//===-- SIInstructions.td - SI Instruction Defintions ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // This file was originally auto-generated from a GPU register header file and // all the instruction definitions were originally commented out. Instructions // that are not yet supported remain commented out. //===----------------------------------------------------------------------===// class InterpSlots { int P0 = 2; int P10 = 0; int P20 = 1; } def INTERP : InterpSlots; def InterpSlot : Operand<i32> { let PrintMethod = "printInterpSlot"; } def SendMsgImm : Operand<i32> { let PrintMethod = "printSendMsg"; } def isGCN : Predicate<"Subtarget->getGeneration() " ">= AMDGPUSubtarget::SOUTHERN_ISLANDS">, AssemblerPredicate<"FeatureGCN">; def isSI : Predicate<"Subtarget->getGeneration() " "== AMDGPUSubtarget::SOUTHERN_ISLANDS">, AssemblerPredicate<"FeatureSouthernIslands">; def has16BankLDS : Predicate<"Subtarget->getLDSBankCount() == 16">; def has32BankLDS : Predicate<"Subtarget->getLDSBankCount() == 32">; def SWaitMatchClass : AsmOperandClass { let Name = "SWaitCnt"; let RenderMethod = "addImmOperands"; let ParserMethod = "parseSWaitCntOps"; } def WAIT_FLAG : InstFlag<"printWaitFlag"> { let ParserMatchClass = SWaitMatchClass; } let SubtargetPredicate = isGCN in { //===----------------------------------------------------------------------===// // EXP Instructions //===----------------------------------------------------------------------===// defm EXP : EXP_m; //===----------------------------------------------------------------------===// // SMRD Instructions //===----------------------------------------------------------------------===// let mayLoad = 1 in { // We are using the SGPR_32 and not the SReg_32 register class for 32-bit // SMRD instructions, because the SGPR_32 register class does not include M0 // and writing to M0 from an SMRD instruction will hang the GPU. defm S_LOAD_DWORD : SMRD_Helper <smrd<0x00>, "s_load_dword", SReg_64, SGPR_32>; defm S_LOAD_DWORDX2 : SMRD_Helper <smrd<0x01>, "s_load_dwordx2", SReg_64, SReg_64>; defm S_LOAD_DWORDX4 : SMRD_Helper <smrd<0x02>, "s_load_dwordx4", SReg_64, SReg_128>; defm S_LOAD_DWORDX8 : SMRD_Helper <smrd<0x03>, "s_load_dwordx8", SReg_64, SReg_256>; defm S_LOAD_DWORDX16 : SMRD_Helper <smrd<0x04>, "s_load_dwordx16", SReg_64, SReg_512>; defm S_BUFFER_LOAD_DWORD : SMRD_Helper < smrd<0x08>, "s_buffer_load_dword", SReg_128, SGPR_32 >; defm S_BUFFER_LOAD_DWORDX2 : SMRD_Helper < smrd<0x09>, "s_buffer_load_dwordx2", SReg_128, SReg_64 >; defm S_BUFFER_LOAD_DWORDX4 : SMRD_Helper < smrd<0x0a>, "s_buffer_load_dwordx4", SReg_128, SReg_128 >; defm S_BUFFER_LOAD_DWORDX8 : SMRD_Helper < smrd<0x0b>, "s_buffer_load_dwordx8", SReg_128, SReg_256 >; defm S_BUFFER_LOAD_DWORDX16 : SMRD_Helper < smrd<0x0c>, "s_buffer_load_dwordx16", SReg_128, SReg_512 >; } // mayLoad = 1 //def S_MEMTIME : SMRD_ <0x0000001e, "s_memtime", []>; defm S_DCACHE_INV : SMRD_Inval <smrd<0x1f, 0x20>, "s_dcache_inv", int_amdgcn_s_dcache_inv>; //===----------------------------------------------------------------------===// // SOP1 Instructions //===----------------------------------------------------------------------===// let isMoveImm = 1 in { let isReMaterializable = 1, isAsCheapAsAMove = 1 in { defm S_MOV_B32 : SOP1_32 <sop1<0x03, 0x00>, "s_mov_b32", []>; defm S_MOV_B64 : SOP1_64 <sop1<0x04, 0x01>, "s_mov_b64", []>; } // let isRematerializeable = 1 let Uses = [SCC] in { defm S_CMOV_B32 : SOP1_32 <sop1<0x05, 0x02>, "s_cmov_b32", []>; defm S_CMOV_B64 : SOP1_64 <sop1<0x06, 0x03>, "s_cmov_b64", []>; } // End Uses = [SCC] } // End isMoveImm = 1 let Defs = [SCC] in { defm S_NOT_B32 : SOP1_32 <sop1<0x07, 0x04>, "s_not_b32", [(set i32:$dst, (not i32:$src0))] >; defm S_NOT_B64 : SOP1_64 <sop1<0x08, 0x05>, "s_not_b64", [(set i64:$dst, (not i64:$src0))] >; defm S_WQM_B32 : SOP1_32 <sop1<0x09, 0x06>, "s_wqm_b32", []>; defm S_WQM_B64 : SOP1_64 <sop1<0x0a, 0x07>, "s_wqm_b64", []>; } // End Defs = [SCC] defm S_BREV_B32 : SOP1_32 <sop1<0x0b, 0x08>, "s_brev_b32", [(set i32:$dst, (bitreverse