//===-- X86IntelInstPrinter.cpp - Intel assembly instruction printing -----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file includes code for rendering MCInst instances as Intel-style // assembly. // //===----------------------------------------------------------------------===// #include "X86IntelInstPrinter.h" #include "MCTargetDesc/X86BaseInfo.h" #include "MCTargetDesc/X86MCTargetDesc.h" #include "X86InstComments.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FormattedStream.h" #include <cctype> using namespace llvm; #define DEBUG_TYPE "asm-printer" #include "X86GenAsmWriter1.inc" void X86IntelInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const { OS << getRegisterName(RegNo); } void X86IntelInstPrinter::printInst(const MCInst *MI, raw_ostream &OS, StringRef Annot, const MCSubtargetInfo &STI) { const MCInstrDesc &Desc = MII.get(MI->getOpcode()); uint64_t TSFlags = Desc.TSFlags; if (TSFlags & X86II::LOCK) OS << "\tlock\n"; printInstruction(MI, OS); // Next always print the annotation. printAnnotation(OS, Annot); // If verbose assembly is enabled, we can print some informative comments. if (CommentStream) EmitAnyX86InstComments(MI, *CommentStream, getRegisterName); } void X86IntelInstPrinter::printSSEAVXCC(const MCInst *MI, unsigned Op, raw_ostream &O) { int64_t Imm = MI->getOperand(Op).getImm(); switch (Imm) { default: llvm_unreachable("Invalid avxcc argument!"); case 0: O << "eq"; break; case 1: O << "lt"; break; case 2: O << "le"; break; case 3: O << "unord"; break; case 4: O << "neq"; break; case 5: O << "nlt"; break; case 6: O << "nle"; break; case 7: O << "ord"; break; case 8: O << "eq_uq"; break; case 9: O << "nge"; break; case 0xa: O << "ngt"; break; case 0xb: O << "false"; break; case 0xc: O << "neq_oq"; break; case 0xd: O << "ge"; break; case 0xe: O << "gt"; break; case 0xf: O << "true"; break; case 0x10: O << "eq_os"; break; case 0x11: O << "lt_oq"; break; case 0x12: O << "le_oq"; break; case 0x13: O << "unord_s"; break; case 0x14: O << "neq_us"; break; case 0x15: O << "nlt_uq"; break; case 0x16: O << "nle_uq"; break; case 0x17: O << "ord_s"; break; case 0x18: O << "eq_us"; break; case 0x19: O << "nge_uq"; break; case 0x1a: O << "ngt_uq"; break; case 0x1b: O << "false_os"; break; case 0x1c: O << "neq_os"; break; case 0x1d: O << "ge_oq"; break; case 0x1e: O << "gt_oq"; break; case 0x1f: O << "true_us"; break; } } void X86IntelInstPrinter::printXOPCC(const MCInst *MI, unsigned Op, raw_ostream &O) { int64_t Imm = MI->getOperand(Op).getImm(); switch (Imm) { default: llvm_unreachable("Invalid xopcc argument!"); case 0: O << "lt"; break; case 1: O << "le"; break; case 2: O << "gt"; break; case 3: O << "ge"; break; case 4: O << "eq"; break; case 5: O << "neq"; break; case 6: O << "false"; break; case 7: O << "true"; break; } } void X86IntelInstPrinter::printRoundingControl(const MCInst *MI, unsigned Op, raw_ostream &O) { int64_t Imm = MI->getOperand(Op).getImm() & 0x3; switch (Imm) { case 0: O << "{rn-sae}"; break; case 1: O << "{rd-sae}"; break; case 2: O << "{ru-sae}"; break; case 3: O << "{rz-sae}"; break; } } /// printPCRelImm - This is used to print an immediate value that ends up /// being encoded as a pc-relative value. void X86IntelInstPrinter::printPCRelImm(const