//===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Subclass of MipsDAGToDAGISel specialized for mips32/64. // //===----------------------------------------------------------------------===// #include "MipsSEISelDAGToDAG.h" #include "MCTargetDesc/MipsBaseInfo.h" #include "Mips.h" #include "MipsAnalyzeImmediate.h" #include "MipsMachineFunction.h" #include "MipsRegisterInfo.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/IR/CFG.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Type.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; #define DEBUG_TYPE "mips-isel" bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { Subtarget = &static_cast<const MipsSubtarget &>(MF.getSubtarget()); if (Subtarget->inMips16Mode()) return false; return MipsDAGToDAGISel::runOnMachineFunction(MF); } void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI, MachineFunction &MF) { MachineInstrBuilder MIB(MF, &MI); unsigned Mask = MI.getOperand(1).getImm(); unsigned Flag = IsDef ? RegState::ImplicitDefine : RegState::Implicit; if (Mask & 1) MIB.addReg(Mips::DSPPos, Flag); if (Mask & 2) MIB.addReg(Mips::DSPSCount, Flag); if (Mask & 4) MIB.addReg(Mips::DSPCarry, Flag); if (Mask & 8) MIB.addReg(Mips::DSPOutFlag, Flag); if (Mask & 16) MIB.addReg(Mips::DSPCCond, Flag); if (Mask & 32) MIB.addReg(Mips::DSPEFI, Flag); } unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const { switch (cast<ConstantSDNode>(RegIdx)->getZExtValue()) { default: llvm_unreachable("Could not map int to register"); case 0: return Mips::MSAIR; case 1: return Mips::MSACSR; case 2: return Mips::MSAAccess; case 3: return Mips::MSASave; case 4: return Mips::MSAModify; case 5: return Mips::MSARequest; case 6: return Mips::MSAMap; case 7: return Mips::MSAUnmap; } } bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI, const MachineInstr& MI) { unsigned DstReg = 0, ZeroReg = 0; // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0". if ((MI.getOpcode() == Mips::ADDiu) && (MI.getOperand(1).getReg() == Mips::ZERO) && (MI.getOperand(2).getImm() == 0)) { DstReg = MI.getOperand(0).getReg(); ZeroReg = Mips::ZERO; } else if ((MI.getOpcode() == Mips::DADDiu) && (MI.getOperand(1).getReg() == Mips::ZERO_64) && (MI.getOperand(2).getImm() == 0)) { DstReg = MI.getOperand(0).getReg(); ZeroReg = Mips::ZERO_64; } if (!DstReg) return false; // Replace uses with ZeroReg. for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg), E = MRI->use_end(); U != E;) { MachineOperand &MO = *U; unsigned OpNo = U.getOperandNo(); MachineInstr *MI = MO.getParent(); ++U; // Do not replace if it is a phi's operand or is tied to def operand. if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo()) continue; // Also, we have to check that the register class of the operand // contains the zero register. if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg)) continue; MO.setReg(ZeroReg); } return true; } void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) { MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); if (!MipsFI->globalBaseRegSet()) return; MachineBasicBlock &MBB = MF.front(); MachineBasicBlock::iterator I = MBB.begin(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); DebugLoc DL; unsigned V0, V1, GlobalBaseReg = MipsFI->getGlobalBaseReg(); const TargetRegisterClass *RC; const MipsABIInfo &ABI = static_cast<const MipsTargetMachine &>(TM).getABI(); RC = (ABI.IsN64()) ? &Mips::GPR64RegClass : &Mips::GPR32RegClass; V0 = RegInfo.createVirtualRegister(RC); V1 = RegInfo.createVirtualRegister(RC); if (ABI.IsN64()) { MF.getRegInfo().addLiveIn(Mips::T9_64); MBB.addLiveIn(Mips::T9_64); // lui $v0, %hi(%neg(%gp_rel(fname))) // daddu $v1, $v0, $t9 // daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname))) const GlobalValue *FName = MF.getFunction(); BuildMI(MBB, I, DL, TII.get(Mips::LUi64), V0) .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI); BuildMI(MBB, I, DL, TII.get(Mips::DADDu), V1).addReg(V0) .addReg(Mips::T9_64); BuildMI(MBB, I, DL, TII.get(Mips::DADDiu), GlobalBaseReg).addReg(V1) .