i32:$src0))] >; defm S_BREV_B64 : SOP1_64 <sop1<0x0c, 0x09>, "s_brev_b64", []>; let Defs = [SCC] in { defm S_BCNT0_I32_B32 : SOP1_32 <sop1<0x0d, 0x0a>, "s_bcnt0_i32_b32", []>; defm S_BCNT0_I32_B64 : SOP1_32_64 <sop1<0x0e, 0x0b>, "s_bcnt0_i32_b64", []>; defm S_BCNT1_I32_B32 : SOP1_32 <sop1<0x0f, 0x0c>, "s_bcnt1_i32_b32", [(set i32:$dst, (ctpop i32:$src0))] >; defm S_BCNT1_I32_B64 : SOP1_32_64 <sop1<0x10, 0x0d>, "s_bcnt1_i32_b64", []>; } // End Defs = [SCC] defm S_FF0_I32_B32 : SOP1_32 <sop1<0x11, 0x0e>, "s_ff0_i32_b32", []>; defm S_FF0_I32_B64 : SOP1_32_64 <sop1<0x12, 0x0f>, "s_ff0_i32_b64", []>; defm S_FF1_I32_B32 : SOP1_32 <sop1<0x13, 0x10>, "s_ff1_i32_b32", [(set i32:$dst, (cttz_zero_undef i32:$src0))] >; defm S_FF1_I32_B64 : SOP1_32_64 <sop1<0x14, 0x11>, "s_ff1_i32_b64", []>; defm S_FLBIT_I32_B32 : SOP1_32 <sop1<0x15, 0x12>, "s_flbit_i32_b32", [(set i32:$dst, (ctlz_zero_undef i32:$src0))] >; defm S_FLBIT_I32_B64 : SOP1_32_64 <sop1<0x16, 0x13>, "s_flbit_i32_b64", []>; defm S_FLBIT_I32 : SOP1_32 <sop1<0x17, 0x14>, "s_flbit_i32", [(set i32:$dst, (int_AMDGPU_flbit_i32 i32:$src0))] >; defm S_FLBIT_I32_I64 : SOP1_32_64 <sop1<0x18, 0x15>, "s_flbit_i32_i64", []>; defm S_SEXT_I32_I8 : SOP1_32 <sop1<0x19, 0x16>, "s_sext_i32_i8", [(set i32:$dst, (sext_inreg i32:$src0, i8))] >; defm S_SEXT_I32_I16 : SOP1_32 <sop1<0x1a, 0x17>, "s_sext_i32_i16", [(set i32:$dst, (sext_inreg i32:$src0, i16))] >; defm S_BITSET0_B32 : SOP1_32 <sop1<0x1b, 0x18>, "s_bitset0_b32", []>; defm S_BITSET0_B64 : SOP1_64 <sop1<0x1c, 0x19>, "s_bitset0_b64", []>; defm S_BITSET1_B32 : SOP1_32 <sop1<0x1d, 0x1a>, "s_bitset1_b32", []>; defm S_BITSET1_B64 : SOP1_64 <sop1<0x1e, 0x1b>, "s_bitset1_b64", []>; defm S_GETPC_B64 : SOP1_64_0 <sop1<0x1f, 0x1c>, "s_getpc_b64", []>; defm S_SETPC_B64 : SOP1_64 <sop1<0x20, 0x1d>, "s_setpc_b64", []>; defm S_SWAPPC_B64 : SOP1_64 <sop1<0x21, 0x1e>, "s_swappc_b64", []>; defm S_RFE_B64 : SOP1_64 <sop1<0x22, 0x1f>, "s_rfe_b64", []>; let hasSideEffects = 1, Uses = [EXEC], Defs = [EXEC, SCC] in { defm S_AND_SAVEEXEC_B64 : SOP1_64 <sop1<0x24, 0x20>, "s_and_saveexec_b64", []>; defm S_OR_SAVEEXEC_B64 : SOP1_64 <sop1<0x25, 0x21>, "s_or_saveexec_b64", []>; defm S_XOR_SAVEEXEC_B64 : SOP1_64 <sop1<0x26, 0x22>, "s_xor_saveexec_b64", []>; defm S_ANDN2_SAVEEXEC_B64 : SOP1_64 <sop1<0x27, 0x23>, "s_andn2_saveexec_b64", []>; defm S_ORN2_SAVEEXEC_B64 : SOP1_64 <sop1<0x28, 0x24>, "s_orn2_saveexec_b64", []>; defm S_NAND_SAVEEXEC_B64 : SOP1_64 <sop1<0x29, 0x25>, "s_nand_saveexec_b64", []>; defm S_NOR_SAVEEXEC_B64 : SOP1_64 <sop1<0x2a, 0x26>, "s_nor_saveexec_b64", []>; defm S_XNOR_SAVEEXEC_B64 : SOP1_64 <sop1<0x2b, 0x27>, "s_xnor_saveexec_b64", []>; } // End hasSideEffects = 1, Uses = [EXEC], Defs = [EXEC, SCC] defm S_QUADMASK_B32 : SOP1_32 <sop1<0x2c, 0x28>, "s_quadmask_b32", []>; defm S_QUADMASK_B64 : SOP1_64 <sop1<0x2d, 0x29>, "s_quadmask_b64", []>; let Uses = [M0] in { defm S_MOVRELS_B32 : SOP1_32 <sop1<0x2e, 0x2a>, "s_movrels_b32", []>; defm S_MOVRELS_B64 : SOP1_64 <sop1<0x2f, 0x2b>, "s_movrels_b64", []>; defm S_MOVRELD_B32 : SOP1_32 <sop1<0x30, 0x2c>, "s_movreld_b32", []>; defm S_MOVRELD_B64 : SOP1_64 <sop1<0x31, 0x2d>, "s_movreld_b64", []>; } // End Uses = [M0] defm S_CBRANCH_JOIN : SOP1_1 <sop1<0x32, 0x2e>, "s_cbranch_join", []>; defm S_MOV_REGRD_B32 : SOP1_32 <sop1<0x33, 0x2f>, "s_mov_regrd_b32", []>; let Defs = [SCC] in { defm S_ABS_I32 : SOP1_32 <sop1<0x34, 0x30>, "s_abs_i32", []>; } // End Defs = [SCC] defm S_MOV_FED_B32 : SOP1_32 <sop1<0x35, 0x31>, "s_mov_fed_b32", []>; //===----------------------------------------------------------------------===// // SOP2 Instructions //===----------------------------------------------------------------------===// let Defs = [SCC] in { // Carry out goes to SCC let isCommutable = 1 in { defm S_ADD_U32 : SOP2_32 <sop2<0x00>, "s_add_u32", []>; defm S_ADD_I32 : SOP2_32 <sop2<0x02>, "s_add_i32", [(set i32:$dst, (add SSrc_32:$src0, SSrc_32:$src1))] >; } // End isCommutable = 1 defm S_SUB_U32 : SOP2_32 <sop2<0x01>, "s_sub_u32", []>; defm S_SUB_I32 : SOP2_32 <sop2<0x03>, "s_sub_i32", [(set