned VectorSizeInBits = VT.getSizeInBits(); unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); unsigned NumElts = VT.getVectorNumElements(); unsigned NumLanes = VectorSizeInBits / 128; unsigned NumLaneElts = NumElts / NumLanes; unsigned NumLaneSubElts = 64 / ScalarSizeInBits; for (unsigned l = 0; l < NumElts; l += NumLaneElts) for (unsigned i = 0; i < NumLaneElts; i += NumLaneSubElts) for (unsigned s = 0; s != NumLaneSubElts; s++) ShuffleMask.push_back(l + s); } void DecodePSLLDQMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { unsigned VectorSizeInBits = VT.getSizeInBits(); unsigned NumElts = VectorSizeInBits / 8; unsigned NumLanes = VectorSizeInBits / 128; unsigned NumLaneElts = NumElts / NumLanes; for (unsigned l = 0; l < NumElts; l += NumLaneElts) for (unsigned i = 0; i < NumLaneElts; ++i) { int M = SM_SentinelZero; if (i >= Imm) M = i - Imm + l; ShuffleMask.push_back(M); } } void DecodePSRLDQMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { unsigned VectorSizeInBits = VT.getSizeInBits(); unsigned NumElts = VectorSizeInBits / 8; unsigned NumLanes = VectorSizeInBits / 128; unsigned NumLaneElts = NumElts / NumLanes; for (unsigned l = 0; l < NumElts; l += NumLaneElts) for (unsigned i = 0; i < NumLaneElts; ++i) { unsigned Base = i + Imm; int M = Base + l; if (Base >= NumLaneElts) M = SM_SentinelZero; ShuffleMask.push_back(M); } } void DecodePALIGNRMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { unsigned NumElts = VT.getVectorNumElements(); unsigned Offset = Imm * (VT.getVectorElementType().getSizeInBits() / 8); unsigned NumLanes = VT.getSizeInBits() / 128; unsigned NumLaneElts = NumElts / NumLanes; for (unsigned l = 0; l != NumElts; l += NumLaneElts) { for (unsigned i = 0; i != NumLaneElts; ++i) { unsigned Base = i + Offset; // if i+offset is out of this lane then we actually need the other source if (Base >= NumLaneElts) Base += NumElts - NumLaneElts; ShuffleMask.push_back(Base + l); } } } /// DecodePSHUFMask - This decodes the shuffle masks for pshufw, pshufd, and vpermilp*. /// VT indicates the type of the vector allowing it to handle different /// datatypes and vector widths. void DecodePSHUFMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { unsigned NumElts = VT.getVectorNumElements(); unsigned NumLanes = VT.getSizeInBits() / 128; if (NumLanes == 0) NumLanes = 1; // Handle MMX unsigned NumLaneElts = NumElts / NumLanes; unsigned NewImm = Imm; for (unsigned l = 0; l != NumElts; l += NumLaneElts) { for (unsigned i = 0; i != NumLaneElts; ++i) { ShuffleMask.push_back(NewImm % NumLaneElts + l); NewImm /= NumLaneElts; } if (NumLaneElts == 4) NewImm = Imm; // reload imm } } void DecodePSHUFHWMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { unsigned NumElts = VT.getVectorNumElements(); for (unsigned l = 0; l != NumElts; l += 8) { unsigned NewImm = Imm; for (unsigned i = 0, e = 4; i != e; ++i) { ShuffleMask.push_back(l + i); } for (unsigned i = 4, e = 8; i != e; ++i) { ShuffleMask.push_back(l + 4 + (NewImm & 3)); NewImm >>= 2; } } } void DecodePSHUFLWMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { unsigned NumElts = VT.getVectorNumElements(); for (unsigned l = 0; l != NumElts; l += 8) { unsigned NewImm = Imm; for (unsigned i = 0, e = 4; i != e; ++i) { ShuffleMask.push_back(l + (NewImm & 3)); NewImm >>= 2; } for (unsigned i = 4, e = 8; i != e; ++i) { ShuffleMask.push_back(l + i); } } } void DecodePSWAPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { unsigned NumElts = VT.getVectorNumElements(); unsigned NumHalfElts = NumElts / 2; for (unsigned l = 0; l != NumHalfElts; ++l) ShuffleMask.push_back(l + NumHalfElts); for (unsigned h = 0; h != NumHalfElts; ++h) ShuffleMask.push_back(h); } /// DecodeSHUFPMask - This decodes the shuffle masks for shufp*. VT indicates /// the type of the vector allowing it to handle different datatypes and vector /// widths. void DecodeSHUFPMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { unsigned NumElts = VT.getVectorNumElements(); unsigned NumLanes = VT.getSizeInBits() / 128; unsigned NumLaneElts = NumElts / NumLanes; unsigned NewImm = Imm; for (unsigned l = 0; l != NumElts; l += NumLaneElts) { // each half of a lane comes from different source for (unsigned s = 0; s != NumElts * 2; s += NumElts) { for (unsigned i = 0; i != NumLaneElts / 2; ++i) { ShuffleMask.push_back(NewImm % NumLaneElts + s + l); NewImm /= NumLaneElts; } } if (NumLaneElts == 4) NewImm = Imm; // reload imm } } /// DecodeUNPCKHMask - This decodes the shuffle masks for unpckhps/unpckhpd /// and punpckh*. VT indicates the type of the vector allowing it to handle /// different datatypes and vector widths. void DecodeUNPCKHMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { unsigned NumElts = VT.getVectorNumElements(); // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate // independently on 128-bit lanes. unsigned NumLanes = VT.getSizeInBits() / 128; if (NumLanes == 0) NumLanes = 1; // Handle MMX unsigned NumLaneElts = NumElts / NumLanes; for (unsigned l = 0; l != NumElts; l += NumLaneElts) { for (unsigned i = l + NumLaneElts / 2, e = l + NumLaneElts; i != e; ++i) { ShuffleMask.push_back(i); // Reads from dest/src1 ShuffleMask.push_back(i + NumElts); // Reads from src/src2 } } } /// DecodeUNPCKLMask - This decodes the shuffle masks for unpcklps/unpcklpd /// and punpckl*. VT indicates the type of the vector allowing it to handle /// different datatypes and vector widths. void DecodeUNPCKLMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { unsigned NumElts = VT.getVectorNumElements(); // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate // independently on 128-bit lanes. unsigned NumLanes = VT.getSizeInBits() / 128; if (NumLanes == 0 ) NumLanes = 1; // Handle MMX unsigned NumLaneElts = NumElts / NumLanes; for (unsigned l = 0; l != NumElts; l += NumLaneElts) { for (unsigned i = l, e = l + NumLaneElts / 2; i != e; ++i) { ShuffleMask.push_back(i); // Reads from dest/src1 ShuffleMask.push_back(i + NumElts); // Reads from src/src2 } } } /// \brief Decode a shuffle packed values at 128-bit granularity /// (SHUFF32x4/SHUFF64x2/SHUFI32x4/SHUFI64x2) /// immediate mask into a shuffle mask. void decodeVSHUF64x2FamilyMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { unsigned NumLanes = VT.getSizeInBits() / 128; unsigned NumElementsInLane = 128 / VT.getScalarSizeInBits(); unsigned ControlBitsMask = NumLanes - 1; unsigned NumControlBits = NumLanes / 2; for (unsigned l = 0; l != NumLanes; ++l) { unsigned LaneMask = (Imm >> (l * NumControlBits)) & ControlBitsMask; // We actually need the other source. if (l >= NumLanes / 2) LaneMask += NumLanes; for (unsigned i = 0; i != NumElementsInLane; ++i) ShuffleMask.push_back(LaneMask * NumElementsInLane + i); } } void