//===-- MipsInstrFPU.td - Mips FPU Instruction Information -*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the Mips FPU instruction set. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Floating Point Instructions // ------------------------ // * 64bit fp: // - 32 64-bit registers (default mode) // - 16 even 32-bit registers (32-bit compatible mode) for // single and double access. // * 32bit fp: // - 16 even 32-bit registers - single and double (aliased) // - 32 32-bit registers (within single-only mode) //===----------------------------------------------------------------------===// // Floating Point Compare and Branch def SDT_MipsFPBrcond : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisVT<1, i32>, SDTCisVT<2, OtherVT>]>; def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>, SDTCisVT<2, i32>]>; def SDT_MipsCMovFP : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisVT<2, i32>, SDTCisSameAs<1, 3>]>; def SDT_MipsTruncIntFP : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisFP<1>]>; def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>; def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVT<1, f64>, SDTCisVT<2, i32>]>; def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>; def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>; def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>; def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond, [SDNPHasChain, SDNPOptInGlue]>; def MipsTruncIntFP : SDNode<"MipsISD::TruncIntFP", SDT_MipsTruncIntFP>; def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>; def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64", SDT_MipsExtractElementF64>; // Operand for printing out a condition code. let PrintMethod = "printFCCOperand", DecoderMethod = "DecodeCondCode" in def condcode : Operand<i32>; //===----------------------------------------------------------------------===// // Feature predicates. //===----------------------------------------------------------------------===// def IsFP64bit : Predicate<"Subtarget->isFP64bit()">, AssemblerPredicate<"FeatureFP64Bit">; def NotFP64bit : Predicate<"!Subtarget->isFP64bit()">, AssemblerPredicate<"!FeatureFP64Bit">; def IsSingleFloat : Predicate<"Subtarget->isSingleFloat()">, AssemblerPredicate<"FeatureSingleFloat">; def IsNotSingleFloat : Predicate<"!Subtarget->isSingleFloat()">, AssemblerPredicate<"!FeatureSingleFloat">; def IsNotSoftFloat : Predicate<"!Subtarget->useSoftFloat()">, AssemblerPredicate<"!FeatureSoftFloat">; //===----------------------------------------------------------------------===// // Mips FGR size adjectives. // They are mutually exclusive. //===----------------------------------------------------------------------===// class FGR_32 { list<Predicate> FGRPredicates = [NotFP64bit]; } class FGR_64 { list<Predicate> FGRPredicates = [IsFP64bit]; } class HARDFLOAT { list<Predicate> HardFloatPredicate = [IsNotSoftFloat]; } //===----------------------------------------------------------------------===// // FP immediate patterns. def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>; def fpimm0neg : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>; //===----------------------------------------------------------------------===// // Instruction