i32:$dst, (sub SSrc_32:$src0, SSrc_32:$src1))] >; let Uses = [SCC] in { // Carry in comes from SCC let isCommutable = 1 in { defm S_ADDC_U32 : SOP2_32 <sop2<0x04>, "s_addc_u32", [(set i32:$dst, (adde (i32 SSrc_32:$src0), (i32 SSrc_32:$src1)))]>; } // End isCommutable = 1 defm S_SUBB_U32 : SOP2_32 <sop2<0x05>, "s_subb_u32", [(set i32:$dst, (sube (i32 SSrc_32:$src0), (i32 SSrc_32:$src1)))]>; } // End Uses = [SCC] defm S_MIN_I32 : SOP2_32 <sop2<0x06>, "s_min_i32", [(set i32:$dst, (smin i32:$src0, i32:$src1))] >; defm S_MIN_U32 : SOP2_32 <sop2<0x07>, "s_min_u32", [(set i32:$dst, (umin i32:$src0, i32:$src1))] >; defm S_MAX_I32 : SOP2_32 <sop2<0x08>, "s_max_i32", [(set i32:$dst, (smax i32:$src0, i32:$src1))] >; defm S_MAX_U32 : SOP2_32 <sop2<0x09>, "s_max_u32", [(set i32:$dst, (umax i32:$src0, i32:$src1))] >; } // End Defs = [SCC] let Uses = [SCC] in { defm S_CSELECT_B32 : SOP2_32 <sop2<0x0a>, "s_cselect_b32", []>; defm S_CSELECT_B64 : SOP2_64 <sop2<0x0b>, "s_cselect_b64", []>; } // End Uses = [SCC] let Defs = [SCC] in { defm S_AND_B32 : SOP2_32 <sop2<0x0e, 0x0c>, "s_and_b32", [(set i32:$dst, (and i32:$src0, i32:$src1))] >; defm S_AND_B64 : SOP2_64 <sop2<0x0f, 0x0d>, "s_and_b64", [(set i64:$dst, (and i64:$src0, i64:$src1))] >; defm S_OR_B32 : SOP2_32 <sop2<0x10, 0x0e>, "s_or_b32", [(set i32:$dst, (or i32:$src0, i32:$src1))] >; defm S_OR_B64 : SOP2_64 <sop2<0x11, 0x0f>, "s_or_b64", [(set i64:$dst, (or i64:$src0, i64:$src1))] >; defm S_XOR_B32 : SOP2_32 <sop2<0x12, 0x10>, "s_xor_b32", [(set i32:$dst, (xor i32:$src0, i32:$src1))] >; defm S_XOR_B64 : SOP2_64 <sop2<0x13, 0x11>, "s_xor_b64", [(set i64:$dst, (xor i64:$src0, i64:$src1))] >; defm S_ANDN2_B32 : SOP2_32 <sop2<0x14, 0x12>, "s_andn2_b32", []>; defm S_ANDN2_B64 : SOP2_64 <sop2<0x15, 0x13>, "s_andn2_b64", []>; defm S_ORN2_B32 : SOP2_32 <sop2<0x16, 0x14>, "s_orn2_b32", []>; defm S_ORN2_B64 : SOP2_64 <sop2<0x17, 0x15>, "s_orn2_b64", []>; defm S_NAND_B32 : SOP2_32 <sop2<0x18, 0x16>, "s_nand_b32", []>; defm S_NAND_B64 : SOP2_64 <sop2<0x19, 0x17>, "s_nand_b64", []>; defm S_NOR_B32 : SOP2_32 <sop2<0x1a, 0x18>, "s_nor_b32", []>; defm S_NOR_B64 : SOP2_64 <sop2<0x1b, 0x19>, "s_nor_b64", []>; defm S_XNOR_B32 : SOP2_32 <sop2<0x1c, 0x1a>, "s_xnor_b32", []>; defm S_XNOR_B64 : SOP2_64 <sop2<0x1d, 0x1b>, "s_xnor_b64", []>; } // End Defs = [SCC] // Use added complexity so these patterns are preferred to the VALU patterns. let AddedComplexity = 1 in { let Defs = [SCC] in { defm S_LSHL_B32 : SOP2_32 <sop2<0x1e, 0x1c>, "s_lshl_b32", [(set i32:$dst, (shl i32:$src0, i32:$src1))] >; defm S_LSHL_B64 : SOP2_64_32 <sop2<0x1f, 0x1d>, "s_lshl_b64", [(set i64:$dst, (shl i64:$src0, i32:$src1))] >; defm S_LSHR_B32 : SOP2_32 <sop2<0x20, 0x1e>, "s_lshr_b32", [(set i32:$dst, (srl i32:$src0, i32:$src1))] >; defm S_LSHR_B64 : SOP2_64_32 <sop2<0x21, 0x1f>, "s_lshr_b64", [(set i64:$dst, (srl i64:$src0, i32:$src1))] >; defm S_ASHR_I32 : SOP2_32 <sop2<0x22, 0x20>, "s_ashr_i32", [(set i32:$dst, (sra i32:$src0, i32:$src1))] >; defm S_ASHR_I64 : SOP2_64_32 <sop2<0x23, 0x21>, "s_ashr_i64", [(set i64:$dst, (sra i64:$src0, i32:$src1))] >; } // End Defs = [SCC] defm S_BFM_B32 : SOP2_32 <sop2<0x24, 0x22>, "s_bfm_b32", [(set i32:$dst, (AMDGPUbfm i32:$src0, i32:$src1))]>; defm S_BFM_B64 : SOP2_64 <sop2<0x25, 0x23>, "s_bfm_b64", []>; defm S_MUL_I32 : SOP2_32 <sop2<0x26, 0x24>, "s_mul_i32", [(set i32:$dst, (mul i32:$src0, i32:$src1))] >; } // End AddedComplexity = 1 let Defs = [SCC] in { defm S_BFE_U32 : SOP2_32 <sop2<0x27, 0x25>, "s_bfe_u32", []>; defm S_BFE_I32 : SOP2_32 <sop2<0x28, 0x26>, "s_bfe_i32", []>; defm S_BFE_U64 : SOP2_64 <sop2<0x29, 0x27>, "s_bfe_u64", []>; defm S_BFE_I64 : SOP2_64_32 <sop2<0x2a, 0x28>, "s_bfe_i64", []>; } // End Defs = [SCC] let sdst = 0 in { defm S_CBRANCH_G_FORK : SOP2_m < sop2<0x2b, 0x29>, "s_cbranch_g_fork", (outs), (ins SReg_64:$src0, SReg_64:$src1), "s_cbranch_g_fork $src0, $src1", [] >; } let Defs = [SCC] in { defm S_ABSDIFF_I32 : SOP2_32 <sop2<0x2c, 0x2a>, "s_absdiff_i32", []>; } // End Defs = [SCC] //===----------------------------------------------------------------------===// // SOPC Instructions //===----------------------------------------------------------------------===// def S_CMP_EQ_I32 : SOPC_32 <0x00000000, "s_cmp_eq_i32">; def S_CMP_LG_I32 : SOPC_32 <0x00000001, "s_cmp_lg_i32">; def S_CMP_GT_I32 : SOPC_32 <0x00000002, "s_cmp_gt_i32">; def S_CMP_GE_I32 : SOPC_32 <0x00000003, "s_cmp_ge_i32">; def S_CMP_LT_I32 : SOPC_32 <0x00000004, "s_cmp_lt_i32">; def S_CMP_LE_I32 : SOPC_32 <0x00000005, "s_cmp_le_i32">; def S_CMP_EQ_U32 : SOPC_32 <0x00000006, "s_cmp_eq_u32">; def S_CMP_LG_U32 : SOPC_32 <0x00000007, "s_cmp_lg_u32">; def S_CMP_GT_U32 : SOPC_32 <0x00000008, "s_cmp_gt_u32">; def S_CMP_GE_U32 : SOPC_32 <0x00000009, "s_cmp_ge_u32">; def S_CMP_LT_U32 : SOPC_32 <0x0000000a, "s_cmp_lt_u32">; def S_CMP_LE_U32 : SOPC_32 <0x0000000b, "s_cmp_le_u32">; ////def S_BITCMP0_B32 : SOPC_BITCMP0 <0x0000000c, "s_bitcmp0_b32", []>; ////def S_BITCMP1_B32 : SOPC_BITCMP1 <0x0000000d, "s_bitcmp1_b32", []>; ////def S_BITCMP0_B64 : SOPC_BITCMP0 <0x0000000e, "s_bitcmp0_b64", []>; ////def S_BITCMP1_B64 : SOPC_BITCMP1 <0x0000000f, "s_bitcmp1_b64", []>; //def S_SETVSKIP : SOPC_ <0x00000010, "s_setvskip", []>; //===----------------------------------------------------------------------===// // SOPK Instructions //===----------------------------------------------------------------------===// let isReMaterializable = 1, isMoveImm = 1 in { defm S_MOVK_I32 : SOPK_32 <sopk<0x00>, "s_movk_i32", []>; } // End isReMaterializable = 1 let Uses = [SCC] in { defm S_CMOVK_I32 : SOPK_32 <sopk<0x02, 0x01>, "s_cmovk_i32", []>; } let isCompare = 1 in { /* This instruction is disabled for now until we can figure out how to teach the instruction selector to correctly use the S_CMP* vs V_CMP* instructions. When this instruction is enabled the code generator sometimes produces this invalid sequence: SCC = S_CMPK_EQ_I32 SGPR0, imm VCC = COPY SCC VGPR0 = V_CNDMASK VCC, VGPR0, VGPR1 defm S_CMPK_EQ_I32 : SOPK_SCC <sopk<0x03, 0x02>, "s_cmpk_eq_i32", [(set i1:$dst, (setcc i32:$src0, imm:$src1, SETEQ))] >; */ defm S_CMPK_EQ_I32 : SOPK_SCC <sopk<0x03, 0x02>, "s_cmpk_eq_i32", []>; defm S_CMPK_LG_I32 : SOPK_SCC <sopk<0x04, 0x03>, "s_cmpk_lg_i32", []>; defm S_CMPK_GT_I32 : SOPK_SCC <sopk<0x05, 0x04>, "s_cmpk_gt_i32", []>; defm S_CMPK_GE_I32 : SOPK_SCC <sopk<0x06, 0x05>, "s_cmpk_ge_i32", []>; defm S_CMPK_LT_I32 : SOPK_SCC <sopk<0x07, 0x06>, "s_cmpk_lt_i32", []>; defm S_CMPK_LE_I32 : SOPK_SCC <sopk<0x08, 0x07>, "s_cmpk_le_i32", []>; defm S_CMPK_EQ_U32 : SOPK_SCC <sopk<0x09, 0x08>, "s_cmpk_eq_u32", []>; defm S_CMPK_LG_U32 : SOPK_SCC <sopk<0x0a, 0x09>, "s_cmpk_lg_u32", []>; defm S_CMPK_GT_U32 : SOPK_SCC <sopk<0x0b, 0x0a>, "s_cmpk_gt_u32", []>; defm S_CMPK_GE_U32 : SOPK_SCC <sopk<0x0c, 0x0b>, "s_cmpk_ge_u32", []>; defm S_CMPK_LT_U32 : SOPK_SCC <sopk<0x0d, 0x0c>, "s_cmpk_lt_u32", []>; defm S_CMPK_LE_U32 : SOPK_SCC <sopk<0x0e, 0x0d>, "s_cmpk_le_u32", []>; } // End isCompare = 1 let Defs = [SCC], isCommutable = 1, DisableEncoding = "$src0", Constraints = "$sdst = $src0" in { defm S_ADDK_I32 : SOPK_32TIE <sopk<0x0f, 0x0e>, "s_addk_i32", []>; defm S_MULK_I32 : SOPK_32TIE <sopk<0x10, 0x0f>, "s_mulk_i32", []>; } defm S_CBRANCH_I_FORK : SOPK_m < sopk<0x11, 0x10>, "s_cbranch_i_fork", (outs), (ins SReg_64:$sdst, u16imm:$simm16), " $sdst, $simm16" >; defm S_GETREG_B32 : SOPK_32 <sopk<0x12, 0x11>, "s_getreg_b32", []>; defm S_SETREG_B32 : SOPK_m < sopk<0x13, 0x12>, "s_setreg_b32", (outs), (ins SReg_32:$sdst, u16imm:$simm16), " $sdst, $simm16" >; // FIXME: Not on SI? //defm S_GETREG_REGRD_B32 : SOPK_32 <sopk<0x14, 0x13>, "s_getreg_regrd_b32", []>; defm S_SETREG_IMM32_B32 : SOPK_IMM32 < sopk<0x15, 0x14>, "s_setreg_imm32_b32", (outs), (ins i32imm:$imm, u16imm:$simm16), " $imm, $simm16" >; //===----------------------------------------------------------------------===// // SOPP Instructions //===----------------------------------------------------------------------===// def S_NOP : SOPP <0x00000000, (ins i16imm:$simm16), "s_nop $simm16">; let isTerminator = 1 in { def S_ENDPGM : SOPP <0x00000001, (ins), "s_endpgm", [(IL_retflag)]> { let simm16 = 0; let isBarrier = 1; let hasCtrlDep = 1; } let isBranch = 1 in { def S_BRANCH : SOPP < 0x00000002, (ins sopp_brtarget:$simm16), "s_branch $simm16", [(br bb:$simm16)]> { let isBarrier = 1; } let Uses = [SCC] in { def S_CBRANCH_SCC0 : SOPP < 0x00000004, (ins sopp_brtarget:$simm16), "s_cbranch_scc0 $simm16" >; def S_CBRANCH_SCC1 : SOPP < 0x00000005, (ins sopp_brtarget:$simm16), "s_cbranch_scc1 $simm16" >; } // End Uses = [SCC] let Uses = [VCC] in { def S_CBRANCH_VCCZ : SOPP < 0x00000006, (ins sopp_brtarget:$simm16), "s_cbranch_vccz $simm16" >; def S_CBRANCH_VCCNZ : SOPP < 0x00000007, (ins sopp_brtarget:$simm16), "s_cbranch_vccnz $simm16" >; } // End Uses = [VCC] let Uses = [EXEC] in { def S_CBRANCH_EXECZ : SOPP < 0x00000008, (ins sopp_brtarget:$simm16), "s_cbranch_execz $simm16" >; def S_CBRANCH_EXECNZ : SOPP < 0x00000009, (ins sopp_brtarget:$simm16), "s_cbranch_execnz $simm16" >; } // End Uses = [EXEC] } // End isBranch = 1 } // End isTerminator = 1 let hasSideEffects = 1 in { def S_BARRIER : SOPP <0x0000000a, (ins), "s_barrier", [(int_AMDGPU_barrier_local)] > { let SchedRW = [WriteBarrier]; let simm16 = 0; let mayLoad = 1; let mayStore = 1; let isConvergent = 1; } def S_WAITCNT : SOPP <0x0000000c, (ins WAIT_FLAG:$simm16), "s_waitcnt $simm16">; def S_SETHALT : SOPP <0x0000000d, (ins i16imm:$simm16), "s_sethalt $simm16">; def S_SLEEP : SOPP <0x0000000e, (ins i16imm:$simm16), "s_sleep $simm16">; def S_SETPRIO : SOPP <0x0000000f, (ins i16imm:$sim16), "s_setprio $sim16">; let Uses = [EXEC, M0] in { def S_SENDMSG : SOPP <0x00000010, (ins SendMsgImm:$simm16), "s_sendmsg $simm16", [(AMDGPUsendmsg (i32 imm:$simm16))] >; } // End Uses = [EXEC, M0] def S_SENDMSGHALT : SOPP <0x00000011, (ins i16imm:$simm16), "s_sendmsghalt $simm16">; def S_TRAP : SOPP <0x00000012, (ins i16imm:$simm16), "s_trap $simm16">; def S_ICACHE_INV : SOPP <0x00000013, (ins), "s_icache_inv"> { let simm16 = 0; } def S_INCPERFLEVEL : SOPP <0x00000014, (ins i16imm:$simm16), "s_incperflevel $simm16">; def S_DECPERFLEVEL : SOPP <0x00000015, (ins i16imm:$simm16), "s_decperflevel $simm16">; def S_TTRACEDATA : SOPP <0x00000016, (ins), "s_ttracedata"> { let simm16 = 0; } } // End hasSideEffects //===----------------------------------------------------------------------===// // VOPC Instructions //===----------------------------------------------------------------------===// let isCompare = 1, isCommutable = 1 in { defm V_CMP_F_F32 : VOPC_F32 <vopc<0x0, 0x40>, "v_cmp_f_f32">; defm V_CMP_LT_F32 : VOPC_F32 <vopc<0x1, 0x41>, "v_cmp_lt_f32", COND_OLT, "v_cmp_gt_f32">; defm V_CMP_EQ_F32 : VOPC_F32 <vopc<0x2, 0x42>, "v_cmp_eq_f32", COND_OEQ>; defm V_CMP_LE_F32 : VOPC_F32 <vopc<0x3, 0x43>, "v_cmp_le_f32", COND_OLE, "v_cmp_ge_f32">; defm V_CMP_GT_F32 : VOPC_F32 <vopc<0x4, 0x44>, "v_cmp_gt_f32", COND_OGT>; defm V_CMP_LG_F32 : VOPC_F32 <vopc<0x5, 0x45>, "v_cmp_lg_f32", COND_ONE>; defm V_CMP_GE_F32 : VOPC_F32 <vopc<0x6, 0x46>, "v_cmp_ge_f32", COND_OGE>; defm V_CMP_O_F32 : VOPC_F32 <vopc<0x7, 0x47>, "v_cmp_o_f32", COND_O>; defm V_CMP_U_F32 : VOPC_F32 <vopc<0x8, 0x48>, "v_cmp_u_f32", COND_UO>; defm V_CMP_NGE_F32 : VOPC_F32 <vopc<0x9, 0x49>, "v_cmp_nge_f32", COND_ULT, "v_cmp_nle_f32">; defm V_CMP_NLG_F32 : VOPC_F32 <vopc<0xa, 0x4a>, "v_cmp_nlg_f32", COND_UEQ>; defm V_CMP_NGT_F32 : VOPC_F32 <vopc<0xb, 0x4b>, "v_cmp_ngt_f32", COND_ULE, "v_cmp_nlt_f32">; defm V_CMP_NLE_F32 : VOPC_F32 <vopc<0xc, 0x4c>, "v_cmp_nle_f32", COND_UGT>; defm V_CMP_NEQ_F32 : VOPC_F32 <vopc<0xd, 0x4d>, "v_cmp_neq_f32", COND_UNE>; defm V_CMP_NLT_F32 : VOPC_F32 <vopc<0xe, 0x4e>, "v_cmp_nlt_f32", COND_UGE>; defm V_CMP_TRU_F32 : VOPC_F32 <vopc<0xf, 0x4f>, "v_cmp_tru_f32">; defm V_CMPX_F_F32 : VOPCX_F32 <vopc<0x10, 0x50>, "v_cmpx_f_f32">; defm V_CMPX_LT_F32 : VOPCX_F32 <vopc<0x11, 0x51>, "v_cmpx_lt_f32", "v_cmpx_gt_f32">; defm V_CMPX_EQ_F32 : VOPCX_F32 <vopc<0x12, 0x52>, "v_cmpx_eq_f32">; defm V_CMPX_LE_F32 : VOPCX_F32 <vopc<0x13, 0x53>, "v_cmpx_le_f32", "v_cmpx_ge_f32">; defm V_CMPX_GT_F32 : VOPCX_F32 <vopc<0x14, 