DecodeVPERM2X128Mask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { unsigned HalfSize = VT.getVectorNumElements() / 2; for (unsigned l = 0; l != 2; ++l) { unsigned HalfMask = Imm >> (l * 4); unsigned HalfBegin = (HalfMask & 0x3) * HalfSize; for (unsigned i = HalfBegin, e = HalfBegin + HalfSize; i != e; ++i) ShuffleMask.push_back(HalfMask & 8 ? SM_SentinelZero : (int)i); } } void DecodePSHUFBMask(const Constant *C, SmallVectorImpl<int> &ShuffleMask) { Type *MaskTy = C->getType(); // It is not an error for the PSHUFB mask to not be a vector of i8 because the // constant pool uniques constants by their bit representation. // e.g. the following take up the same space in the constant pool: // i128 -170141183420855150465331762880109871104 // // <2 x i64> <i64 -9223372034707292160, i64 -9223372034707292160> // // <4 x i32> <i32 -2147483648, i32 -2147483648, // i32 -2147483648, i32 -2147483648> unsigned MaskTySize = MaskTy->getPrimitiveSizeInBits(); if (MaskTySize != 128 && MaskTySize != 256) // FIXME: Add support for AVX-512. return; // This is a straightforward byte vector. if (MaskTy->isVectorTy() && MaskTy->getVectorElementType()->isIntegerTy(8)) { int NumElements = MaskTy->getVectorNumElements(); ShuffleMask.reserve(NumElements); for (int i = 0; i < NumElements; ++i) { // For AVX vectors with 32 bytes the base of the shuffle is the 16-byte // lane of the vector we're inside. int Base = i < 16 ? 0 : 16; Constant *COp = C->getAggregateElement(i); if (!COp) { ShuffleMask.clear(); return; } else if (isa<UndefValue>(COp)) { ShuffleMask.push_back(SM_SentinelUndef); continue; } uint64_t Element = cast<ConstantInt>(COp)->getZExtValue(); // If the high bit (7) of the byte is set, the element is zeroed. if (Element & (1 << 7)) ShuffleMask.push_back(SM_SentinelZero); else { // Only the least significant 4 bits of the byte are used. int Index = Base + (Element & 0xf); ShuffleMask.push_back(Index); } } } // TODO: Handle funny-looking vectors too. } void DecodePSHUFBMask(ArrayRef<uint64_t> RawMask, SmallVectorImpl<int> &ShuffleMask) { for (int i = 0, e = RawMask.size(); i < e; ++i) { uint64_t M = RawMask[i]; if (M == (uint64_t)SM_SentinelUndef) { ShuffleMask.push_back(M); continue; } // For AVX vectors with 32 bytes the base of the shuffle is the half of // the vector we're inside. int Base = i < 16 ? 0 : 16; // If the high bit (7) of the byte is set, the element is zeroed. if (M & (1 << 7)) ShuffleMask.push_back(SM_SentinelZero); else { // Only the least significant 4 bits of the byte are used. int Index = Base + (M & 0xf); ShuffleMask.push_back(Index); } } } void DecodeBLENDMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { int ElementBits = VT.getScalarSizeInBits(); int NumElements = VT.getVectorNumElements(); for (int i = 0; i < NumElements; ++i) { // If there are more than 8 elements in the vector, then any immediate blend // mask applies to each 128-bit lane. There can never be more than // 8 elements in a 128-bit lane with an immediate blend. int Bit = NumElements > 8 ? i % (128 / ElementBits) : i; assert(Bit < 8 && "Immediate blends only operate over 8 elements at a time!"); ShuffleMask.push_back(((Imm >> Bit) & 1) ? NumElements + i : i); } } /// DecodeVPERMMask - this decodes the shuffle masks for VPERMQ/VPERMPD. /// No VT provided since it only works on 256-bit, 4 element vectors. void DecodeVPERMMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { for (unsigned i = 0; i != 4; ++i) { ShuffleMask.push_back((Imm >> (2 * i)) & 3); } } void DecodeVPERMILPMask(const Constant *C, SmallVectorImpl<int> &ShuffleMask) { Type *MaskTy = C->getType(); assert(MaskTy->isVectorTy() && "Expected a vector constant mask!"); assert(MaskTy->getVectorElementType()->isIntegerTy() && "Expected integer constant mask elements!"); int ElementBits = MaskTy->getScalarSizeInBits(); int NumElements = MaskTy->getVectorNumElements(); assert((NumElements == 2 || NumElements == 4 || NumElements == 8) && "Unexpected number of vector elements."); ShuffleMask.reserve(NumElements); if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) { assert((unsigned)NumElements == CDS->getNumElements() && "Constant mask has a different number of elements!"); for (int i = 0; i < NumElements; ++i) { int Base = (i * ElementBits / 128) * (128 / ElementBits); uint64_t Element = CDS->getElementAsInteger(i); // Only the least significant 2 bits of the integer are used. int Index = Base + (Element & 0x3); ShuffleMask.push_back(Index); } } else if (auto *CV = dyn_cast<ConstantVector>(C)) { assert((unsigned)NumElements == C->getNumOperands() && "Constant mask has a different number of elements!"); for (int i = 0; i < NumElements; ++i) { int Base = (i * ElementBits / 128) * (128 / ElementBits); Constant *COp = CV->getOperand(i); if (isa<UndefValue>(COp)) { ShuffleMask.push_back(SM_SentinelUndef); continue; } uint64_t Element = cast<ConstantInt>(COp)->getZExtValue(); // Only the least significant 2 bits of the integer are used. int Index = Base + (Element & 0x3); ShuffleMask.push_back(Index); } } } void DecodeZeroExtendMask(MVT SrcVT, MVT DstVT, SmallVectorImpl<int> &Mask) { unsigned NumDstElts = DstVT.getVectorNumElements(); unsigned SrcScalarBits = SrcVT.getScalarSizeInBits(); unsigned DstScalarBits = DstVT.getScalarSizeInBits(); unsigned Scale = DstScalarBits / SrcScalarBits; assert(SrcScalarBits < DstScalarBits && "Expected zero extension mask to increase scalar size"); assert(SrcVT.getVectorNumElements() >= NumDstElts && "Too many zero extension lanes"); for (unsigned i = 0; i != NumDstElts; i++) { Mask.push_back(i); for (unsigned j = 1; j != Scale; j++) Mask.push_back(SM_SentinelZero); } } void DecodeZeroMoveLowMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { unsigned NumElts = VT.getVectorNumElements(); ShuffleMask.push_back(0); for (unsigned i = 1; i < NumElts; i++) ShuffleMask.push_back(SM_SentinelZero); } void DecodeScalarMoveMask(MVT VT, bool IsLoad, SmallVectorImpl<int> &Mask) { // First element comes from the first element of second source. // Remaining elements: Load zero extends / Move copies from first source. unsigned NumElts = VT.getVectorNumElements(); Mask.push_back(NumElts); for (unsigned i = 1; i < NumElts; i++) Mask.push_back(IsLoad ? static_cast<int>(SM_SentinelZero) : i); } void DecodeEXTRQIMask(int Len, int Idx, SmallVectorImpl<int> &ShuffleMask) { // Only the bottom 6 bits are valid for each immediate. Len &= 0x3F; Idx &= 0x3F; // We can only decode this bit extraction instruction as a shuffle if both the // length and index work with whole bytes. if (0 != (Len % 8) || 0 != (Idx % 8)) return; // A length of zero is equivalent to a bit length of 64. if (Len == 0) Len = 64; // If the length + index exceeds the bottom 64 bits the result is undefined. if ((Len + Idx) > 