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO); return; } if (MF.getTarget().getRelocationModel() == Reloc::Static) { // Set global register to __gnu_local_gp. // // lui $v0, %hi(__gnu_local_gp) // addiu $globalbasereg, $v0, %lo(__gnu_local_gp) BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0) .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI); BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V0) .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO); return; } MF.getRegInfo().addLiveIn(Mips::T9); MBB.addLiveIn(Mips::T9); if (ABI.IsN32()) { // lui $v0, %hi(%neg(%gp_rel(fname))) // addu $v1, $v0, $t9 // addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname))) const GlobalValue *FName = MF.getFunction(); BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0) .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI); BuildMI(MBB, I, DL, TII.get(Mips::ADDu), V1).addReg(V0).addReg(Mips::T9); BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V1) .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO); return; } assert(ABI.IsO32()); // For O32 ABI, the following instruction sequence is emitted to initialize // the global base register: // // 0. lui $2, %hi(_gp_disp) // 1. addiu $2, $2, %lo(_gp_disp) // 2. addu $globalbasereg, $2, $t9 // // We emit only the last instruction here. // // GNU linker requires that the first two instructions appear at the beginning // of a function and no instructions be inserted before or between them. // The two instructions are emitted during lowering to MC layer in order to // avoid any reordering. // // Register $2 (Mips::V0) is added to the list of live-in registers to ensure // the value instruction 1 (addiu) defines is valid when instruction 2 (addu) // reads it. MF.getRegInfo().addLiveIn(Mips::V0); MBB.addLiveIn(Mips::V0); BuildMI(MBB, I, DL, TII.get(Mips::ADDu), GlobalBaseReg) .addReg(Mips::V0).addReg(Mips::T9); } void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) { initGlobalBaseReg(MF); MachineRegisterInfo *MRI = &MF.getRegInfo(); for (MachineFunction::iterator MFI = MF.begin(), MFE = MF.end(); MFI != MFE; ++MFI) for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) { if (I->getOpcode() == Mips::RDDSP) addDSPCtrlRegOperands(false, *I, MF); else if (I->getOpcode() == Mips::WRDSP) addDSPCtrlRegOperands(true, *I, MF); else replaceUsesWithZeroReg(MRI, *I); } } SDNode *MipsSEDAGToDAGISel::selectAddESubE(unsigned MOp, SDValue InFlag, SDValue CmpLHS, SDLoc DL, SDNode *Node) const { unsigned Opc = InFlag.getOpcode(); (void)Opc; assert(((Opc == ISD::ADDC || Opc == ISD::ADDE) || (Opc == ISD::SUBC || Opc == ISD::SUBE)) && "(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn"); unsigned SLTuOp = Mips::SLTu, ADDuOp = Mips::ADDu; if (Subtarget->isGP64bit()) { SLTuOp = Mips::SLTu64; ADDuOp = Mips::DADDu; } SDValue Ops[] = { CmpLHS, InFlag.getOperand(1) }; SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1); EVT VT = LHS.getValueType(); SDNode *Carry = CurDAG->getMachineNode(SLTuOp, DL, VT, Ops); if (Subtarget->isGP64bit()) { // On 64-bit targets, sltu produces an i64 but our backend currently says // that SLTu64 produces an i32. We need to fix this in the long run but for // now, just make the DAG type-correct by asserting the upper bits are zero. Carry = CurDAG->getMachineNode(Mips::SUBREG_TO_REG, DL, VT, CurDAG->getTargetConstant(0, DL, VT), SDValue(Carry, 0), CurDAG->getTargetConstant(Mips::sub_32, DL, VT)); } // Generate a second addition only if we know that RHS is not a // constant-zero node. SDNode *AddCarry = Carry; ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS); if (!C || C->getZExtValue()) AddCarry = CurDAG->getMachineNode(ADDuOp, DL, VT, SDValue(Carry, 0), RHS); return CurDAG->SelectNodeTo(Node, MOp, VT, MVT::Glue, LHS, SDValue(AddCarry, 0)); } /// Match frameindex bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base, SDValue &Offset) const { if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { EVT ValTy = Addr.getValueType(); Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy); Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), ValTy); return true; } return false; } /// Match frameindex+offset and frameindex|offset bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(SDValue Addr, SDValue &Base, SDValue &Offset, unsigned OffsetBits) const { if (CurDAG->isBaseWithConstantOffset(Addr)) { ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1)); if (isIntN(OffsetBits, CN->getSExtValue())) { EVT ValTy = Addr.getValueType(); // If the first operand is a FI, get the TargetFI Node if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode> (Addr.getOperand(0))) Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy); else Base = Addr.getOperand(0); Offset = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(Addr), ValTy); return true; } } return false; } /// ComplexPattern used on MipsInstrInfo /// Used on Mips Load/Store instructions bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base, SDValue &Offset) const { // if Address is FI, get the TargetFrameIndex. if (selectAddrFrameIndex(Addr, Base, Offset)) return true; // on PIC code Load GA if (Addr.getOpcode() == MipsISD::Wrapper) { Base = Addr.getOperand(0); Offset = Addr.getOperand(1); return true; } if (TM.getRelocationModel() != Reloc::PIC_) { if ((Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress)) return false; } // Addresses of the form FI+const or FI|const if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16)) return true; // Operand is a result from an ADD. if (Addr.getOpcode() == ISD::ADD) { // When loading from constant pools, load the lower address part in // the instruction itself. Example, instead of: // lui $2, %hi($CPI1_0) // addiu $2, $2, %lo($CPI1_0) // lwc1 $f0, 0($2) // Generate: // lui $2, %hi($CPI1_0) // lwc1 $f0, %lo($CPI1_0)($2) if (Addr.getOperand(1).getOpcode() == MipsISD::Lo || Addr.getOperand(1).getOpcode() == MipsISD::GPRel) { SDValue Opnd0 = Addr.getOperand(1).getOperand(0); if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) || isa<JumpTableSDNode>(Opnd0)) { Base = Addr.getOperand(0); Offset = Opnd0; return true; } } } return false; } /// ComplexPattern used on MipsInstrInfo /// Used on Mips Load/Store instructions bool MipsSEDAGToDAGISel::selectAddrRegReg(SDValue Addr, SDValue &Base, SDValue &Offset) const { // Operand is a result from an ADD. if (Addr.getOpcode() == ISD::ADD) { Base = Addr.getOperand(0); Offset = Addr.getOperand(1); return true; } return false; } bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base, SDValue &Offset) const { Base = Addr; Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Addr.getValueType()); return true; } bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base, SDValue &Offset) const { return selectAddrRegImm(Addr, Base, Offset) || selectAddrDefault(Addr, Base, Offset); } bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base, SDValue &Offset) const { if (selectAddrFrameIndex(Addr, Base, Offset)) return true; if (selectAddrFrameIndexOffset(Addr, Base, Offset, 9)) return true; return false; } bool MipsSEDAGToDAGISel::selectAddrRegImm10(SDValue Addr, SDValue &Base, SDValue &Offset) const { if (selectAddrFrameIndex(Addr, Base, Offset)) return true; if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10)) return true; return false; } /// Used on microMIPS Load/Store unaligned instructions (12-bit offset) bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base, SDValue &Offset) const { if (selectAddrFrameIndex(Addr, Base, Offset)) return true; if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12)) return true; return false; } bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base, SDValue &Offset) const { if (selectAddrFrameIndex(Addr, Base, Offset)) return true; if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16)) return true; return false; } bool MipsSEDAGToDAGISel::selectIntAddrMM(SDValue Addr, SDValue &Base, SDValue &Offset) const { return selectAddrRegImm12(Addr, Base, Offset) || selectAddrDefault(Addr, Base, Offset); } bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base, SDValue &Offset) const { if (selectAddrFrameIndexOffset(Addr, Base, Offset, 7)) { if (isa<FrameIndexSDNode>(Base)) return false; if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Offset)) { unsigned CnstOff = CN->getZExtValue(); return (CnstOff == (CnstOff & 0x3c)); } return false; } // For all other cases where "lw" would be selected, don't select "lw16" // because it would result in additional instructions to prepare operands. if (selectAddrRegImm(Addr, Base, Offset)) return false; return selectAddrDefault(Addr, Base, Offset); } bool MipsSEDAGToDAGISel::selectIntAddrMSA(SDValue Addr, SDValue &Base, SDValue &Offset) const { if (selectAddrRegImm10(Addr, Base, Offset)) return true; if (selectAddrDefault(Addr, Base, Offset)) return true; return false; } // Select constant vector splats. // // Returns true and sets Imm if: // * MSA is enabled // * N is a ISD::BUILD_VECTOR representing a constant splat bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm, unsigned MinSizeInBits) const { if (!Subtarget->hasMSA()) return false; BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N); if (!Node) return false; APInt SplatValue, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs, MinSizeInBits, !Subtarget->isLittle())) return false; Imm = SplatValue; return true; } // Select constant vector splats. // // In addition to the requirements of selectVSplat(), this function returns // true and sets Imm if: // * The splat value is the same width as the elements of the vector // * The splat value fits in an integer with the specified signed-ness and // width. // // This function looks through ISD::BITCAST nodes. // TODO: This might not be appropriate for big-endian MSA since BITCAST is // sometimes a shuffle in big-endian mode. // // It's worth noting that this function is not used as part of the selection // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd] // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in // MipsSEDAGToDAGISel::selectNode. bool MipsSEDAGToDAGISel:: selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed, unsigned ImmBitSize) const { APInt ImmValue; EVT EltTy = N->getValueType(0).getVectorElementType(); if (N->getOpcode() == ISD::BITCAST) N = N->getOperand(0); if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && ImmValue.getBitWidth() == EltTy.getSizeInBits()) { if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) || (!Signed && ImmValue.isIntN(ImmBitSize))) { Imm = CurDAG->getTargetConstant(ImmValue, SDLoc(N), EltTy); return true; } } return false; } // Select constant vector splats. bool MipsSEDAGToDAGISel:: selectVSplatUimm1(SDValue N, SDValue &Imm) const { return selectVSplatCommon(N, Imm, false, 1); } bool MipsSEDAGToDAGISel:: selectVSplatUimm2(SDValue N, SDValue &Imm) const { return selectVSplatCommon(N, Imm, false, 2); } bool MipsSEDAGToDAGISel:: selectVSplatUimm3(SDValue N, SDValue &Imm) const { return selectVSplatCommon(N, Imm, false, 3); } // Select constant vector splats. bool MipsSEDAGToDAGISel:: selectVSplatUimm4(SDValue N, SDValue &Imm) const { return selectVSplatCommon(N, Imm, false, 4); } // Select constant vector splats. bool MipsSEDAGToDAGISel:: selectVSplatUimm5(SDValue N, SDValue &Imm) const { return selectVSplatCommon(N, Imm, false, 5); } // Select constant vector splats. bool MipsSEDAGToDAGISel:: selectVSplatUimm6(SDValue N, SDValue &Imm) const { return selectVSplatCommon(N, Imm, false, 6); } // Select constant vector splats. bool MipsSEDAGToDAGISel:: selectVSplatUimm8(SDValue N, SDValue &Imm) const { return selectVSplatCommon(N, Imm, false, 8); } // Select constant vector splats. bool MipsSEDAGToDAGISel:: selectVSplatSimm5(SDValue N, SDValue &Imm) const { return selectVSplatCommon(N, Imm, true, 5); } // Select constant vector splats whose value is a power of 2. // // In addition to the requirements of selectVSplat(), this function returns // true and sets Imm if: // * The splat value is the same width as the elements of the vector // * The splat value is a power of two. // // This function