//==- SystemZRegisterInfo.td - SystemZ register definitions -*- tablegen -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Class definitions. //===----------------------------------------------------------------------===// class SystemZReg<string n> : Register<n> { let Namespace = "SystemZ"; } class SystemZRegWithSubregs<string n, list<Register> subregs> : RegisterWithSubRegs<n, subregs> { let Namespace = "SystemZ"; } let Namespace = "SystemZ" in { def subreg_l32 : SubRegIndex<32, 0>; // Also acts as subreg_ll32. def subreg_h32 : SubRegIndex<32, 32>; // Also acts as subreg_lh32. def subreg_l64 : SubRegIndex<64, 0>; def subreg_h64 : SubRegIndex<64, 64>; def subreg_r32 : SubRegIndex<32, 32>; // Reinterpret a wider reg as 32 bits. def subreg_r64 : SubRegIndex<64, 64>; // Reinterpret a wider reg as 64 bits. def subreg_hh32 : ComposedSubRegIndex<subreg_h64, subreg_h32>; def subreg_hl32 : ComposedSubRegIndex<subreg_h64, subreg_l32>; def subreg_hr32 : ComposedSubRegIndex<subreg_h64, subreg_r32>; } // Define a register class that contains values of types TYPES and an // associated operand called NAME. SIZE is the size and alignment // of the registers and REGLIST is the list of individual registers. multiclass SystemZRegClass<string name, list<ValueType> types, int size, dag regList> { def AsmOperand : AsmOperandClass { let Name = name; let ParserMethod = "parse"##name; let RenderMethod = "addRegOperands"; } def Bit : RegisterClass<"SystemZ", types, size, regList> { let Size = size; } def "" : RegisterOperand<!cast<RegisterClass>(name##"Bit")> { let ParserMatchClass = !cast<AsmOperandClass>(name##"AsmOperand"); } } //===----------------------------------------------------------------------===// // General-purpose registers //===----------------------------------------------------------------------===// // Lower 32 bits of one of the 16 64-bit general-purpose registers class GPR32<bits<16> num, string n> : SystemZReg<n> { let HWEncoding = num; } // One of the 16 64-bit general-purpose registers. class GPR64<bits<16> num, string n, GPR32 low, GPR32 high> : SystemZRegWithSubregs<n, [low, high]> { let HWEncoding = num; let SubRegIndices = [subreg_l32, subreg_h32]; } // 8 even-odd pairs of GPR64s. class GPR128<bits<16> num, string n, GPR64 low, GPR64 high> : SystemZRegWithSubregs<n, [low, high]> { let HWEncoding = num; let SubRegIndices = [subreg_l64, subreg_h64]; } // General-purpose registers foreach I = 0-15 in { def R#I#L : GPR32<I, "r"#I>; def R#I#H : GPR32<I, "r"#I>; def R#I#D : GPR64<I, "r"#I, !cast<GPR32>("R"#I#"L"), !cast<GPR32>("R"#I#"H")>, DwarfRegNum<[I]>; } foreach I = [0, 2, 4, 6, 8, 10, 12, 14] in { def R#I#Q : GPR128<I, "r"#I, !cast<GPR64>("R"#!add(I, 1)#"D"), !cast<GPR64>("R"#I#"D")>; } /// Allocate the callee-saved R6-R13 backwards. That way they can be saved /// together with R14 and R15 in one prolog instruction. defm GR32 : SystemZRegClass<"GR32", [i32], 32, (add (sequence "R%uL", 0, 5), (sequence "R%uL", 15, 6))>; defm GRH32 : SystemZRegClass<"GRH32", [i32], 32, (add (sequence "R%uH", 0, 5), (sequence "R%uH", 15, 6))>; defm GR64 : SystemZRegClass<"GR64", [i64], 64, (add (sequence "R%uD", 0, 5), (sequence "R%uD", 15, 6))>; // Combine the low and high GR32s into a single class. This can only be // used for virtual registers if the high-word facility is available. defm GRX32 : SystemZRegClass<"GRX32", [i32], 32, (add (sequence "R%uL", 0, 5), (sequence "R%uH", 0, 5), R15L, R15H, R14L, R14H, R13L, R13H, R12L, R12H, R11L, R11H, R10L, R10H, R9L, R9H, R8L, R8H, R7L, R7H, R6L, R6H)>; // The architecture doesn't really have any i128 support, so model the // register pairs as untyped instead. defm GR128 : SystemZRegClass<"GR128", [untyped], 128, (add R0Q, R2Q, R4Q, R12Q, R10Q, R8Q, R6Q, R14Q)>; // Base and index registers. Everything except R0, which in an address // context evaluates as 0. defm ADDR32 : SystemZRegClass<"ADDR32", [i32], 32, (sub GR32Bit, R0L)>; defm ADDR64 : SystemZRegClass<"ADDR64", [i64], 64, (sub GR64Bit, R0D)>; // Not used directly, but needs to exist for ADDR32 and ADDR64 subregs // of a GR128. defm ADDR128 : SystemZRegClass<"ADDR128", [untyped], 128, (sub GR128Bit, R0Q)>; //===----------------------------------------------------------------------===// // Floating-point registers //===----------------------------------------------------------------------===// // Maps FPR register numbers to their DWARF encoding. class DwarfMapping<int id> { int Id = id; } def F0Dwarf : DwarfMapping<16>; def F2Dwarf : DwarfMapping<17>; def F4Dwarf : DwarfMapping<18>; def F6Dwarf : DwarfMapping<19>; def F1Dwarf : DwarfMapping<20>; def F3Dwarf : DwarfMapping<21>; def F5Dwarf : DwarfMapping<22>; def F7Dwarf : DwarfMapping<23>; def F8Dwarf : DwarfMapping<24>; def F10Dwarf : DwarfMapping<25>; def