64) { ShuffleMask.append(16, SM_SentinelUndef); return; } // Convert index and index to work with bytes. Len /= 8; Idx /= 8; // EXTRQ: Extract Len bytes starting from Idx. Zero pad the remaining bytes // of the lower 64-bits. The upper 64-bits are undefined. for (int i = 0; i != Len; ++i) ShuffleMask.push_back(i + Idx); for (int i = Len; i != 8; ++i) ShuffleMask.push_back(SM_SentinelZero); for (int i = 8; i != 16; ++i) ShuffleMask.push_back(SM_SentinelUndef); } void DecodeINSERTQIMask(int Len, int Idx, SmallVectorImpl<int> &ShuffleMask) { // Only the bottom 6 bits are valid for each immediate. Len &= 0x3F; Idx &= 0x3F; // We can only decode this bit insertion instruction as a shuffle if both the // length and index work with whole bytes. if (0 != (Len % 8) || 0 != (Idx % 8)) return; // A length of zero is equivalent to a bit length of 64. if (Len == 0) Len = 64; // If the length + index exceeds the bottom 64 bits the result is undefined. if ((Len + Idx) > 64) { ShuffleMask.append(16, SM_SentinelUndef); return; } // Convert index and index to work with bytes. Len /= 8; Idx /= 8; // INSERTQ: Extract lowest Len bytes from lower half of second source and // insert over first source starting at Idx byte. The upper 64-bits are // undefined. for (int i = 0; i != Idx; ++i) ShuffleMask.push_back(i); for (int i = 0; i != Len; ++i) ShuffleMask.push_back(i + 16); for (int i = Idx + Len; i != 8; ++i) ShuffleMask.push_back(i); for (int i = 8; i != 16; ++i) ShuffleMask.push_back(SM_SentinelUndef); } void DecodeVPERMVMask(ArrayRef<uint64_t> RawMask, SmallVectorImpl<int> &ShuffleMask) { for (int i = 0, e = RawMask.size(); i < e; ++i) { uint64_t M = RawMask[i]; ShuffleMask.push_back((int)M); } } void DecodeVPERMV3Mask(ArrayRef<uint64_t> RawMask, SmallVectorImpl<int> &ShuffleMask) { for (int i = 0, e = RawMask.size(); i < e; ++i) { uint64_t M = RawMask[i]; ShuffleMask.push_back((int)M); } } void DecodeVPERMVMask(const Constant *C, MVT VT, SmallVectorImpl<int> &ShuffleMask) { Type *MaskTy = C->getType(); if (MaskTy->isVectorTy()) { unsigned NumElements = MaskTy->getVectorNumElements(); if (NumElements == VT.getVectorNumElements()) { for (unsigned i = 0; i < NumElements; ++i) { Constant *COp = C->getAggregateElement(i); if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) { ShuffleMask.clear(); return; } if (isa<UndefValue>(COp)) ShuffleMask.push_back(SM_SentinelUndef); else { uint64_t Element = cast<ConstantInt>(COp)->getZExtValue(); Element &= (1 << NumElements) - 1; ShuffleMask.push_back(Element); } } } return; } // Scalar value; just broadcast it if (!isa<ConstantInt>(C)) return; uint64_t Element = cast<ConstantInt>(C)->getZExtValue(); int NumElements = VT.getVectorNumElements(); Element &= (1 << NumElements) - 1; for (int i = 0; i < NumElements; ++i) ShuffleMask.push_back(Element); } void DecodeVPERMV3Mask(const Constant *C, MVT VT, SmallVectorImpl<int> &ShuffleMask) { Type *MaskTy = C->getType(); unsigned NumElements = MaskTy->getVectorNumElements(); if (NumElements == VT.getVectorNumElements()) { for (unsigned i = 0; i < NumElements; ++i) { Constant *COp = C->getAggregateElement(i); if (!COp) { ShuffleMask.clear(); return; } if (isa<UndefValue>(COp)) ShuffleMask.push_back(SM_SentinelUndef); else { uint64_t Element = cast<ConstantInt>(COp)->getZExtValue(); Element &= (1 << NumElements*2) - 1; ShuffleMask.push_back(Element); } } } } } // llvm namespace