MCInst *MI, unsigned OpNo, raw_ostream &O) { const MCOperand &Op = MI->getOperand(OpNo); if (Op.isImm()) O << formatImm(Op.getImm()); else { assert(Op.isExpr() && "unknown pcrel immediate operand"); // If a symbolic branch target was added as a constant expression then print // that address in hex. const MCConstantExpr *BranchTarget = dyn_cast<MCConstantExpr>(Op.getExpr()); int64_t Address; if (BranchTarget && BranchTarget->evaluateAsAbsolute(Address)) { O << formatHex((uint64_t)Address); } else { // Otherwise, just print the expression. Op.getExpr()->print(O, &MAI); } } } void X86IntelInstPrinter::printOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) { const MCOperand &Op = MI->getOperand(OpNo); if (Op.isReg()) { printRegName(O, Op.getReg()); } else if (Op.isImm()) { O << formatImm((int64_t)Op.getImm()); } else { assert(Op.isExpr() && "unknown operand kind in printOperand"); Op.getExpr()->print(O, &MAI); } } void X86IntelInstPrinter::printMemReference(const MCInst *MI, unsigned Op, raw_ostream &O) { const MCOperand &BaseReg = MI->getOperand(Op+X86::AddrBaseReg); unsigned ScaleVal = MI->getOperand(Op+X86::AddrScaleAmt).getImm(); const MCOperand &IndexReg = MI->getOperand(Op+X86::AddrIndexReg); const MCOperand &DispSpec = MI->getOperand(Op+X86::AddrDisp); const MCOperand &SegReg = MI->getOperand(Op+X86::AddrSegmentReg); // If this has a segment register, print it. if (SegReg.getReg()) { printOperand(MI, Op+X86::AddrSegmentReg, O); O << ':'; } O << '['; bool NeedPlus = false; if (BaseReg.getReg()) { printOperand(MI, Op+X86::AddrBaseReg, O); NeedPlus = true; } if (IndexReg.getReg()) { if (NeedPlus) O << " + "; if (ScaleVal != 1) O << ScaleVal << '*'; printOperand(MI, Op+X86::AddrIndexReg, O); NeedPlus = true; } if (!DispSpec.isImm()) { if (NeedPlus) O << " + "; assert(DispSpec.isExpr() && "non-immediate displacement for LEA?"); DispSpec.getExpr()->print(O, &MAI); } else { int64_t DispVal = DispSpec.getImm(); if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg())) { if (NeedPlus) { if (DispVal > 0) O << " + "; else { O << " - "; DispVal = -DispVal; } } O << formatImm(DispVal); } } O << ']'; } void X86IntelInstPrinter::printSrcIdx(const MCInst *MI, unsigned Op, raw_ostream &O) { const MCOperand &SegReg = MI->getOperand(Op+1); // If this has a segment register, print it. if (SegReg.getReg()) { printOperand(MI, Op+1, O); O << ':'; } O << '['; printOperand(MI, Op, O); O << ']'; } void X86IntelInstPrinter::printDstIdx(const MCInst *MI, unsigned Op, raw_ostream &O) { // DI accesses are always ES-based. O << "es:["; printOperand(MI, Op, O); O << ']'; } void X86IntelInstPrinter::printMemOffset(const MCInst *MI, unsigned Op, raw_ostream &O) { const MCOperand &DispSpec = MI->getOperand(Op); const MCOperand &SegReg = MI->getOperand(Op+1); // If this has a segment register, print it. if (SegReg.getReg()) { printOperand(MI, Op+1, O); O << ':'; } O << '['; if (DispSpec.isImm()) { O << formatImm(DispSpec.getImm()); } else { assert(DispSpec.isExpr() && "non-immediate displacement?"); DispSpec.getExpr()->print(O, &MAI); } O << ']'; } void X86IntelInstPrinter::printU8Imm(const MCInst *MI, unsigned Op, raw_ostream &O) { O << formatImm(MI->getOperand(Op).getImm() & 0xff); }