Class Templates // // A set of multiclasses is used to address the register usage. // // S32 - single precision in 16 32bit even fp registers // single precision in 32 32bit fp registers in SingleOnly mode // S64 - single precision in 32 64bit fp registers (In64BitMode) // D32 - double precision in 16 32bit even fp registers // D64 - double precision in 32 64bit fp registers (In64BitMode) // // Only S32 and D32 are supported right now. //===----------------------------------------------------------------------===// class ADDS_FT<string opstr, RegisterOperand RC, InstrItinClass Itin, bit IsComm, SDPatternOperator OpNode= null_frag> : InstSE<(outs RC:$fd), (ins RC:$fs, RC:$ft), !strconcat(opstr, "\t$fd, $fs, $ft"), [(set RC:$fd, (OpNode RC:$fs, RC:$ft))], Itin, FrmFR, opstr>, HARDFLOAT { let isCommutable = IsComm; } multiclass ADDS_M<string opstr, InstrItinClass Itin, bit IsComm, SDPatternOperator OpNode = null_frag> { def _D32 : MMRel, ADDS_FT<opstr, AFGR64Opnd, Itin, IsComm, OpNode>, FGR_32; def _D64 : ADDS_FT<opstr, FGR64Opnd, Itin, IsComm, OpNode>, FGR_64 { string DecoderNamespace = "Mips64"; } } class ABSS_FT<string opstr, RegisterOperand DstRC, RegisterOperand SrcRC, InstrItinClass Itin, SDPatternOperator OpNode= null_frag> : InstSE<(outs DstRC:$fd), (ins SrcRC:$fs), !strconcat(opstr, "\t$fd, $fs"), [(set DstRC:$fd, (OpNode SrcRC:$fs))], Itin, FrmFR, opstr>, HARDFLOAT, NeverHasSideEffects; multiclass ABSS_M<string opstr, InstrItinClass Itin, SDPatternOperator OpNode= null_frag> { def _D32 : MMRel, ABSS_FT<opstr, AFGR64Opnd, AFGR64Opnd, Itin, OpNode>, FGR_32; def _D64 : ABSS_FT<opstr, FGR64Opnd, FGR64Opnd, Itin, OpNode>, FGR_64 { string DecoderNamespace = "Mips64"; } } multiclass ROUND_M<string opstr, InstrItinClass Itin> { def _D32 : MMRel, ABSS_FT<opstr, FGR32Opnd, AFGR64Opnd, Itin>, FGR_32; def _D64 : StdMMR6Rel, ABSS_FT<opstr, FGR32Opnd, FGR64Opnd, Itin>, FGR_64 { let DecoderNamespace = "Mips64"; } } class MFC1_FT<string opstr, RegisterOperand DstRC, RegisterOperand SrcRC, InstrItinClass Itin, SDPatternOperator OpNode= null_frag> : InstSE<(outs DstRC:$rt), (ins SrcRC:$fs), !strconcat(opstr, "\t$rt, $fs"), [(set DstRC:$rt, (OpNode SrcRC:$fs))], Itin, FrmFR, opstr>, HARDFLOAT; class MTC1_FT<string opstr, RegisterOperand DstRC, RegisterOperand SrcRC, InstrItinClass Itin, SDPatternOperator OpNode= null_frag> : InstSE<(outs DstRC:$fs), (ins SrcRC:$rt), !strconcat(opstr, "\t$rt, $fs"), [(set DstRC:$fs, (OpNode SrcRC:$rt))], Itin, FrmFR, opstr>, HARDFLOAT; class MTC1_64_FT<string opstr, RegisterOperand DstRC, RegisterOperand SrcRC, InstrItinClass Itin> : InstSE<(outs DstRC:$fs), (ins DstRC:$fs_in, SrcRC:$rt), !strconcat(opstr, "\t$rt, $fs"), [], Itin, FrmFR, opstr>, HARDFLOAT { // $fs_in is part of a white lie to work around a widespread bug in the FPU // implementation. See expandBuildPairF64 for details. let Constraints = "$fs = $fs_in"; } class LW_FT<string opstr, RegisterOperand RC, InstrItinClass Itin, SDPatternOperator OpNode= null_frag> : InstSE<(outs RC:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"), [(set RC:$rt, (OpNode addrDefault:$addr))], Itin, FrmFI, opstr>, HARDFLOAT { let DecoderMethod = "DecodeFMem"; let