//===-- PowerPCSubtarget.cpp - PPC Subtarget Information ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the PPC specific subclass of TargetSubtargetInfo. // //===----------------------------------------------------------------------===// #include "PPCSubtarget.h" #include "PPC.h" #include "PPCRegisterInfo.h" #include "PPCTargetMachine.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineScheduler.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Target/TargetMachine.h" #include <cstdlib> using namespace llvm; #define DEBUG_TYPE "ppc-subtarget" #define GET_SUBTARGETINFO_TARGET_DESC #define GET_SUBTARGETINFO_CTOR #include "PPCGenSubtargetInfo.inc" static cl::opt<bool> UseSubRegLiveness("ppc-track-subreg-liveness", cl::desc("Enable subregister liveness tracking for PPC"), cl::Hidden); static cl::opt<bool> QPXStackUnaligned("qpx-stack-unaligned", cl::desc("Even when QPX is enabled the stack is not 32-byte aligned"), cl::Hidden); PPCSubtarget &PPCSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) { initializeEnvironment(); initSubtargetFeatures(CPU, FS); return *this; } PPCSubtarget::PPCSubtarget(const Triple &TT, const std::string &CPU, const std::string &FS, const PPCTargetMachine &TM) : PPCGenSubtargetInfo(TT, CPU, FS), TargetTriple(TT), IsPPC64(TargetTriple.getArch() == Triple::ppc64 || TargetTriple.getArch() == Triple::ppc64le), TM(TM), FrameLowering(initializeSubtargetDependencies(CPU, FS)), InstrInfo(*this), TLInfo(TM, *this) {} void PPCSubtarget::initializeEnvironment() { StackAlignment = 16; DarwinDirective = PPC::DIR_NONE; HasMFOCRF = false; Has64BitSupport = false; Use64BitRegs = false; UseCRBits = false; UseSoftFloat = false; HasAltivec = false; HasSPE = false; HasQPX = false; HasVSX = false; HasP8Vector = false; HasP8Altivec = false; HasP8Crypto = false; HasFCPSGN = false; HasFSQRT = false; HasFRE = false; HasFRES = false; HasFRSQRTE = false; HasFRSQRTES = false; HasRecipPrec = false; HasSTFIWX = false; HasLFIWAX = false; HasFPRND = false; HasFPCVT = false; HasISEL = false; HasPOPCNTD = false; HasBPERMD = false; HasExtDiv = false; HasCMPB = false; HasLDBRX = false; IsBookE = false; HasOnlyMSYNC = false; IsPPC4xx = false; IsPPC6xx = false; IsE500 = false; FeatureMFTB = false; DeprecatedDST = false; HasLazyResolverStubs = false; HasICBT = false; HasInvariantFunctionDescriptors = false; HasPartwordAtomics = false; HasDirectMove = false; IsQPXStackUnaligned = false; HasHTM = false; HasFusion = false; HasFloat128 = false; } void PPCSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) { // Determine default and user specified characteristics std::string CPUName = CPU; if (CPUName.empty()) { // If cross-compiling with -march=ppc64le without -mcpu if (TargetTriple.getArch() == Triple::ppc64le) CPUName = "ppc64le"; else CPUName = "generic"; } // Initialize scheduling itinerary for the specified CPU. InstrItins = getInstrItineraryForCPU(CPUName); // Parse features string. ParseSubtargetFeatures(CPUName, FS); // If the user requested use of 64-bit regs, but the cpu selected doesn't // support it, ignore. if (IsPPC64 && has64BitSupport()) Use64BitRegs = true; // Set up darwin-specific properties. if (isDarwin()) HasLazyResolverStubs = true; // QPX requires a 32-byte aligned stack. Note that we need to do this if // we're compiling for a BG/Q system regardless of whether or not QPX // is enabled because external functions will assume this alignment. IsQPXStackUnaligned = QPXStackUnaligned; StackAlignment = getPlatformStackAlignment(); // Determine endianness. // FIXME: Part of the TargetMachine. IsLittleEndian = (TargetTriple.getArch() == Triple::ppc64le); } /// hasLazyResolverStub - Return true if accesses to the specified global have /// to go through a dyld lazy resolution stub. This means that an extra load /// is required to get the address of the global. bool PPCSubtarget::hasLazyResolverStub(const GlobalValue *GV) const { // We never have stubs if HasLazyResolverStubs=false or if in static mode. if (!HasLazyResolverStubs || TM.getRelocationModel() == Reloc::Static) return false; bool isDecl = GV->isDeclaration(); if (GV->hasHiddenVisibility() && !isDecl && !GV->hasCommonLinkage()) return false; return GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() || GV->hasCommonLinkage() || isDecl; } // Embedded cores need aggressive scheduling (and some others also benefit). static bool needsAggressiveScheduling(unsigned Directive) { switch (Directive) { default: return false; case PPC::DIR_440: case PPC::DIR_A2: case PPC::DIR_E500mc: case PPC::DIR_E5500: case PPC::DIR_PWR7: case PPC::DIR_PWR8: return true; } } bool PPCSubtarget::enableMachineScheduler() const { // Enable MI scheduling for the embedded cores. // FIXME: Enable this for all cores (some additional modeling // may be necessary). return needsAggressiveScheduling(DarwinDirective); } // This overrides the PostRAScheduler bit in the SchedModel for each CPU. bool PPCSubtarget::enablePostRAScheduler() const { return true; } PPCGenSubtargetInfo::AntiDepBreakMode PPCSubtarget::getAntiDepBreakMode() const { return TargetSubtargetInfo::ANTIDEP_ALL; } void PPCSubtarget::getCriticalPathRCs(RegClassVector &CriticalPathRCs) const { CriticalPathRCs.clear(); CriticalPathRCs.push_back(isPPC64() ? &PPC::G8RCRegClass : &PPC::GPRCRegClass); } void PPCSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy, MachineInstr *begin, MachineInstr *end, unsigned NumRegionInstrs) const { if (needsAggressiveScheduling(DarwinDirective)) { Policy.OnlyTopDown = false; Policy.OnlyBottomUp = false; } // Spilling is generally expensive on all PPC cores, so always enable // register-pressure tracking. Policy.ShouldTrackPressure = true; } bool PPCSubtarget::useAA() const { // Use AA during code generation for the embedded cores. return needsAggressiveScheduling(DarwinDirective); } bool PPCSubtarget::enableSubRegLiveness() const { return UseSubRegLiveness; } unsigned char PPCSubtarget::classifyGlobalReference( const GlobalValue *GV) const { // Note that currently we don't generate non-pic references. // If a caller wants that, this will have to be updated. // Large code model always uses the TOC even for local symbols. if (TM.getCodeModel() == CodeModel::Large) return PPCII::MO_PIC_FLAG | PPCII::MO_NLP_FLAG; unsigned char flags = PPCII::MO_PIC_FLAG; // Only if the relocation mode is PIC do we have to worry about // interposition. In all other cases we can use a slightly looser standard to // decide how to access the symbol. if (TM.getRelocationModel() == Reloc::PIC_) { // If it's local, or it's non-default, it can't be interposed. if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility()) { flags |= PPCII::MO_NLP_FLAG; } return flags; } if (GV->isStrongDefinitionForLinker()) return flags; return flags | PPCII::MO_NLP_FLAG; } bool PPCSubtarget::isELFv2ABI() const { return TM.isELFv2ABI(); } bool PPCSubtarget::isPPC64() const { return TM.isPPC64(); }