looks through ISD::BITCAST nodes. // TODO: This might not be appropriate for big-endian MSA since BITCAST is // sometimes a shuffle in big-endian mode. bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const { APInt ImmValue; EVT EltTy = N->getValueType(0).getVectorElementType(); if (N->getOpcode() == ISD::BITCAST) N = N->getOperand(0); if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && ImmValue.getBitWidth() == EltTy.getSizeInBits()) { int32_t Log2 = ImmValue.exactLogBase2(); if (Log2 != -1) { Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy); return true; } } return false; } // Select constant vector splats whose value only has a consecutive sequence // of left-most bits set (e.g. 0b11...1100...00). // // In addition to the requirements of selectVSplat(), this function returns // true and sets Imm if: // * The splat value is the same width as the elements of the vector // * The splat value is a consecutive sequence of left-most bits. // // This function looks through ISD::BITCAST nodes. // TODO: This might not be appropriate for big-endian MSA since BITCAST is // sometimes a shuffle in big-endian mode. bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const { APInt ImmValue; EVT EltTy = N->getValueType(0).getVectorElementType(); if (N->getOpcode() == ISD::BITCAST) N = N->getOperand(0); if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && ImmValue.getBitWidth() == EltTy.getSizeInBits()) { // Extract the run of set bits starting with bit zero from the bitwise // inverse of ImmValue, and test that the inverse of this is the same // as the original value. if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) { Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), SDLoc(N), EltTy); return true; } } return false; } // Select constant vector splats whose value only has a consecutive sequence // of right-most bits set (e.g. 0b00...0011...11). // // In addition to the requirements of selectVSplat(), this function returns // true and sets Imm if: // * The splat value is the same width as the elements of the vector // * The splat value is a consecutive sequence of right-most bits. // // This function looks through ISD::BITCAST nodes. // TODO: This might not be appropriate for big-endian MSA since BITCAST is // sometimes a shuffle in big-endian mode. bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const { APInt ImmValue; EVT EltTy = N->getValueType(0).getVectorElementType(); if (N->getOpcode() == ISD::BITCAST) N = N->getOperand(0); if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && ImmValue.getBitWidth() == EltTy.getSizeInBits()) { // Extract the run of set bits starting with bit zero, and test that the // result is the same as the original value if (ImmValue == (ImmValue & ~(ImmValue + 1))) { Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), SDLoc(N), EltTy); return true; } } return false; } bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N, SDValue &Imm) const { APInt ImmValue; EVT EltTy = N->getValueType(0).getVectorElementType(); if (N->getOpcode() == ISD::BITCAST) N = N->getOperand(0); if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && ImmValue.getBitWidth() == EltTy.getSizeInBits()) { int32_t Log2 = (~ImmValue).exactLogBase2(); if (Log2 != -1) { Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy); return true; } } return false; } std::pair<bool, SDNode*> MipsSEDAGToDAGISel::selectNode(SDNode *Node) { unsigned Opcode = Node->getOpcode(); SDLoc DL(Node); /// // Instruction Selection not handled by the auto-generated // tablegen selection should be handled here. /// SDNode *Result; switch(Opcode) { default: break; case ISD::SUBE: { SDValue InFlag = Node->getOperand(2); unsigned Opc = Subtarget->isGP64bit() ? Mips::DSUBu : Mips::SUBu; Result = selectAddESubE(Opc, InFlag, InFlag.getOperand(0), DL, Node); return std::make_pair(true, Result); } case ISD::ADDE: { if (Subtarget->hasDSP()) // Select DSP instructions, ADDSC and ADDWC. break; SDValue InFlag = Node->getOperand(2); unsigned Opc = Subtarget->isGP64bit() ? Mips::DADDu : Mips::ADDu; Result = selectAddESubE(Opc, InFlag, InFlag.getValue(0), DL, Node); return std::make_pair(true, Result); } case ISD::ConstantFP: { ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node); if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) { if (Subtarget->isGP64bit()) { SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, Mips::ZERO_64, MVT::i64); Result = CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero); } else if (Subtarget->isFP64bit()) { SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, Mips::ZERO, MVT::i32); Result = CurDAG->getMachineNode(Mips::BuildPairF64_64, DL, MVT::f64, Zero, Zero); } else { SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, Mips::ZERO, MVT::i32); Result = CurDAG->getMachineNode(Mips::BuildPairF64, DL, MVT::f64, Zero, Zero); } return std::make_pair(true, Result); } break; } case ISD::Constant: { const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node); unsigned Size = CN->getValueSizeInBits(0); if (Size == 32) break; MipsAnalyzeImmediate AnalyzeImm; int64_t Imm = CN->getSExtValue(); const MipsAnalyzeImmediate::InstSeq &Seq = AnalyzeImm.Analyze(Imm, Size, false); MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin(); SDLoc DL(CN); SDNode *RegOpnd; SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL, MVT::i64); // The first instruction can be a LUi which is different from other // instructions (ADDiu, ORI and SLL) in that it does not have a register // operand. if (Inst->Opc == Mips::LUi64) RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd); else RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, CurDAG->getRegister(Mips::ZERO_64, MVT::i64), ImmOpnd); // The remaining instructions in the sequence are handled here. for (++Inst; Inst != Seq.end(); ++Inst) { ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL, MVT::i64); RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, SDValue(RegOpnd, 0), ImmOpnd); } return std::make_pair(true, RegOpnd); } case ISD::INTRINSIC_W_CHAIN: { switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { default: break; case Intrinsic::mips_cfcmsa: { SDValue ChainIn = Node->getOperand(0); SDValue RegIdx = Node->getOperand(2); SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL, getMSACtrlReg(RegIdx), MVT::i32); return std::make_pair(true, Reg.getNode()); } } break; } case ISD::INTRINSIC_WO_CHAIN: { switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) { default: break; case Intrinsic::mips_move_v: // Like an assignment but will always produce a move.v even if // unnecessary. return std::make_pair(true, CurDAG->getMachineNode(Mips::MOVE_V, DL, Node->getValueType(0), Node->getOperand(1))); } break; } case ISD::INTRINSIC_VOID: { switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { default: break; case Intrinsic::mips_ctcmsa: { SDValue ChainIn = Node->getOperand(0); SDValue RegIdx = Node->getOperand(2); SDValue Value = Node->getOperand(3); SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL, getMSACtrlReg(RegIdx), Value); return std::make_pair(true, ChainOut.getNode()); } } break; } case MipsISD::ThreadPointer: { EVT PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout()); unsigned RdhwrOpc, DestReg; if (PtrVT == MVT::i32) { RdhwrOpc = Mips::RDHWR; DestReg = Mips::V1; } else { RdhwrOpc = Mips::RDHWR64; DestReg = Mips::V1_64; } SDNode *Rdhwr = CurDAG->getMachineNode(RdhwrOpc, DL, Node->getValueType(0), CurDAG->getRegister(Mips::HWR29, MVT::i32)); SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg, SDValue(Rdhwr, 0)); SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT); ReplaceUses(SDValue(Node, 0), ResNode); return std::make_pair(true, ResNode.getNode()); } case ISD::BUILD_VECTOR: { // Select appropriate ldi.