mayLoad = 1; } class SW_FT<string opstr, RegisterOperand RC, InstrItinClass Itin, SDPatternOperator OpNode= null_frag> : InstSE<(outs), (ins RC:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"), [(OpNode RC:$rt, addrDefault:$addr)], Itin, FrmFI, opstr>, HARDFLOAT { let DecoderMethod = "DecodeFMem"; let mayStore = 1; } class MADDS_FT<string opstr, RegisterOperand RC, InstrItinClass Itin, SDPatternOperator OpNode = null_frag> : InstSE<(outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft), !strconcat(opstr, "\t$fd, $fr, $fs, $ft"), [(set RC:$fd, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr))], Itin, FrmFR, opstr>, HARDFLOAT; class NMADDS_FT<string opstr, RegisterOperand RC, InstrItinClass Itin, SDPatternOperator OpNode = null_frag> : InstSE<(outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft), !strconcat(opstr, "\t$fd, $fr, $fs, $ft"), [(set RC:$fd, (fsub fpimm0, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr)))], Itin, FrmFR, opstr>, HARDFLOAT; class LWXC1_FT<string opstr, RegisterOperand DRC, InstrItinClass Itin, SDPatternOperator OpNode = null_frag> : InstSE<(outs DRC:$fd), (ins PtrRC:$base, PtrRC:$index), !strconcat(opstr, "\t$fd, ${index}(${base})"), [(set DRC:$fd, (OpNode (add iPTR:$base, iPTR:$index)))], Itin, FrmFI, opstr>, HARDFLOAT { let AddedComplexity = 20; } class SWXC1_FT<string opstr, RegisterOperand DRC, InstrItinClass Itin, SDPatternOperator OpNode = null_frag> : InstSE<(outs), (ins DRC:$fs, PtrRC:$base, PtrRC:$index), !strconcat(opstr, "\t$fs, ${index}(${base})"), [(OpNode DRC:$fs, (add iPTR:$base, iPTR:$index))], Itin, FrmFI, opstr>, HARDFLOAT { let AddedComplexity = 20; } class BC1F_FT<string opstr, DAGOperand opnd, InstrItinClass Itin, SDPatternOperator Op = null_frag, bit DelaySlot = 1> : InstSE<(outs), (ins FCCRegsOpnd:$fcc, opnd:$offset), !strconcat(opstr, "\t$fcc, $offset"), [(MipsFPBrcond Op, FCCRegsOpnd:$fcc, bb:$offset)], Itin, FrmFI, opstr>, HARDFLOAT { let isBranch = 1; let isTerminator = 1; let hasDelaySlot = DelaySlot; let Defs = [AT]; } class CEQS_FT<string typestr, RegisterClass RC, InstrItinClass Itin, SDPatternOperator OpNode = null_frag> : InstSE<(outs), (ins RC:$fs, RC:$ft, condcode:$cond), !strconcat("c.$cond.", typestr, "\t$fs, $ft"), [(OpNode RC:$fs, RC:$ft, imm:$cond)], Itin, FrmFR, !strconcat("c.$cond.", typestr)>, HARDFLOAT { let Defs = [FCC0]; let isCodeGenOnly = 1; } class C_COND_FT<string CondStr, string Typestr, RegisterOperand RC, InstrItinClass itin> : InstSE<(outs), (ins RC:$fs, RC:$ft), !strconcat("c.", CondStr, ".", Typestr, "\t$fs, $ft"), [], itin, FrmFR>, HARDFLOAT; multiclass C_COND_M<string TypeStr, RegisterOperand RC, bits<5> fmt, InstrItinClass itin> { def C_F_#NAME : C_COND_FT<"f", TypeStr, RC, itin>, C_COND_FM<fmt, 0>; def C_UN_#NAME : C_COND_FT<"un", TypeStr, RC, itin>, C_COND_FM<fmt, 1>; def C_EQ_#NAME : C_COND_FT<"eq", TypeStr, RC, itin>, C_COND_FM<fmt, 2>; def C_UEQ_#NAME : C_COND_FT<"ueq", TypeStr, RC, itin>, C_COND_FM<fmt, 3>; def C_OLT_#NAME : C_COND_FT<"olt", TypeStr, RC, itin>, C_COND_FM<fmt, 4>; def C_ULT_#NAME : C_COND_FT<"ult", TypeStr, RC, itin>, C_COND_FM<fmt, 5>; def C_OLE_#NAME : C_COND_FT<"ole", TypeStr, RC, itin>, C_COND_FM<fmt, 6>; def C_ULE_#NAME : C_COND_FT<"ule", TypeStr, RC, itin>, C_COND_FM<fmt, 7>; def C_SF_#NAME : C_COND_FT<"sf", TypeStr, RC, itin>, C_COND_FM<fmt, 8>; def C_NGLE_#NAME : C_COND_FT<"ngle", TypeStr, RC, itin>, C_COND_FM<fmt, 9>; def C_SEQ_#NAME : C_COND_FT<"seq", TypeStr, RC, itin>, C_COND_FM<fmt, 10>; def C_NGL_#NAME : C_COND_FT<"ngl", TypeStr, RC, itin>, C_COND_FM<fmt, 11>; def C_LT_#NAME : C_COND_FT<"lt", TypeStr, RC, itin>, C_COND_FM<fmt, 12>; def C_NGE_#NAME : C_COND_FT<"nge", TypeStr, RC, itin>, C_COND_FM<fmt, 13>; def C_LE_#NAME : C_COND_FT<"le", TypeStr, RC, itin>, C_COND_FM<fmt, 14>; def C_NGT_#NAME : C_COND_FT<"ngt", TypeStr, RC, itin>, C_COND_FM<fmt, 15>; } defm S : C_COND_M<"s", FGR32Opnd, 16, II_C_CC_S>, ISA_MIPS1_NOT_32R6_64R6; defm D32 : C_COND_M<"d", AFGR64Opnd, 17, II_C_CC_D>, ISA_MIPS1_NOT_32R6_64R6, FGR_32; let DecoderNamespace = "Mips64" in defm D64 : C_COND_M<"d", FGR64Opnd, 17, II_C_CC_D>, ISA_MIPS1_NOT_32R6_64R6, FGR_64; //===----------------------------------------------------------------------===// // Floating Point Instructions //===----------------------------------------------------------------------===// def ROUND_W_S : MMRel, StdMMR6Rel, ABSS_FT<"round.w.s", FGR32Opnd, FGR32Opnd, II_ROUND>, ABSS_FM<0xc, 16>, ISA_MIPS2; defm ROUND_W : ROUND_M<"round.w.d", II_ROUND>, ABSS_FM<0xc, 17>, ISA_MIPS2; def TRUNC_W_S : MMRel, StdMMR6Rel, ABSS_FT<"trunc.w.s", FGR32Opnd, FGR32Opnd, II_TRUNC>, ABSS_FM<0xd, 16>, ISA_MIPS2; def CEIL_W_S : MMRel, StdMMR6Rel, ABSS_FT<"ceil.w.s", FGR32Opnd, FGR32Opnd, II_CEIL>, ABSS_FM<0xe, 16>, ISA_MIPS2; def FLOOR_W_S : MMRel, StdMMR6Rel, ABSS_FT<"floor.w.s", FGR32Opnd, FGR32Opnd, II_FLOOR>, ABSS_FM<0xf, 16>, ISA_MIPS2; def CVT_W_S : MMRel, ABSS_FT<"cvt.w.s", FGR32Opnd, FGR32Opnd, II_CVT>, ABSS_FM<0x24, 16>; defm TRUNC_W : ROUND_M<"trunc.w.d", II_TRUNC>, ABSS_FM<0xd, 17>, ISA_MIPS2; defm CEIL_W : ROUND_M<"ceil.w.d", II_CEIL>, ABSS_FM<0xe, 17>, ISA_MIPS2; defm FLOOR_W : ROUND_M<"floor.w.d", II_FLOOR>, ABSS_FM<0xf, 17>, ISA_MIPS2; defm CVT_W : ROUND_M<"cvt.w.d", II_CVT>, ABSS_FM<0x24, 17>; let DecoderNamespace = "Mips64" in { let AdditionalPredicates = [NotInMicroMips] in { def ROUND_L_S : ABSS_FT<"round.l.s", FGR64Opnd, FGR32Opnd, II_ROUND>, ABSS_FM<0x8, 16>, FGR_64; def ROUND_L_D64 : ABSS_FT<"round.l.d", FGR64Opnd, FGR64Opnd, II_ROUND>, ABSS_FM<0x8, 17>, FGR_64; def TRUNC_L_S : ABSS_FT<"trunc.l.s", FGR64Opnd, FGR32Opnd, II_TRUNC>, ABSS_FM<0x9, 16>, FGR_64; def TRUNC_L_D64 : ABSS_FT<"trunc.l.d", FGR64Opnd, FGR64Opnd, II_TRUNC>, ABSS_FM<0x9, 17>, FGR_64; def CEIL_L_S : ABSS_FT<"ceil.l.s", FGR64Opnd, FGR32Opnd, II_CEIL>, ABSS_FM<0xa, 16>, FGR_64; def CEIL_L_D64 : ABSS_FT<"ceil.l.d", FGR64Opnd, FGR64Opnd, II_CEIL>, ABSS_FM<0xa, 17>, FGR_64; def FLOOR_L_S : ABSS_FT<"floor.l.s", FGR64Opnd, FGR32Opnd, II_FLOOR>, ABSS_FM<0xb, 16>, FGR_64; def FLOOR_L_D64 : ABSS_FT<"floor.l.d", FGR64Opnd, FGR64Opnd, II_FLOOR>, ABSS_FM<0xb, 17>, FGR_64; } } def CVT_S_W : MMRel, ABSS_FT<"cvt.s.w", FGR32Opnd, FGR32Opnd, II_CVT>, ABSS_FM<0x20, 20>; let AdditionalPredicates = [NotInMicroMips] in{ def CVT_L_S : MMRel, ABSS_FT<"cvt.l.s", FGR64Opnd, FGR32Opnd, II_CVT>, ABSS_FM<0x25, 16>, INSN_MIPS3_32R2; def CVT_L_D64: MMRel, ABSS_FT<"cvt.l.d", FGR64Opnd, FGR64Opnd, II_CVT>, ABSS_FM<0x25, 