//===-- BPFInstrInfo.td - Target Description for BPF Target ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the BPF instructions in TableGen format. // //===----------------------------------------------------------------------===// include "BPFInstrFormats.td" // Instruction Operands and Patterns // These are target-independent nodes, but have target-specific formats. def SDT_BPFCallSeqStart : SDCallSeqStart<[SDTCisVT<0, iPTR>]>; def SDT_BPFCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, iPTR>, SDTCisVT<1, iPTR>]>; def SDT_BPFCall : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>; def SDT_BPFSetFlag : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>]>; def SDT_BPFSelectCC : SDTypeProfile<1, 5, [SDTCisSameAs<1, 2>, SDTCisSameAs<0, 4>, SDTCisSameAs<4, 5>]>; def SDT_BPFBrCC : SDTypeProfile<0, 4, [SDTCisSameAs<0, 1>, SDTCisVT<3, OtherVT>]>; def SDT_BPFWrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>; def BPFcall : SDNode<"BPFISD::CALL", SDT_BPFCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def BPFretflag : SDNode<"BPFISD::RET_FLAG", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def BPFcallseq_start: SDNode<"ISD::CALLSEQ_START", SDT_BPFCallSeqStart, [SDNPHasChain, SDNPOutGlue]>; def BPFcallseq_end : SDNode<"ISD::CALLSEQ_END", SDT_BPFCallSeqEnd, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def BPFbrcc : SDNode<"BPFISD::BR_CC", SDT_BPFBrCC, [SDNPHasChain, SDNPOutGlue, SDNPInGlue]>; def BPFselectcc : SDNode<"BPFISD::SELECT_CC", SDT_BPFSelectCC, [SDNPInGlue]>; def BPFWrapper : SDNode<"BPFISD::Wrapper", SDT_BPFWrapper>; def brtarget : Operand<OtherVT>; def calltarget : Operand<i64>; def u64imm : Operand<i64> { let PrintMethod = "printImm64Operand"; } def i64immSExt32 : PatLeaf<(imm), [{return isInt<32>(N->getSExtValue()); }]>; // Addressing modes. def ADDRri : ComplexPattern<i64, 2, "SelectAddr", [], []>; def FIri : ComplexPattern<i64, 2, "SelectFIAddr", [add, or], []>; // Address operands def MEMri : Operand<i64> { let PrintMethod = "printMemOperand"; let EncoderMethod = "getMemoryOpValue"; let MIOperandInfo = (ops GPR, i16imm); } // Conditional code predicates - used for pattern matching for jump instructions def BPF_CC_EQ : PatLeaf<(imm), [{return (N->getZExtValue() == ISD::SETEQ);}]>; def BPF_CC_NE : PatLeaf<(imm), [{return (N->getZExtValue() == ISD::SETNE);}]>; def BPF_CC_GE : PatLeaf<(imm), [{return (N->getZExtValue() == ISD::SETGE);}]>; def BPF_CC_GT : PatLeaf<(imm), [{return (N->getZExtValue() == ISD::SETGT);}]>; def BPF_CC_GTU : PatLeaf<(imm), [{return (N->getZExtValue() == ISD::SETUGT);}]>; def BPF_CC_GEU : PatLeaf<(imm), [{return (N->getZExtValue() == ISD::SETUGE);}]>; // jump instructions class JMP_RR<bits<4> Opc, string OpcodeStr, PatLeaf Cond> : InstBPF<(outs), (ins GPR:$dst, GPR:$src, brtarget:$BrDst), !strconcat(OpcodeStr, "\t$dst, $src goto $BrDst"), [(BPFbrcc i64:$dst, i64:$src, Cond, bb:$BrDst)]> { bits<4> op; bits<1> BPFSrc; bits<4> dst; bits<4> src; bits<16> BrDst; let