//===- PPCBoolRetToInt.cpp - Convert bool literals to i32 if they are returned ==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements converting i1 values to i32 if they could be more // profitably allocated as GPRs rather than CRs. This pass will become totally // unnecessary if Register Bank Allocation and Global Instruction Selection ever // go upstream. // // Presently, the pass converts i1 Constants, and Arguments to i32 if the // transitive closure of their uses includes only PHINodes, CallInsts, and // ReturnInsts. The rational is that arguments are generally passed and returned // in GPRs rather than CRs, so casting them to i32 at the LLVM IR level will // actually save casts at the Machine Instruction level. // // It might be useful to expand this pass to add bit-wise operations to the list // of safe transitive closure types. Also, we miss some opportunities when LLVM // represents logical AND and OR operations with control flow rather than data // flow. For example by lowering the expression: return (A && B && C) // // as: return A ? true : B && C. // // There's code in SimplifyCFG that code be used to turn control flow in data // flow using SelectInsts. Selects are slow on some architectures (P7/P8), so // this probably isn't good in general, but for the special case of i1, the // Selects could be further lowered to bit operations that are fast everywhere. // //===----------------------------------------------------------------------===// #include "PPC.h" #include "llvm/Transforms/Scalar.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Pass.h" using namespace llvm; namespace { #define DEBUG_TYPE "bool-ret-to-int" STATISTIC(NumBoolRetPromotion, "Number of times a bool feeding a RetInst was promoted to an int"); STATISTIC(NumBoolCallPromotion, "Number of times a bool feeding a CallInst was promoted to an int"); STATISTIC(NumBoolToIntPromotion, "Total number of times a bool was promoted to an int"); class PPCBoolRetToInt : public FunctionPass { static SmallPtrSet<Value *, 8> findAllDefs(Value *V) { SmallPtrSet<Value *, 8> Defs; SmallVector<Value *, 8> WorkList; WorkList.push_back(V); Defs.insert(V); while (!WorkList.empty()) { Value *Curr = WorkList.back(); WorkList.pop_back(); if (User *CurrUser = dyn_cast<User>(Curr)) for (auto &Op : CurrUser->operands()) if (Defs.insert(Op).second) WorkList.push_back(Op); } return Defs; } // Translate a i1 value to an equivalent i32 value: static Value *translate(Value *V) { Type *Int32Ty = Type::getInt32Ty(V->getContext()); if (Constant *C = dyn_cast<Constant>(V)) return ConstantExpr::getZExt(C, Int32Ty); if (PHINode *P = dyn_cast<PHINode>(V)) { // Temporarily set the operands to 0. We'll fix this later in // runOnUse. Value *Zero = Constant::getNullValue(Int32Ty); PHINode *Q = PHINode::Create(Int32Ty, P->getNumIncomingValues(), P->getName(), P); for (unsigned i = 0; i < P->getNumOperands(); ++i) Q->addIncoming(Zero, P->getIncomingBlock(i)); return Q; } Argument *A = dyn_cast<Argument>(V); Instruction *I = dyn_cast<Instruction>(V); assert((A || I) && "Unknown value type"); auto InstPt = A ? &*A->getParent()->getEntryBlock().begin() : I->getNextNode(); return new ZExtInst(V, Int32Ty, "", InstPt); } typedef SmallPtrSet<const PHINode *, 8> PHINodeSet; // A PHINode is Promotable if: // 1. Its type is i1 AND // 2. All of its uses are ReturnInt, CallInst, PHINode, or DbgInfoIntrinsic // AND // 3. All of its operands are Constant or Argument or // CallInst or PHINode AND // 4. All of its PHINode uses are Promotable AND // 5. All of its PHINode operands are Promotable static PHINodeSet getPromotablePHINodes(const Function &F) { PHINodeSet Promotable; // Condition 1 for (auto &BB : F) for (auto &I : BB) if (const PHINode *P = dyn_cast<PHINode>(&I)) if (P->getType()->isIntegerTy(1)) Promotable.insert(P); SmallVector<const PHINode *, 8> ToRemove; for (const auto &P : Promotable) { // Condition 2 and 3 auto IsValidUser = [] (const Value *V) -> bool { return isa<ReturnInst>(V) || isa<CallInst>(V) || isa<PHINode>(V) || isa<DbgInfoIntrinsic>(V); }; auto IsValidOperand = [] (const Value *V) -> bool { return isa<Constant>(V) || isa<Argument>(V) || isa<CallInst>(V) || isa<PHINode>(V); }; const auto &Users = P->users(); const auto &Operands = P->operands(); if (!std::all_of(Users.begin(), Users.end(), IsValidUser) || !std::all_of(Operands.begin(), Operands.end(), IsValidOperand)) ToRemove.push_back(P); } // Iterate to convergence auto IsPromotable = [&Promotable] (const Value *V) -> bool { const PHINode *Phi = dyn_cast<PHINode>(V); return !Phi || Promotable.count(Phi); }; while (!ToRemove.empty()) { for (auto &User : ToRemove) Promotable.erase(User); ToRemove.clear(); for (const auto &P : Promotable) { // Condition 4 and 5 const auto &Users = P->users(); const auto &Operands = P->operands(); if (!std::all_of(Users.begin(), Users.end(), IsPromotable) || !std::all_of(Operands.begin(), Operands.end(), IsPromotable)) ToRemove.push_back(P); } } return Promotable; } typedef DenseMap<Value *, Value *> B2IMap; public: static char ID; PPCBoolRetToInt() : FunctionPass(ID) { initializePPCBoolRetToIntPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) { PHINodeSet PromotablePHINodes = getPromotablePHINodes(F); B2IMap Bool2IntMap; bool Changed = false; for (auto &BB : F) { for (auto &I : BB) { if (ReturnInst *R = dyn_cast<ReturnInst>(&I)) if (F.getReturnType()->isIntegerTy(1)) Changed |= runOnUse(R->getOperandUse(0), PromotablePHINodes, Bool2IntMap); if (CallInst *CI = dyn_cast<CallInst>(&I)) for (auto &U : CI->operands()) if (U->getType()->isIntegerTy(1)) Changed |= runOnUse(U, PromotablePHINodes, Bool2IntMap); } } return Changed; } static bool runOnUse(Use &U, const PHINodeSet &PromotablePHINodes, B2IMap &BoolToIntMap) { auto Defs = findAllDefs(U); // If the values are all Constants or Arguments, don't bother if (!std::any_of(Defs.begin(), Defs.end(), isa<Instruction, Value *>)) return false; // Presently, we only know how to handle PHINode, Constant, and Arguments. // Potentially, bitwise operations (AND, OR, XOR, NOT) and sign extension // could also be handled in the future. for (const auto &V : Defs) if (!isa<PHINode>(V) && !isa<Constant>(V) && !isa<Argument>(V)) return false; for (const auto &V : Defs) if (const PHINode *P = dyn_cast<PHINode>(V)) if (!PromotablePHINodes.count(P)) return false; if (isa<ReturnInst>(U.getUser())) ++NumBoolRetPromotion; if (isa<CallInst>(U.getUser())) ++NumBoolCallPromotion; ++NumBoolToIntPromotion; for (const auto &V : Defs) if (!BoolToIntMap.count(V)) BoolToIntMap[V] = translate(V); // Replace the operands of the translated instructions. There were set to // zero in the translate function. for (auto &Pair : BoolToIntMap) { User *First = dyn_cast<User>(Pair.first); User *Second = dyn_cast<User>(Pair.second); assert((!First || Second) && "translated from user to non-user!?"); if (First) for (unsigned i = 0; i < First->getNumOperands(); ++i) Second->setOperand(i, BoolToIntMap[First->getOperand(i)]); } Value *IntRetVal = BoolToIntMap[U]; Type *Int1Ty = Type::getInt1Ty(U->getContext()); Instruction *I = cast<Instruction>(U.getUser()); Value *BackToBool = new TruncInst(IntRetVal, Int1Ty, "backToBool", I); U.set(BackToBool); return true; } void getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved<DominatorTreeWrapperPass>(); FunctionPass::getAnalysisUsage(AU); } }; } char PPCBoolRetToInt::ID = 0; INITIALIZE_PASS(PPCBoolRetToInt, "bool-ret-to-int", "Convert i1 constants to i32 if they are returned", false, false) FunctionPass *llvm::createPPCBoolRetToIntPass() { return new PPCBoolRetToInt(); }