17>, INSN_MIPS3_32R2; } def CVT_S_D32 : MMRel, ABSS_FT<"cvt.s.d", FGR32Opnd, AFGR64Opnd, II_CVT>, ABSS_FM<0x20, 17>, FGR_32; def CVT_D32_W : MMRel, ABSS_FT<"cvt.d.w", AFGR64Opnd, FGR32Opnd, II_CVT>, ABSS_FM<0x21, 20>, FGR_32; def CVT_D32_S : MMRel, ABSS_FT<"cvt.d.s", AFGR64Opnd, FGR32Opnd, II_CVT>, ABSS_FM<0x21, 16>, FGR_32; let DecoderNamespace = "Mips64" in { def CVT_S_D64 : ABSS_FT<"cvt.s.d", FGR32Opnd, FGR64Opnd, II_CVT>, ABSS_FM<0x20, 17>, FGR_64; let AdditionalPredicates = [NotInMicroMips] in{ def CVT_S_L : ABSS_FT<"cvt.s.l", FGR32Opnd, FGR64Opnd, II_CVT>, ABSS_FM<0x20, 21>, FGR_64; } def CVT_D64_W : ABSS_FT<"cvt.d.w", FGR64Opnd, FGR32Opnd, II_CVT>, ABSS_FM<0x21, 20>, FGR_64; def CVT_D64_S : ABSS_FT<"cvt.d.s", FGR64Opnd, FGR32Opnd, II_CVT>, ABSS_FM<0x21, 16>, FGR_64; def CVT_D64_L : ABSS_FT<"cvt.d.l", FGR64Opnd, FGR64Opnd, II_CVT>, ABSS_FM<0x21, 21>, FGR_64; } let isPseudo = 1, isCodeGenOnly = 1 in { def PseudoCVT_S_W : ABSS_FT<"", FGR32Opnd, GPR32Opnd, II_CVT>; def PseudoCVT_D32_W : ABSS_FT<"", AFGR64Opnd, GPR32Opnd, II_CVT>; def PseudoCVT_S_L : ABSS_FT<"", FGR64Opnd, GPR64Opnd, II_CVT>; def PseudoCVT_D64_W : ABSS_FT<"", FGR64Opnd, GPR32Opnd, II_CVT>; def PseudoCVT_D64_L : ABSS_FT<"", FGR64Opnd, GPR64Opnd, II_CVT>; } def FABS_S : MMRel, ABSS_FT<"abs.s", FGR32Opnd, FGR32Opnd, II_ABS, fabs>, ABSS_FM<0x5, 16>; def FNEG_S : MMRel, ABSS_FT<"neg.s", FGR32Opnd, FGR32Opnd, II_NEG, fneg>, ABSS_FM<0x7, 16>; defm FABS : ABSS_M<"abs.d", II_ABS, fabs>, ABSS_FM<0x5, 17>; defm FNEG : ABSS_M<"neg.d", II_NEG, fneg>, ABSS_FM<0x7, 17>; def FSQRT_S : MMRel, StdMMR6Rel, ABSS_FT<"sqrt.s", FGR32Opnd, FGR32Opnd, II_SQRT_S, fsqrt>, ABSS_FM<0x4, 16>, ISA_MIPS2; defm FSQRT : ABSS_M<"sqrt.d", II_SQRT_D, fsqrt>, ABSS_FM<0x4, 17>, ISA_MIPS2; // The odd-numbered registers are only referenced when doing loads, // stores, and moves between floating-point and integer registers. // When defining instructions, we reference all 32-bit registers, // regardless of register aliasing. /// Move Control Registers From/To CPU Registers def CFC1 : MMRel, MFC1_FT<"cfc1", GPR32Opnd, CCROpnd, II_CFC1>, MFC1_FM<2>; def CTC1 : MMRel, MTC1_FT<"ctc1", CCROpnd, GPR32Opnd, II_CTC1>, MFC1_FM<6>; def MFC1 : MMRel, MFC1_FT<"mfc1", GPR32Opnd, FGR32Opnd, II_MFC1, bitconvert>, MFC1_FM<0>; def MTC1 : MMRel, MTC1_FT<"mtc1", FGR32Opnd, GPR32Opnd, II_MTC1, bitconvert>, MFC1_FM<4>; def MFHC1_D32 : MMRel, MFC1_FT<"mfhc1", GPR32Opnd, AFGR64Opnd, II_MFHC1>, MFC1_FM<3>, ISA_MIPS32R2, FGR_32; def MFHC1_D64 : MFC1_FT<"mfhc1", GPR32Opnd, FGR64Opnd, II_MFHC1>, MFC1_FM<3>, ISA_MIPS32R2, FGR_64 { let DecoderNamespace = "Mips64"; } def MTHC1_D32 : MMRel, MTC1_64_FT<"mthc1", AFGR64Opnd, GPR32Opnd, II_MTHC1>, MFC1_FM<7>, ISA_MIPS32R2, FGR_32; def MTHC1_D64 : MTC1_64_FT<"mthc1", FGR64Opnd, GPR32Opnd, II_MTHC1>, MFC1_FM<7>, ISA_MIPS32R2, FGR_64 { let DecoderNamespace = "Mips64"; } def DMFC1 : MFC1_FT<"dmfc1", GPR64Opnd, FGR64Opnd, II_DMFC1, bitconvert>, MFC1_FM<1>, ISA_MIPS3; def DMTC1 : MTC1_FT<"dmtc1", FGR64Opnd, GPR64Opnd, II_DMTC1, bitconvert>, MFC1_FM<5>, ISA_MIPS3; def FMOV_S : MMRel, ABSS_FT<"mov.s", FGR32Opnd, FGR32Opnd, II_MOV_S>, ABSS_FM<0x6, 16>; def FMOV_D32 : MMRel, ABSS_FT<"mov.d", AFGR64Opnd, AFGR64Opnd, II_MOV_D>, ABSS_FM<0x6, 17>, FGR_32; def FMOV_D64 : ABSS_FT<"mov.d", FGR64Opnd, FGR64Opnd, II_MOV_D>, ABSS_FM<0x6, 17>, FGR_64 { let DecoderNamespace = "Mips64"; } /// Floating Point Memory Instructions def LWC1 : MMRel, LW_FT<"lwc1", FGR32Opnd, II_LWC1, load>, LW_FM<0x31>; def SWC1 : MMRel, SW_FT<"swc1", FGR32Opnd, II_SWC1, store>, LW_FM<0x39>; let DecoderNamespace = "Mips64" in { def LDC164 : LW_FT<"ldc1", FGR64Opnd, II_LDC1, load>, LW_FM<0x35>, ISA_MIPS2, FGR_64; def SDC164 : SW_FT<"sdc1", FGR64Opnd, II_SDC1, store>, LW_FM<0x3d>, ISA_MIPS2, FGR_64; } def LDC1 : MMRel, LW_FT<"ldc1", AFGR64Opnd, II_LDC1, load>, LW_FM<0x35>, ISA_MIPS2, FGR_32; def SDC1 : MMRel, SW_FT<"sdc1", AFGR64Opnd, II_SDC1, store>, LW_FM<0x3d>, ISA_MIPS2, FGR_32; // Indexed loads and stores. // Base register + offset register addressing mode (indicated by "x" in the // instruction mnemonic) is disallowed under NaCl. let AdditionalPredicates = [IsNotNaCl] in { def LWXC1 : MMRel, LWXC1_FT<"lwxc1", FGR32Opnd, II_LWXC1, load>, LWXC1_FM<0>, INSN_MIPS4_32R2_NOT_32R6_64R6; def SWXC1 : MMRel, SWXC1_FT<"swxc1", FGR32Opnd, II_SWXC1, store>, SWXC1_FM<8>, INSN_MIPS4_32R2_NOT_32R6_64R6; } let AdditionalPredicates = [NotInMicroMips, IsNotNaCl] in { def LDXC1 : LWXC1_FT<"ldxc1", AFGR64Opnd, II_LDXC1, load>, LWXC1_FM<1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32; def SDXC1 : SWXC1_FT<"sdxc1", AFGR64Opnd, II_SDXC1, store>, SWXC1_FM<9>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32; } let DecoderNamespace="Mips64" in { def LDXC164 : LWXC1_FT<"ldxc1", FGR64Opnd, II_LDXC1, load>, LWXC1_FM<1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64; def SDXC164 : SWXC1_FT<"sdxc1", FGR64Opnd, II_SDXC1, store>, SWXC1_FM<9>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64; } // Load/store doubleword indexed unaligned. let AdditionalPredicates = [IsNotNaCl] in { def LUXC1 : MMRel, LWXC1_FT<"luxc1", AFGR64Opnd, II_LUXC1>, LWXC1_FM<0x5>, INSN_MIPS5_32R2_NOT_32R6_64R6, FGR_32; def SUXC1 : MMRel, SWXC1_FT<"suxc1", AFGR64Opnd, II_SUXC1>, SWXC1_FM<0xd>, INSN_MIPS5_32R2_NOT_32R6_64R6, FGR_32; } let DecoderNamespace="Mips64" in { def LUXC164 : LWXC1_FT<"luxc1", FGR64Opnd, II_LUXC1>, LWXC1_FM<0x5>, INSN_MIPS5_32R2_NOT_32R6_64R6, FGR_64; def SUXC164 : SWXC1_FT<"suxc1", FGR64Opnd, II_SUXC1>, SWXC1_FM<0xd>, INSN_MIPS5_32R2_NOT_32R6_64R6, FGR_64; } /// Floating-point Aritmetic def FADD_S : MMRel, ADDS_FT<"add.s", FGR32Opnd, II_ADD_S, 1, fadd>, ADDS_FM<0x00, 16>; defm FADD : ADDS_M<"add.d", II_ADD_D, 1, fadd>, ADDS_FM<0x00, 17>; def FDIV_S : MMRel, ADDS_FT<"div.s", FGR32Opnd, II_DIV_S, 0, fdiv>, ADDS_FM<0x03, 16>; defm FDIV : ADDS_M<"div.d", II_DIV_D, 0, fdiv>, ADDS_FM<0x03, 17>; def FMUL_S : MMRel, ADDS_FT<"mul.s", FGR32Opnd, II_MUL_S, 1, fmul>, ADDS_FM<0x02, 16>; defm FMUL : ADDS_M<"mul.d", II_MUL_D, 1, fmul>, ADDS_FM<0x02, 17>; def FSUB_S : MMRel, ADDS_FT<"sub.s", FGR32Opnd, II_SUB_S, 0, fsub>, ADDS_FM<0x01, 16>; defm FSUB : ADDS_M<"sub.d", II_SUB_D, 0, fsub>, ADDS_FM<0x01, 17>; def MADD_S : MMRel, MADDS_FT<"madd.s", FGR32Opnd, II_MADD_S, fadd>, MADDS_FM<4, 0>, INSN_MIPS4_32R2_NOT_32R6_64R6; def MSUB_S : MMRel, MADDS_FT<"msub.s", FGR32Opnd, II_MSUB_S, fsub>, MADDS_FM<5, 