F12Dwarf : DwarfMapping<26>; def F14Dwarf : DwarfMapping<27>; def F9Dwarf : DwarfMapping<28>; def F11Dwarf : DwarfMapping<29>; def F13Dwarf : DwarfMapping<30>; def F15Dwarf : DwarfMapping<31>; def F16Dwarf : DwarfMapping<68>; def F18Dwarf : DwarfMapping<69>; def F20Dwarf : DwarfMapping<70>; def F22Dwarf : DwarfMapping<71>; def F17Dwarf : DwarfMapping<72>; def F19Dwarf : DwarfMapping<73>; def F21Dwarf : DwarfMapping<74>; def F23Dwarf : DwarfMapping<75>; def F24Dwarf : DwarfMapping<76>; def F26Dwarf : DwarfMapping<77>; def F28Dwarf : DwarfMapping<78>; def F30Dwarf : DwarfMapping<79>; def F25Dwarf : DwarfMapping<80>; def F27Dwarf : DwarfMapping<81>; def F29Dwarf : DwarfMapping<82>; def F31Dwarf : DwarfMapping<83>; // Upper 32 bits of one of the floating-point registers class FPR32<bits<16> num, string n> : SystemZReg<n> { let HWEncoding = num; } // One of the floating-point registers. class FPR64<bits<16> num, string n, FPR32 high> : SystemZRegWithSubregs<n, [high]> { let HWEncoding = num; let SubRegIndices = [subreg_r32]; } // 8 pairs of FPR64s, with a one-register gap inbetween. class FPR128<bits<16> num, string n, FPR64 low, FPR64 high> : SystemZRegWithSubregs<n, [low, high]> { let HWEncoding = num; let SubRegIndices = [subreg_l64, subreg_h64]; } // Floating-point registers. Registers 16-31 require the vector facility. foreach I = 0-15 in { def F#I#S : FPR32<I, "f"#I>; def F#I#D : FPR64<I, "f"#I, !cast<FPR32>("F"#I#"S")>, DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>; } foreach I = 16-31 in { def F#I#S : FPR32<I, "v"#I>; def F#I#D : FPR64<I, "v"#I, !cast<FPR32>("F"#I#"S")>, DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>; } foreach I = [0, 1, 4, 5, 8, 9, 12, 13] in { def F#I#Q : FPR128<I, "f"#I, !cast<FPR64>("F"#!add(I, 2)#"D"), !cast<FPR64>("F"#I#"D")>; } // There's no store-multiple instruction for FPRs, so we're not fussy // about the order in which call-saved registers are allocated. defm FP32 : SystemZRegClass<"FP32", [f32], 32, (sequence "F%uS", 0, 15)>; defm FP64 : SystemZRegClass<"FP64", [f64], 64, (sequence "F%uD", 0, 15)>; defm FP128 : SystemZRegClass<"FP128", [f128], 128, (add F0Q, F1Q, F4Q, F5Q, F8Q, F9Q, F12Q, F13Q)>; //===----------------------------------------------------------------------===// // Vector registers //===----------------------------------------------------------------------===// // A full 128-bit vector register, with an FPR64 as its high part. class VR128<bits<16> num, string n, FPR64 high> : SystemZRegWithSubregs<n, [high]> { let HWEncoding = num; let SubRegIndices = [subreg_r64]; } // Full vector registers. foreach I = 0-31 in { def V#I : VR128<I, "v"#I, !cast<FPR64>("F"#I#"D")>, DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>; } // Class used to store 32-bit values in the first element of a vector // register. f32 scalars are used for the WLEDB and WLDEB instructions. defm VR32 : SystemZRegClass<"VR32", [f32, v4i8, v2i16], 32, (add (sequence "F%uS", 0, 7), (sequence "F%uS", 16, 31), (sequence "F%uS", 8, 15))>; // Class used to store 64-bit values in the upper half of a vector register. // The vector facility also includes scalar f64 instructions that operate // on the full vector register set. defm VR64 : SystemZRegClass<"VR64", [f64, v8i8, v4i16, v2i32, v2f32], 64, (add (sequence "F%uD", 0, 7), (sequence "F%uD", 16, 31), (sequence "F%uD", 8, 15))>; // The subset of vector registers that can be used for floating-point // operations too. defm VF128 : SystemZRegClass<"VF128", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128, (sequence "V%u", 0, 15)>; // All vector registers. defm VR128 : SystemZRegClass<"VR128", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128, (add (sequence "V%u", 0, 7), (sequence "V%u", 16, 31), (sequence "V%u", 8, 15))>; // Attaches a ValueType to a register operand, to make the instruction // definitions easier. class TypedReg<ValueType vtin, RegisterOperand opin> { ValueType vt = vtin; RegisterOperand op = opin; } def v32eb : TypedReg<f32, VR32>; def v64g : TypedReg<i64, VR64>; def v64db : TypedReg<f64, VR64>; def v128b : TypedReg<v16i8, VR128>; def v128h : TypedReg<v8i16, VR128>; def v128f : TypedReg<v4i32, VR128>; def v128g : TypedReg<v2i64, VR128>; def v128q : TypedReg<v16i8, VR128>; def v128eb : TypedReg<v4f32, VR128>; def v128db : TypedReg<v2f64, VR128>; def v128any : TypedReg<untyped, VR128>; //===----------------------------------------------------------------------===// // Other registers //===----------------------------------------------------------------------===// // The 2-bit condition code field of the PSW. Every register named in an // inline asm needs a class associated with it. def CC : SystemZReg<"cc">; let isAllocatable = 0 in def CCRegs : RegisterClass<"SystemZ", [i32], 32, (add CC)>;