Inst{63-60} = op; let Inst{59} = BPFSrc; let Inst{55-52} = src; let Inst{51-48} = dst; let Inst{47-32} = BrDst; let op = Opc; let BPFSrc = 1; let BPFClass = 5; // BPF_JMP } class JMP_RI<bits<4> Opc, string OpcodeStr, PatLeaf Cond> : InstBPF<(outs), (ins GPR:$dst, i64imm:$imm, brtarget:$BrDst), !strconcat(OpcodeStr, "i\t$dst, $imm goto $BrDst"), [(BPFbrcc i64:$dst, i64immSExt32:$imm, Cond, bb:$BrDst)]> { bits<4> op; bits<1> BPFSrc; bits<4> dst; bits<16> BrDst; bits<32> imm; let Inst{63-60} = op; let Inst{59} = BPFSrc; let Inst{51-48} = dst; let Inst{47-32} = BrDst; let Inst{31-0} = imm; let op = Opc; let BPFSrc = 0; let BPFClass = 5; // BPF_JMP } multiclass J<bits<4> Opc, string OpcodeStr, PatLeaf Cond> { def _rr : JMP_RR<Opc, OpcodeStr, Cond>; def _ri : JMP_RI<Opc, OpcodeStr, Cond>; } let isBranch = 1, isTerminator = 1, hasDelaySlot=0 in { // cmp+goto instructions defm JEQ : J<0x1, "jeq", BPF_CC_EQ>; defm JUGT : J<0x2, "jgt", BPF_CC_GTU>; defm JUGE : J<0x3, "jge", BPF_CC_GEU>; defm JNE : J<0x5, "jne", BPF_CC_NE>; defm JSGT : J<0x6, "jsgt", BPF_CC_GT>; defm JSGE : J<0x7, "jsge", BPF_CC_GE>; } // ALU instructions class ALU_RI<bits<4> Opc, string OpcodeStr, SDNode OpNode> : InstBPF<(outs GPR:$dst), (ins GPR:$src2, i64imm:$imm), !strconcat(OpcodeStr, "i\t$dst, $imm"), [(set GPR:$dst, (OpNode GPR:$src2, i64immSExt32:$imm))]> { bits<4> op; bits<1> BPFSrc; bits<4> dst; bits<32> imm; let Inst{63-60} = op; let Inst{59} = BPFSrc; let Inst{51-48} = dst; let Inst{31-0} = imm; let op = Opc; let BPFSrc = 0; let BPFClass = 7; // BPF_ALU64 } class ALU_RR<bits<4> Opc, string OpcodeStr, SDNode OpNode> : InstBPF<(outs GPR:$dst), (ins GPR:$src2, GPR:$src), !strconcat(OpcodeStr, "\t$dst, $src"), [(set GPR:$dst, (OpNode i64:$src2, i64:$src))]> { bits<4> op; bits<1> BPFSrc; bits<4> dst; bits<4> src; let Inst{63-60} = op; let Inst{59} = BPFSrc; let Inst{55-52} = src; let Inst{51-48} = dst; let op = Opc; let BPFSrc = 1; let BPFClass = 7; // BPF_ALU64 } multiclass ALU<bits<4> Opc, string OpcodeStr, SDNode OpNode> { def _rr : ALU_RR<Opc, OpcodeStr, OpNode>; def _ri : ALU_RI<Opc, OpcodeStr, OpNode>; } let Constraints = "$dst = $src2" in { let isAsCheapAsAMove = 1 in { defm ADD : ALU<0x0, "add", add>; defm SUB : ALU<0x1, "sub", sub>; defm OR : ALU<0x4, "or", or>; defm AND : ALU<0x5, "and", and>; defm SLL : ALU<0x6, "sll", shl>; defm SRL : ALU<0x7, "srl", srl>; defm XOR : ALU<0xa, "xor", xor>; defm SRA : ALU<0xc, "sra", sra>; } defm MUL : ALU<0x2, "mul", mul>; defm DIV : ALU<0x3, "div", udiv>; } class MOV_RR<string OpcodeStr> : InstBPF<(outs GPR:$dst), (ins GPR:$src), !strconcat(OpcodeStr, "\t$dst, $src"), []> { bits<4> op; bits<1> BPFSrc; bits<4> dst; bits<4> src; let Inst{63-60} = op; let Inst{59} = BPFSrc; let Inst{55-52} = src; let Inst{51-48} = dst; let op = 0xb; // BPF_MOV let BPFSrc = 1; // BPF_X let BPFClass = 7; // BPF_ALU64 } class MOV_RI<string OpcodeStr> : InstBPF<(outs