[bhwd] instructions for constant splats of // 128-bit when MSA is enabled. Fixup any register class mismatches that // occur as a result. // // This allows the compiler to use a wider range of immediates than would // otherwise be allowed. If, for example, v4i32 could only use ldi.h then // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101, // 0x01010101 } without using a constant pool. This would be sub-optimal // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the // same set/ of registers. Similarly, ldi.h isn't capable of producing { // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can. BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node); APInt SplatValue, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; unsigned LdiOp; EVT ResVecTy = BVN->getValueType(0); EVT ViaVecTy; if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector()) return std::make_pair(false, nullptr); if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs, 8, !Subtarget->isLittle())) return std::make_pair(false, nullptr); switch (SplatBitSize) { default: return std::make_pair(false, nullptr); case 8: LdiOp = Mips::LDI_B; ViaVecTy = MVT::v16i8; break; case 16: LdiOp = Mips::LDI_H; ViaVecTy = MVT::v8i16; break; case 32: LdiOp = Mips::LDI_W; ViaVecTy = MVT::v4i32; break; case 64: LdiOp = Mips::LDI_D; ViaVecTy = MVT::v2i64; break; } if (!SplatValue.isSignedIntN(10)) return std::make_pair(false, nullptr); SDValue Imm = CurDAG->getTargetConstant(SplatValue, DL, ViaVecTy.getVectorElementType()); SDNode *Res = CurDAG->getMachineNode(LdiOp, DL, ViaVecTy, Imm); if (ResVecTy != ViaVecTy) { // If LdiOp is writing to a different register class to ResVecTy, then // fix it up here. This COPY_TO_REGCLASS should never cause a move.v // since the source and destination register sets contain the same // registers. const TargetLowering *TLI = getTargetLowering(); MVT ResVecTySimple = ResVecTy.getSimpleVT(); const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple); Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, DL, ResVecTy, SDValue(Res, 0), CurDAG->getTargetConstant(RC->getID(), DL, MVT::i32)); } return std::make_pair(true, Res); } } return std::make_pair(false, nullptr); } bool MipsSEDAGToDAGISel:: SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, std::vector<SDValue> &OutOps) { SDValue Base, Offset; switch(ConstraintID) { default: llvm_unreachable("Unexpected asm memory constraint"); // All memory constraints can at least accept raw pointers. case InlineAsm::Constraint_i: OutOps.push_back(Op); OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); return false; case InlineAsm::Constraint_m: if (selectAddrRegImm16(Op, Base, Offset)) { OutOps.push_back(Base); OutOps.push_back(Offset); return false; } OutOps.push_back(Op); OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); return false; case InlineAsm::Constraint_R: // The 'R' constraint is supposed to be much more complicated than this. // However, it's becoming less useful due to architectural changes and // ought to be replaced by other constraints such as 'ZC'. // For now, support 9-bit signed offsets which is supportable by all // subtargets for all instructions. if (selectAddrRegImm9(Op, Base, Offset)) { OutOps.push_back(Base); OutOps.push_back(Offset); return false; } OutOps.push_back(Op); OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); return false; case InlineAsm::Constraint_ZC: // ZC matches whatever the pref, ll, and sc instructions can handle for the // given subtarget. if (Subtarget->inMicroMipsMode()) { // On microMIPS, they can handle 12-bit offsets. if (selectAddrRegImm12(Op, Base, Offset)) { OutOps.push_back(Base); OutOps.push_back(Offset); return false; } } else if (Subtarget->hasMips32r6()) { // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets. if (selectAddrRegImm9(Op, Base, Offset)) { OutOps.push_back(Base); OutOps.push_back(Offset); return false; } } else if (selectAddrRegImm16(Op, Base, Offset)) { // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets. OutOps.push_back(Base); OutOps.push_back(Offset); return false; } // In all cases, 0-bit offsets are acceptable. OutOps.push_back(Op); OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); return false; } return true; } FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM) { return new MipsSEDAGToDAGISel(TM); }