0>, INSN_MIPS4_32R2_NOT_32R6_64R6; let AdditionalPredicates = [NoNaNsFPMath] in { def NMADD_S : MMRel, NMADDS_FT<"nmadd.s", FGR32Opnd, II_NMADD_S, fadd>, MADDS_FM<6, 0>, INSN_MIPS4_32R2_NOT_32R6_64R6; def NMSUB_S : MMRel, NMADDS_FT<"nmsub.s", FGR32Opnd, II_NMSUB_S, fsub>, MADDS_FM<7, 0>, INSN_MIPS4_32R2_NOT_32R6_64R6; } def MADD_D32 : MMRel, MADDS_FT<"madd.d", AFGR64Opnd, II_MADD_D, fadd>, MADDS_FM<4, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32; def MSUB_D32 : MMRel, MADDS_FT<"msub.d", AFGR64Opnd, II_MSUB_D, fsub>, MADDS_FM<5, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32; let AdditionalPredicates = [NoNaNsFPMath] in { def NMADD_D32 : MMRel, NMADDS_FT<"nmadd.d", AFGR64Opnd, II_NMADD_D, fadd>, MADDS_FM<6, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32; def NMSUB_D32 : MMRel, NMADDS_FT<"nmsub.d", AFGR64Opnd, II_NMSUB_D, fsub>, MADDS_FM<7, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_32; } let DecoderNamespace = "Mips64" in { def MADD_D64 : MADDS_FT<"madd.d", FGR64Opnd, II_MADD_D, fadd>, MADDS_FM<4, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64; def MSUB_D64 : MADDS_FT<"msub.d", FGR64Opnd, II_MSUB_D, fsub>, MADDS_FM<5, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64; } let AdditionalPredicates = [NoNaNsFPMath], DecoderNamespace = "Mips64" in { def NMADD_D64 : NMADDS_FT<"nmadd.d", FGR64Opnd, II_NMADD_D, fadd>, MADDS_FM<6, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64; def NMSUB_D64 : NMADDS_FT<"nmsub.d", FGR64Opnd, II_NMSUB_D, fsub>, MADDS_FM<7, 1>, INSN_MIPS4_32R2_NOT_32R6_64R6, FGR_64; } //===----------------------------------------------------------------------===// // Floating Point Branch Codes //===----------------------------------------------------------------------===// // Mips branch codes. These correspond to condcode in MipsInstrInfo.h. // They must be kept in synch. def MIPS_BRANCH_F : PatLeaf<(i32 0)>; def MIPS_BRANCH_T : PatLeaf<(i32 1)>; def BC1F : MMRel, BC1F_FT<"bc1f", brtarget, II_BC1F, MIPS_BRANCH_F>, BC1F_FM<0, 0>, ISA_MIPS1_NOT_32R6_64R6; def BC1FL : MMRel, BC1F_FT<"bc1fl", brtarget, II_BC1FL, MIPS_BRANCH_F, 0>, BC1F_FM<1, 0>, ISA_MIPS2_NOT_32R6_64R6; def BC1T : MMRel, BC1F_FT<"bc1t", brtarget, II_BC1T, MIPS_BRANCH_T>, BC1F_FM<0, 1>, ISA_MIPS1_NOT_32R6_64R6; def BC1TL : MMRel, BC1F_FT<"bc1tl", brtarget, II_BC1TL, MIPS_BRANCH_T, 0>, BC1F_FM<1, 1>, ISA_MIPS2_NOT_32R6_64R6; /// Floating Point Compare def FCMP_S32 : MMRel, CEQS_FT<"s", FGR32, II_C_CC_S, MipsFPCmp>, CEQS_FM<16>, ISA_MIPS1_NOT_32R6_64R6; def FCMP_D32 : MMRel, CEQS_FT<"d", AFGR64, II_C_CC_D, MipsFPCmp>, CEQS_FM<17>, ISA_MIPS1_NOT_32R6_64R6, FGR_32; let DecoderNamespace = "Mips64" in def FCMP_D64 : CEQS_FT<"d", FGR64, II_C_CC_D, MipsFPCmp>, CEQS_FM<17>, ISA_MIPS1_NOT_32R6_64R6, FGR_64; //===----------------------------------------------------------------------===// // Floating Point Pseudo-Instructions //===----------------------------------------------------------------------===// // This pseudo instr gets expanded into 2 mtc1 instrs after register // allocation. class BuildPairF64Base<RegisterOperand RO> : PseudoSE<(outs RO:$dst), (ins GPR32Opnd:$lo, GPR32Opnd:$hi), [(set RO:$dst, (MipsBuildPairF64 GPR32Opnd:$lo, GPR32Opnd:$hi))]>; def