GPR:$dst), (ins i64imm:$imm), !strconcat(OpcodeStr, "\t$dst, $imm"), [(set GPR:$dst, (i64 i64immSExt32:$imm))]> { bits<4> op; bits<1> BPFSrc; bits<4> dst; bits<32> imm; let Inst{63-60} = op; let Inst{59} = BPFSrc; let Inst{51-48} = dst; let Inst{31-0} = imm; let op = 0xb; // BPF_MOV let BPFSrc = 0; // BPF_K let BPFClass = 7; // BPF_ALU64 } class LD_IMM64<bits<4> Pseudo, string OpcodeStr> : InstBPF<(outs GPR:$dst), (ins u64imm:$imm), !strconcat(OpcodeStr, "\t$dst, $imm"), [(set GPR:$dst, (i64 imm:$imm))]> { bits<3> mode; bits<2> size; bits<4> dst; bits<64> imm; let Inst{63-61} = mode; let Inst{60-59} = size; let Inst{51-48} = dst; let Inst{55-52} = Pseudo; let Inst{47-32} = 0; let Inst{31-0} = imm{31-0}; let mode = 0; // BPF_IMM let size = 3; // BPF_DW let BPFClass = 0; // BPF_LD } let isReMaterializable = 1, isAsCheapAsAMove = 1 in { def LD_imm64 : LD_IMM64<0, "ld_64">; def MOV_rr : MOV_RR<"mov">; def MOV_ri : MOV_RI<"mov">; } def FI_ri : InstBPF<(outs GPR:$dst), (ins MEMri:$addr), "lea\t$dst, $addr", [(set i64:$dst, FIri:$addr)]> { // This is a tentative instruction, and will be replaced // with MOV_rr and ADD_ri in PEI phase } def LD_pseudo : InstBPF<(outs GPR:$dst), (ins i64imm:$pseudo, u64imm:$imm), "ld_pseudo\t$dst, $pseudo, $imm", [(set GPR:$dst, (int_bpf_pseudo imm:$pseudo, imm:$imm))]> { bits<3> mode; bits<2> size; bits<4> dst; bits<64> imm; bits<4> pseudo; let Inst{63-61} = mode; let Inst{60-59} = size; let Inst{51-48} = dst; let Inst{55-52} = pseudo; let Inst{47-32} = 0; let Inst{31-0} = imm{31-0}; let mode = 0; // BPF_IMM let size = 3; // BPF_DW let BPFClass = 0; // BPF_LD } // STORE instructions class STORE<bits<2> SizeOp, string OpcodeStr, list<dag> Pattern> : InstBPF<(outs), (ins GPR:$src, MEMri:$addr), !strconcat(OpcodeStr, "\t$addr, $src"), Pattern> { bits<3> mode; bits<2> size; bits<4> src; bits<20> addr; let Inst{63-61} = mode; let Inst{60-59} = size; let Inst{51-48} = addr{19-16}; // base reg let Inst{55-52} = src; let Inst{47-32} = addr{15-0}; // offset let mode = 3; // BPF_MEM let size = SizeOp; let BPFClass = 3; // BPF_STX } class STOREi64<bits<2> Opc, string OpcodeStr, PatFrag OpNode> : STORE<Opc, OpcodeStr, [(OpNode i64:$src, ADDRri:$addr)]>; def STW : STOREi64<0x0, "stw", truncstorei32>; def STH : STOREi64<0x1, "sth", truncstorei16>; def STB : STOREi64<0x2, "stb", truncstorei8>; def STD : STOREi64<0x3, "std", store>; // LOAD instructions class LOAD<bits<2> SizeOp, string OpcodeStr, list<dag> Pattern> : InstBPF<(outs GPR:$dst), (ins MEMri:$addr), !strconcat(OpcodeStr, "\t$dst, $addr"), Pattern> { bits<3> mode; bits<2> size; bits<4> dst; bits<20> addr; let Inst{63-61} = mode; let Inst{60-59} = size; let Inst{51-48} = dst; let Inst{55-52} = addr{19-16}; let Inst{47-32} = addr{15-0}; let mode = 3; // BPF_MEM let size = SizeOp; let BPFClass = 1; // BPF_LDX } class LOADi64<bits<2> SizeOp, string OpcodeStr, PatFrag OpNode> : LOAD<SizeOp, OpcodeStr, [(set i64:$dst, (OpNode ADDRri:$addr))]>; def LDW : LOADi64<0x0, "ldw", zextloadi32>; def LDH : LOADi64<0x1, "ldh", zextloadi16>; def LDB : LOADi64<0x2, "ldb", zextloadi8>; def LDD : LOADi64<0x3, "ldd", load>; class BRANCH<bits<4> Opc, string OpcodeStr, list<dag> Pattern> : InstBPF<(outs), (ins brtarget:$BrDst), !strconcat(OpcodeStr, "\t$BrDst"), Pattern> { bits<4> op; bits<16> BrDst; bits<1> BPFSrc; let Inst{63-60} = op; let Inst{59} = BPFSrc; let Inst{47-32} = BrDst; let op = Opc; let BPFSrc = 0; let BPFClass = 5; // BPF_JMP } class CALL<string OpcodeStr> : InstBPF<(outs), (ins calltarget:$BrDst), !strconcat(OpcodeStr, "\t$BrDst"), []> { bits<4> op; bits<32> BrDst; bits<1> BPFSrc; let Inst{63-60} = op; let Inst{59} = BPFSrc; let Inst{31-0} = BrDst; let op = 8; // BPF_CALL let BPFSrc = 0; let BPFClass = 5; // BPF_JMP } // Jump always let isBranch = 1, isTerminator = 1, hasDelaySlot=0, isBarrier = 1 in { def JMP : BRANCH<0x0, "jmp", [(br bb:$BrDst)]>; } // Jump and link let isCall=1, hasDelaySlot=0, Uses = [R11], // Potentially clobbered registers Defs = [R0, R1, R2, R3, R4, R5] in { def JAL : CALL<"call">; } class NOP_I<string OpcodeStr> : InstBPF<(outs), (ins i32imm:$imm), !strconcat(OpcodeStr, "\t$imm"), []> { // mov r0, r0 == nop bits<4> op; bits<1> BPFSrc; bits<4> dst; bits<4> src; let Inst{63-60} = op; let Inst{59} = BPFSrc; let Inst{55-52} = src; let Inst{51-48} = dst; let op = 0xb; // BPF_MOV let BPFSrc = 1; // BPF_X let BPFClass = 7; // BPF_ALU64 let src = 0; // R0 let dst = 0; // R0 } let hasSideEffects = 0 in def NOP : NOP_I<"nop">; class RET<string OpcodeStr> : InstBPF<(outs), (ins), !strconcat(OpcodeStr, ""), [(BPFretflag)]> { bits<4> op; let Inst{63-60} = op; let Inst{59} = 0; let Inst{31-0} = 0; let op = 9; // BPF_EXIT let BPFClass = 5; // BPF_JMP } let isReturn = 1, isTerminator = 1, hasDelaySlot=0, isBarrier = 1, isNotDuplicable = 1 in { def RET : RET<"ret">; } // ADJCALLSTACKDOWN/UP pseudo insns let Defs = [R11], Uses = [R11] in { def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt), "#ADJCALLSTACKDOWN $amt", [(BPFcallseq_start timm:$amt)]>; def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2), "#ADJCALLSTACKUP $amt1 $amt2", [(BPFcallseq_end timm:$amt1, timm:$amt2)]>; } let usesCustomInserter = 1 in { def Select : Pseudo<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs, i64imm:$imm, GPR:$src, GPR:$src2), "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2", [(set i64:$dst, (BPFselectcc i64:$lhs, i64:$rhs, (i64 imm:$imm), i64:$src, i64:$src2))]>; } // load 64-bit global addr into register def : Pat<(BPFWrapper tglobaladdr:$in), (LD_imm64 tglobaladdr:$in)>; // 0xffffFFFF doesn't fit into simm32, optimize common case def : Pat<(i64 (and (i64 GPR:$src), 0xffffFFFF)), (SRL_ri (SLL_ri (i64 GPR:$src), 32), 32)>; // Calls def : Pat<(BPFcall tglobaladdr:$dst), (JAL tglobaladdr:$dst)>; def : Pat<(BPFcall imm:$dst), (JAL imm:$dst)>; // Loads def : Pat<(extloadi8 ADDRri:$src), (i64 (LDB ADDRri:$src))>; def : Pat<(extloadi16 ADDRri:$src), (i64 (LDH ADDRri:$src))>; def : Pat<(extloadi32 ADDRri:$src), (i64 (LDW ADDRri:$src))>; // Atomics class XADD<bits<2> SizeOp, string OpcodeStr, PatFrag OpNode> : InstBPF<(outs GPR:$dst), (ins MEMri:$addr, GPR:$val), !strconcat(OpcodeStr, "\t$dst, $addr, $val"), [(set GPR:$dst, (OpNode ADDRri:$addr, GPR:$val))]> { bits<3> mode; bits<2> size; bits<4> src; bits<20> addr; let Inst{63-61} = mode; let Inst{60-59} = size; let Inst{51-48} = addr{19-16}; // base reg let Inst{55-52} = src; let Inst{47-32} = addr{15-0}; // offset let mode = 6; // BPF_XADD let size = SizeOp; let BPFClass = 3; // BPF_STX } let Constraints = "$dst = $val" in { def XADD32 : XADD<0, "xadd32", atomic_load_add_32>; def XADD64 : XADD<3, "xadd64", atomic_load_add_64>; // undefined def XADD16 : XADD<1, "xadd16", atomic_load_add_16>; // undefined def XADD8 : XADD<2, "xadd8", atomic_load_add_8>; } // bswap16, bswap32, bswap64 class BSWAP<bits<32> SizeOp, string OpcodeStr, list<dag> Pattern> : InstBPF<(outs GPR:$dst), (ins GPR:$src), !strconcat(OpcodeStr, "\t$dst"), Pattern> { bits<4> op; bits<1> BPFSrc; bits<4> dst; bits<32> imm; let Inst{63-60} = op; let Inst{59} = BPFSrc; let Inst{51-48} = dst; let Inst{31-0} = imm; let op = 0xd; // BPF_END let BPFSrc = 1; // BPF_TO_BE (TODO: use BPF_TO_LE for big-endian target) let BPFClass = 4; // BPF_ALU let imm = SizeOp; } let Constraints = "$dst = $src" in { def BSWAP16 : BSWAP<16, "bswap16", [(set GPR:$dst, (srl (bswap GPR:$src), (i64 48)))]>; def BSWAP32 : BSWAP<32, "bswap32", [(set GPR:$dst, (srl (bswap GPR:$src), (i64 32)))]>; def BSWAP64 : BSWAP<64, "bswap64", [(set GPR:$dst, (bswap GPR:$src))]>; } let Defs = [R0, R1, R2, R3, R4, R5], Uses = [R6], hasSideEffects = 1, hasExtraDefRegAllocReq = 1, hasExtraSrcRegAllocReq = 1, mayLoad = 1 in { class LOAD_ABS<bits<2> SizeOp, string OpcodeStr, Intrinsic OpNode> : InstBPF<(outs), (ins GPR:$skb, i64imm:$imm), !strconcat(OpcodeStr, "\tr0, $skb.data + $imm"), [(set R0, (OpNode GPR:$skb, i64immSExt32:$imm))]> { bits<3> mode; bits<2> size; bits<32> imm; let Inst{63-61} = mode; let Inst{60-59} = size; let Inst{31-0} = imm; let mode = 1; // BPF_ABS let size = SizeOp; let BPFClass = 0; // BPF_LD } class LOAD_IND<bits<2> SizeOp, string OpcodeStr, Intrinsic OpNode> : InstBPF<(outs), (ins GPR:$skb, GPR:$val), !strconcat(OpcodeStr, "\tr0, $skb.data + $val"), [(set R0, (OpNode GPR:$skb, GPR:$val))]> { bits<3> mode; bits<2> size; bits<4> val; let Inst{63-61} = mode; let Inst{60-59} = size; let Inst{55-52} = val; let mode = 2; // BPF_IND let size = SizeOp; let BPFClass = 0; // BPF_LD } } def LD_ABS_B : LOAD_ABS<2, "ldabs_b", int_bpf_load_byte>; def LD_ABS_H : LOAD_ABS<1, "ldabs_h", int_bpf_load_half>; def LD_ABS_W : LOAD_ABS<0, "ldabs_w", int_bpf_load_word>; def LD_IND_B : LOAD_IND<2, "ldind_b", int_bpf_load_byte>; def LD_IND_H : LOAD_IND<1, "ldind_h", int_bpf_load_half>; def LD_IND_W : LOAD_IND<0, "ldind_w", int_bpf_load_word>;