BuildPairF64 : BuildPairF64Base<AFGR64Opnd>, FGR_32, HARDFLOAT; def BuildPairF64_64 : BuildPairF64Base<FGR64Opnd>, FGR_64, HARDFLOAT; // This pseudo instr gets expanded into 2 mfc1 instrs after register // allocation. // if n is 0, lower part of src is extracted. // if n is 1, higher part of src is extracted. class ExtractElementF64Base<RegisterOperand RO> : PseudoSE<(outs GPR32Opnd:$dst), (ins RO:$src, i32imm:$n), [(set GPR32Opnd:$dst, (MipsExtractElementF64 RO:$src, imm:$n))]>; def ExtractElementF64 : ExtractElementF64Base<AFGR64Opnd>, FGR_32, HARDFLOAT; def ExtractElementF64_64 : ExtractElementF64Base<FGR64Opnd>, FGR_64, HARDFLOAT; //===----------------------------------------------------------------------===// // InstAliases. //===----------------------------------------------------------------------===// def : MipsInstAlias<"bc1t $offset", (BC1T FCC0, brtarget:$offset)>, ISA_MIPS1_NOT_32R6_64R6, HARDFLOAT; def : MipsInstAlias<"bc1tl $offset", (BC1TL FCC0, brtarget:$offset)>, ISA_MIPS2_NOT_32R6_64R6, HARDFLOAT; def : MipsInstAlias<"bc1f $offset", (BC1F FCC0, brtarget:$offset)>, ISA_MIPS1_NOT_32R6_64R6, HARDFLOAT; def : MipsInstAlias<"bc1fl $offset", (BC1FL FCC0, brtarget:$offset)>, ISA_MIPS2_NOT_32R6_64R6, HARDFLOAT; //===----------------------------------------------------------------------===// // Floating Point Patterns //===----------------------------------------------------------------------===// def : MipsPat<(f32 fpimm0), (MTC1 ZERO)>; def : MipsPat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>; def : MipsPat<(f32 (sint_to_fp GPR32Opnd:$src)), (PseudoCVT_S_W GPR32Opnd:$src)>; def : MipsPat<(MipsTruncIntFP FGR32Opnd:$src), (TRUNC_W_S FGR32Opnd:$src)>; def : MipsPat<(f64 (sint_to_fp GPR32Opnd:$src)), (PseudoCVT_D32_W GPR32Opnd:$src)>, FGR_32; def : MipsPat<(MipsTruncIntFP AFGR64Opnd:$src), (TRUNC_W_D32 AFGR64Opnd:$src)>, FGR_32; def : MipsPat<(f32 (fround AFGR64Opnd:$src)), (CVT_S_D32 AFGR64Opnd:$src)>, FGR_32; def : MipsPat<(f64 (fextend FGR32Opnd:$src)), (CVT_D32_S FGR32Opnd:$src)>, FGR_32; def : MipsPat<(f64 fpimm0), (DMTC1 ZERO_64)>, FGR_64; def : MipsPat<(f64 fpimm0neg), (FNEG_D64 (DMTC1 ZERO_64))>, FGR_64; def : MipsPat<(f64 (sint_to_fp GPR32Opnd:$src)), (PseudoCVT_D64_W GPR32Opnd:$src)>, FGR_64; def : MipsPat<(f32 (sint_to_fp GPR64Opnd:$src)), (EXTRACT_SUBREG (PseudoCVT_S_L GPR64Opnd:$src), sub_lo)>, FGR_64; def : MipsPat<(f64 (sint_to_fp GPR64Opnd:$src)), (PseudoCVT_D64_L GPR64Opnd:$src)>, FGR_64; def : MipsPat<(MipsTruncIntFP FGR64Opnd:$src), (TRUNC_W_D64 FGR64Opnd:$src)>, FGR_64; def : MipsPat<(MipsTruncIntFP FGR32Opnd:$src), (TRUNC_L_S FGR32Opnd:$src)>, FGR_64; def : MipsPat<(MipsTruncIntFP FGR64Opnd:$src), (TRUNC_L_D64 FGR64Opnd:$src)>, FGR_64; def : MipsPat<(f32 (fround FGR64Opnd:$src)), (CVT_S_D64 FGR64Opnd:$src)>, FGR_64; def : MipsPat<(f64 (fextend FGR32Opnd:$src)), (CVT_D64_S FGR32Opnd:$src)>, FGR_64; // Patterns for loads/stores with a reg+imm operand. let AddedComplexity = 40 in { def : LoadRegImmPat<LWC1, f32, load>; def : StoreRegImmPat<SWC1, f32>; def : LoadRegImmPat<LDC164, f64, load>, FGR_64; def : StoreRegImmPat<SDC164, f64>, FGR_64; def : LoadRegImmPat<LDC1, f64, load>, FGR_32; def : StoreRegImmPat<SDC1, f64>, FGR_32; }