0x54>, "v_cmpx_gt_f32">; defm V_CMPX_LG_F32 : VOPCX_F32 <vopc<0x15, 0x55>, "v_cmpx_lg_f32">; defm V_CMPX_GE_F32 : VOPCX_F32 <vopc<0x16, 0x56>, "v_cmpx_ge_f32">; defm V_CMPX_O_F32 : VOPCX_F32 <vopc<0x17, 0x57>, "v_cmpx_o_f32">; defm V_CMPX_U_F32 : VOPCX_F32 <vopc<0x18, 0x58>, "v_cmpx_u_f32">; defm V_CMPX_NGE_F32 : VOPCX_F32 <vopc<0x19, 0x59>, "v_cmpx_nge_f32">; defm V_CMPX_NLG_F32 : VOPCX_F32 <vopc<0x1a, 0x5a>, "v_cmpx_nlg_f32">; defm V_CMPX_NGT_F32 : VOPCX_F32 <vopc<0x1b, 0x5b>, "v_cmpx_ngt_f32">; defm V_CMPX_NLE_F32 : VOPCX_F32 <vopc<0x1c, 0x5c>, "v_cmpx_nle_f32">; defm V_CMPX_NEQ_F32 : VOPCX_F32 <vopc<0x1d, 0x5d>, "v_cmpx_neq_f32">; defm V_CMPX_NLT_F32 : VOPCX_F32 <vopc<0x1e, 0x5e>, "v_cmpx_nlt_f32">; defm V_CMPX_TRU_F32 : VOPCX_F32 <vopc<0x1f, 0x5f>, "v_cmpx_tru_f32">; defm V_CMP_F_F64 : VOPC_F64 <vopc<0x20, 0x60>, "v_cmp_f_f64">; defm V_CMP_LT_F64 : VOPC_F64 <vopc<0x21, 0x61>, "v_cmp_lt_f64", COND_OLT, "v_cmp_gt_f64">; defm V_CMP_EQ_F64 : VOPC_F64 <vopc<0x22, 0x62>, "v_cmp_eq_f64", COND_OEQ>; defm V_CMP_LE_F64 : VOPC_F64 <vopc<0x23, 0x63>, "v_cmp_le_f64", COND_OLE, "v_cmp_ge_f64">; defm V_CMP_GT_F64 : VOPC_F64 <vopc<0x24, 0x64>, "v_cmp_gt_f64", COND_OGT>; defm V_CMP_LG_F64 : VOPC_F64 <vopc<0x25, 0x65>, "v_cmp_lg_f64", COND_ONE>; defm V_CMP_GE_F64 : VOPC_F64 <vopc<0x26, 0x66>, "v_cmp_ge_f64", COND_OGE>; defm V_CMP_O_F64 : VOPC_F64 <vopc<0x27, 0x67>, "v_cmp_o_f64", COND_O>; defm V_CMP_U_F64 : VOPC_F64 <vopc<0x28, 0x68>, "v_cmp_u_f64", COND_UO>; defm V_CMP_NGE_F64 : VOPC_F64 <vopc<0x29, 0x69>, "v_cmp_nge_f64", COND_ULT, "v_cmp_nle_f64">; defm V_CMP_NLG_F64 : VOPC_F64 <vopc<0x2a, 0x6a>, "v_cmp_nlg_f64", COND_UEQ>; defm V_CMP_NGT_F64 : VOPC_F64 <vopc<0x2b, 0x6b>, "v_cmp_ngt_f64", COND_ULE, "v_cmp_nlt_f64">; defm V_CMP_NLE_F64 : VOPC_F64 <vopc<0x2c, 0x6c>, "v_cmp_nle_f64", COND_UGT>; defm V_CMP_NEQ_F64 : VOPC_F64 <vopc<0x2d, 0x6d>, "v_cmp_neq_f64", COND_UNE>; defm V_CMP_NLT_F64 : VOPC_F64 <vopc<0x2e, 0x6e>, "v_cmp_nlt_f64", COND_UGE>; defm V_CMP_TRU_F64 : VOPC_F64 <vopc<0x2f, 0x6f>, "v_cmp_tru_f64">; defm V_CMPX_F_F64 : VOPCX_F64 <vopc<0x30, 0x70>, "v_cmpx_f_f64">; defm V_CMPX_LT_F64 : VOPCX_F64 <vopc<0x31, 0x71>, "v_cmpx_lt_f64", "v_cmpx_gt_f64">; defm V_CMPX_EQ_F64 : VOPCX_F64 <vopc<0x32, 0x72>, "v_cmpx_eq_f64">; defm V_CMPX_LE_F64 : VOPCX_F64 <vopc<0x33, 0x73>, "v_cmpx_le_f64", "v_cmpx_ge_f64">; defm V_CMPX_GT_F64 : VOPCX_F64 <vopc<0x34, 0x74>, "v_cmpx_gt_f64">; defm V_CMPX_LG_F64 : VOPCX_F64 <vopc<0x35, 0x75>, "v_cmpx_lg_f64">; defm V_CMPX_GE_F64 : VOPCX_F64 <vopc<0x36, 0x76>, "v_cmpx_ge_f64">; defm V_CMPX_O_F64 : VOPCX_F64 <vopc<0x37, 0x77>, "v_cmpx_o_f64">; defm V_CMPX_U_F64 : VOPCX_F64 <vopc<0x38, 0x78>, "v_cmpx_u_f64">; defm V_CMPX_NGE_F64 : VOPCX_F64 <vopc<0x39, 0x79>, "v_cmpx_nge_f64", "v_cmpx_nle_f64">; defm V_CMPX_NLG_F64 : VOPCX_F64 <vopc<0x3a, 0x7a>, "v_cmpx_nlg_f64">; defm V_CMPX_NGT_F64 : VOPCX_F64 <vopc<0x3b, 0x7b>, "v_cmpx_ngt_f64", "v_cmpx_nlt_f64">; defm V_CMPX_NLE_F64 : VOPCX_F64 <vopc<0x3c, 0x7c>, "v_cmpx_nle_f64">; defm V_CMPX_NEQ_F64 : VOPCX_F64 <vopc<0x3d, 0x7d>, "v_cmpx_neq_f64">; defm V_CMPX_NLT_F64 : VOPCX_F64 <vopc<0x3e, 0x7e>, "v_cmpx_nlt_f64">; defm V_CMPX_TRU_F64 : VOPCX_F64 <vopc<0x3f, 0x7f>, "v_cmpx_tru_f64">; let SubtargetPredicate = isSICI in { defm V_CMPS_F_F32 : VOPC_F32 <vopc<0x40>, "v_cmps_f_f32">; defm V_CMPS_LT_F32 : VOPC_F32 <vopc<0x41>, "v_cmps_lt_f32", COND_NULL, "v_cmps_gt_f32">; defm V_CMPS_EQ_F32 : VOPC_F32 <vopc<0x42>, "v_cmps_eq_f32">; defm V_CMPS_LE_F32 : VOPC_F32 <vopc<0x43>, "v_cmps_le_f32", COND_NULL, "v_cmps_ge_f32">; defm V_CMPS_GT_F32 : VOPC_F32 <vopc<0x44>, "v_cmps_gt_f32">; defm V_CMPS_LG_F32 : VOPC_F32 <vopc<0x45>, "v_cmps_lg_f32">; defm V_CMPS_GE_F32 : VOPC_F32 <vopc<0x46>, "v_cmps_ge_f32">; defm V_CMPS_O_F32 : VOPC_F32 <vopc<0x47>, "v_cmps_o_f32">; defm V_CMPS_U_F32 : VOPC_F32 <vopc<0x48>, "v_cmps_u_f32">; defm V_CMPS_NGE_F32 : VOPC_F32 <vopc<0x49>, "v_cmps_nge_f32", COND_NULL, "v_cmps_nle_f32">; defm V_CMPS_NLG_F32 : VOPC_F32 <vopc<0x4a>, "v_cmps_nlg_f32">; defm V_CMPS_NGT_F32 : VOPC_F32 <vopc<0x4b>, "v_cmps_ngt_f32", COND_NULL, "v_cmps_nlt_f32">; defm V_CMPS_NLE_F32 : VOPC_F32 <vopc<0x4c>, "v_cmps_nle_f32">; defm V_CMPS_NEQ_F32 : VOPC_F32 <vopc<0x4d>, "v_cmps_neq_f32">; defm V_CMPS_NLT_F32 : VOPC_F32 <vopc<0x4e>, "v_cmps_nlt_f32">; defm V_CMPS_TRU_F32 : VOPC_F32 <vopc<0x4f>, "v_cmps_tru_f32">; defm V_CMPSX_F_F32 : VOPCX_F32 <vopc<0x50>, "v_cmpsx_f_f32">; defm V_CMPSX_LT_F32 : VOPCX_F32 <vopc<0x51>, "v_cmpsx_lt_f32", "v_cmpsx_gt_f32">; defm V_CMPSX_EQ_F32 : VOPCX_F32 <vopc<0x52>, "v_cmpsx_eq_f32">; defm V_CMPSX_LE_F32 : VOPCX_F32 <vopc<0x53>, "v_cmpsx_le_f32", "v_cmpsx_ge_f32">; defm V_CMPSX_GT_F32 : VOPCX_F32 <vopc<0x54>, "v_cmpsx_gt_f32">; defm V_CMPSX_LG_F32 : VOPCX_F32 <vopc<0x55>, "v_cmpsx_lg_f32">; defm V_CMPSX_GE_F32 : VOPCX_F32 <vopc<0x56>, "v_cmpsx_ge_f32">; defm V_CMPSX_O_F32 : VOPCX_F32 <vopc<0x57>, "v_cmpsx_o_f32">; defm V_CMPSX_U_F32 : VOPCX_F32 <vopc<0x58>, "v_cmpsx_u_f32">; defm V_CMPSX_NGE_F32 : VOPCX_F32 <vopc<0x59>, "v_cmpsx_nge_f32", "v_cmpsx_nle_f32">; defm V_CMPSX_NLG_F32 : VOPCX_F32 <vopc<0x5a>, "v_cmpsx_nlg_f32">; defm V_CMPSX_NGT_F32 : VOPCX_F32 <vopc<0x5b>, "v_cmpsx_ngt_f32", "v_cmpsx_nlt_f32">; defm V_CMPSX_NLE_F32 : VOPCX_F32 <vopc<0x5c>, "v_cmpsx_nle_f32">; defm V_CMPSX_NEQ_F32 : VOPCX_F32 <vopc<0x5d>, "v_cmpsx_neq_f32">; defm V_CMPSX_NLT_F32 : VOPCX_F32 <vopc<0x5e>, "v_cmpsx_nlt_f32">; defm V_CMPSX_TRU_F32 : VOPCX_F32 <vopc<0x5f>, "v_cmpsx_tru_f32">; defm V_CMPS_F_F64 : VOPC_F64 <vopc<0x60>, "v_cmps_f_f64">; defm V_CMPS_LT_F64 : VOPC_F64 <vopc<0x61>, "v_cmps_lt_f64", COND_NULL, "v_cmps_gt_f64">; defm V_CMPS_EQ_F64 : VOPC_F64 <vopc<0x62>, "v_cmps_eq_f64">; defm V_CMPS_LE_F64 : VOPC_F64 <vopc<0x63>, "v_cmps_le_f64", COND_NULL, "v_cmps_ge_f64">; defm V_CMPS_GT_F64 : VOPC_F64 <vopc<0x64>, "v_cmps_gt_f64">; defm V_CMPS_LG_F64 : VOPC_F64 <vopc<0x65>, "v_cmps_lg_f64">; defm V_CMPS_GE_F64 : VOPC_F64 <vopc<0x66>, "v_cmps_ge_f64">; defm V_CMPS_O_F64 : VOPC_F64 <vopc<0x67>, "v_cmps_o_f64">; defm V_CMPS_U_F64 : VOPC_F64 <vopc<0x68>, "v_cmps_u_f64">; defm V_CMPS_NGE_F64 : VOPC_F64 <vopc<0x69>, "v_cmps_nge_f64", COND_NULL, "v_cmps_nle_f64">; defm V_CMPS_NLG_F64 : VOPC_F64 <vopc<0x6a>, "v_cmps_nlg_f64">; defm V_CMPS_NGT_F64 : VOPC_F64 <vopc<0x6b>, "v_cmps_ngt_f64", COND_NULL, "v_cmps_nlt_f64">; defm V_CMPS_NLE_F64 : VOPC_F64 <vopc<0x6c>, "v_cmps_nle_f64">; defm V_CMPS_NEQ_F64 : VOPC_F64 <vopc<0x6d>, "v_cmps_neq_f64">; defm V_CMPS_NLT_F64 : VOPC_F64 <vopc<0x6e>, "v_cmps_nlt_f64">; defm V_CMPS_TRU_F64 : VOPC_F64 <vopc<0x6f>, "v_cmps_tru_f64">; defm V_CMPSX_F_F64 : VOPCX_F64 <vopc<0x70>, "v_cmpsx_f_f64">; defm V_CMPSX_LT_F64 : VOPCX_F64 <vopc<0x71>, "v_cmpsx_lt_f64", "v_cmpsx_gt_f64">; defm V_CMPSX_EQ_F64 : VOPCX_F64 <vopc<0x72>, "v_cmpsx_eq_f64">; defm V_CMPSX_LE_F64 : VOPCX_F64 <vopc<0x73>, "v_cmpsx_le_f64", "v_cmpsx_ge_f64">; defm V_CMPSX_GT_F64 : VOPCX_F64 <vopc<0x74>, "v_cmpsx_gt_f64">; defm V_CMPSX_LG_F64 : VOPCX_F64 <vopc<0x75>, "v_cmpsx_lg_f64">; defm V_CMPSX_GE_F64 : VOPCX_F64 <vopc<0x76>, "v_cmpsx_ge_f64">; defm V_CMPSX_O_F64 : VOPCX_F64 <vopc<0x77>, "v_cmpsx_o_f64">; defm V_CMPSX_U_F64 : VOPCX_F64 <vopc<0x78>, "v_cmpsx_u_f64">; defm V_CMPSX_NGE_F64 : VOPCX_F64 <vopc<0x79>, "v_cmpsx_nge_f64", "v_cmpsx_nle_f64">; defm V_CMPSX_NLG_F64 : VOPCX_F64 <vopc<0x7a>, "v_cmpsx_nlg_f64">; defm V_CMPSX_NGT_F64 : VOPCX_F64 <vopc<0x7b>, "v_cmpsx_ngt_f64", "v_cmpsx_nlt_f64">; defm V_CMPSX_NLE_F64 : VOPCX_F64 <vopc<0x7c>, "v_cmpsx_nle_f64">; defm V_CMPSX_NEQ_F64 : VOPCX_F64 <vopc<0x7d>, "v_cmpsx_neq_f64">; defm V_CMPSX_NLT_F64 : VOPCX_F64 <vopc<0x7e>, "v_cmpsx_nlt_f64">; defm V_CMPSX_TRU_F64 : VOPCX_F64 <vopc<0x7f>, "v_cmpsx_tru_f64">; } // End SubtargetPredicate = isSICI defm V_CMP_F_I32 : VOPC_I32 <vopc<0x80, 0xc0>, "v_cmp_f_i32">; defm V_CMP_LT_I32 : VOPC_I32 <vopc<0x81, 0xc1>, "v_cmp_lt_i32", COND_SLT, "v_cmp_gt_i32">; defm V_CMP_EQ_I32 : VOPC_I32 <vopc<0x82, 0xc2>, "v_cmp_eq_i32", COND_EQ>; defm V_CMP_LE_I32 : VOPC_I32 <vopc<0x83, 0xc3>, "v_cmp_le_i32", COND_SLE, "v_cmp_ge_i32">; defm V_CMP_GT_I32 : VOPC_I32 <vopc<0x84, 0xc4>, "v_cmp_gt_i32", COND_SGT>; defm V_CMP_NE_I32 : VOPC_I32 <vopc<0x85, 0xc5>, "v_cmp_ne_i32", COND_NE>; defm V_CMP_GE_I32 : VOPC_I32 <vopc<0x86, 0xc6>, "v_cmp_ge_i32", COND_SGE>; defm V_CMP_T_I32 : VOPC_I32 <vopc<0x87, 0xc7>, "v_cmp_t_i32">; defm V_CMPX_F_I32 : VOPCX_I32 <vopc<0x90, 0xd0>, "v_cmpx_f_i32">; defm V_CMPX_LT_I32 : VOPCX_I32 <vopc<0x91, 0xd1>, "v_cmpx_lt_i32", "v_cmpx_gt_i32">; defm V_CMPX_EQ_I32 : VOPCX_I32 <vopc<0x92, 0xd2>, "v_cmpx_eq_i32">; defm V_CMPX_LE_I32 : VOPCX_I32 <vopc<0x93, 0xd3>, "v_cmpx_le_i32", "v_cmpx_ge_i32">; defm V_CMPX_GT_I32 : VOPCX_I32 <vopc<0x94, 0xd4>, "v_cmpx_gt_i32">; defm V_CMPX_NE_I32 : VOPCX_I32 <vopc<0x95, 0xd5>, "v_cmpx_ne_i32">; defm V_CMPX_GE_I32 : VOPCX_I32 <vopc<0x96, 0xd6>, "v_cmpx_ge_i32">; defm V_CMPX_T_I32 : VOPCX_I32 <vopc<0x97, 0xd7>, "v_cmpx_t_i32">; defm V_CMP_F_I64 : VOPC_I64 <vopc<0xa0, 0xe0>, "v_cmp_f_i64">; defm V_CMP_LT_I64 : VOPC_I64 <vopc<0xa1, 0xe1>, "v_cmp_lt_i64", COND_SLT, "v_cmp_gt_i64">; defm V_CMP_EQ_I64 : VOPC_I64 <vopc<0xa2, 0xe2>, "v_cmp_eq_i64", COND_EQ>; defm V_CMP_LE_I64 : VOPC_I64 <vopc<0xa3, 0xe3>, "v_cmp_le_i64", COND_SLE, "v_cmp_ge_i64">; defm V_CMP_GT_I64 : VOPC_I64 <vopc<0xa4, 0xe4>, "v_cmp_gt_i64", COND_SGT>; defm V_CMP_NE_I64 : VOPC_I64 <vopc<0xa5, 0xe5>, "v_cmp_ne_i64", COND_NE>; defm V_CMP_GE_I64 : VOPC_I64 <vopc<0xa6, 0xe6>, "v_cmp_ge_i64", COND_SGE>; defm V_CMP_T_I64 : VOPC_I64 <vopc<0xa7, 0xe7>, "v_cmp_t_i64">; defm V_CMPX_F_I64 : VOPCX_I64 <vopc<0xb0, 0xf0>, "v_cmpx_f_i64">; defm V_CMPX_LT_I64 : VOPCX_I64 <vopc<0xb1, 0xf1>, "v_cmpx_lt_i64", "v_cmpx_gt_i64">; defm V_CMPX_EQ_I64 : VOPCX_I64 <vopc<0xb2, 0xf2>, "v_cmpx_eq_i64">; defm V_CMPX_LE_I64 : VOPCX_I64 <vopc<0xb3, 0xf3>, "v_cmpx_le_i64", "v_cmpx_ge_i64">; defm V_CMPX_GT_I64 : VOPCX_I64 <vopc<0xb4, 0xf4>, "v_cmpx_gt_i64">; defm V_CMPX_NE_I64 : VOPCX_I64 <vopc<0xb5, 0xf5>, "v_cmpx_ne_i64">; defm V_CMPX_GE_I64 : VOPCX_I64 <vopc<0xb6, 0xf6>, "v_cmpx_ge_i64">; defm V_CMPX_T_I64 : VOPCX_I64 <vopc<0xb7, 0xf7>, "v_cmpx_t_i64">; defm V_CMP_F_U32 : VOPC_I32 <vopc<0xc0, 0xc8>, "v_cmp_f_u32">; defm V_CMP_LT_U32 : VOPC_I32 <vopc<0xc1, 0xc9>, "v_cmp_lt_u32", COND_ULT, "v_cmp_gt_u32">; defm V_CMP_EQ_U32 : VOPC_I32 <vopc<0xc2, 0xca>, "v_cmp_eq_u32", COND_EQ>; defm V_CMP_LE_U32 : VOPC_I32 <vopc<0xc3, 0xcb>, "v_cmp_le_u32", COND_ULE, "v_cmp_ge_u32">; defm V_CMP_GT_U32 : VOPC_I32 <vopc<0xc4, 0xcc>, "v_cmp_gt_u32", COND_UGT>; defm V_CMP_NE_U32 : VOPC_I32 <vopc<0xc5, 0xcd>, "v_cmp_ne_u32", COND_NE>; defm V_CMP_GE_U32 : VOPC_I32 <vopc<0xc6, 0xce>, "v_cmp_ge_u32", COND_UGE>; defm V_CMP_T_U32 : VOPC_I32 <vopc<0xc7, 0xcf>, "v_cmp_t_u32">; defm V_CMPX_F_U32 : VOPCX_I32 <vopc<0xd0, 0xd8>, "v_cmpx_f_u32">; defm V_CMPX_LT_U32 : VOPCX_I32 <vopc<0xd1, 0xd9>, "v_cmpx_lt_u32", "v_cmpx_gt_u32">; defm V_CMPX_EQ_U32 : VOPCX_I32 <vopc<0xd2, 0xda>, "v_cmpx_eq_u32">; defm V_CMPX_LE_U32 : VOPCX_I32 <vopc<0xd3, 0xdb>, "v_cmpx_le_u32", "v_cmpx_le_u32">; defm V_CMPX_GT_U32 : VOPCX_I32 <vopc<0xd4, 0xdc>, "v_cmpx_gt_u32">; defm V_CMPX_NE_U32 : VOPCX_I32 <vopc<0xd5, 0xdd>, "v_cmpx_ne_u32">; defm V_CMPX_GE_U32 : VOPCX_I32 <vopc<0xd6, 0xde>, "v_cmpx_ge_u32">; defm V_CMPX_T_U32 : VOPCX_I32 <vopc<0xd7, 0xdf>, "v_cmpx_t_u32">; defm V_CMP_F_U64 : VOPC_I64 <vopc<0xe0, 0xe8>, "v_cmp_f_u64">; defm V_CMP_LT_U64 : VOPC_I64 <vopc<0xe1, 0xe9>, "v_cmp_lt_u64", COND_ULT, "v_cmp_gt_u64">; defm V_CMP_EQ_U64 : VOPC_I64 <vopc<0xe2, 0xea>, "v_cmp_eq_u64", COND_EQ>; defm V_CMP_LE_U64 : VOPC_I64 <vopc<0xe3, 0xeb>, "v_cmp_le_u64", COND_ULE, "v_cmp_ge_u64">; defm V_CMP_GT_U64 : VOPC_I64 <vopc<0xe4, 0xec>, "v_cmp_gt_u64", COND_UGT>; defm V_CMP_NE_U64 : VOPC_I64 <vopc<0xe5, 0xed>, "v_cmp_ne_u64", COND_NE>; defm V_CMP_GE_U64 : VOPC_I64 <vopc<0xe6, 0xee>, "v_cmp_ge_u64", COND_UGE>; defm V_CMP_T_U64 : VOPC_I64 <vopc<0xe7, 0xef>, "v_cmp_t_u64">; defm V_CMPX_F_U64 : VOPCX_I64 <vopc<0xf0, 0xf8>, "v_cmpx_f_u64">; defm V_CMPX_LT_U64 : VOPCX_I64 <vopc<0xf1, 0xf9>, "v_cmpx_lt_u64", "v_cmpx_gt_u64">; defm V_CMPX_EQ_U64 : VOPCX_I64 <vopc<0xf2, 0xfa>, "v_cmpx_eq_u64">; defm V_CMPX_LE_U64 : VOPCX_I64 <vopc<0xf3, 0xfb>, "v_cmpx_le_u64", "v_cmpx_ge_u64">; defm V_CMPX_GT_U64 : VOPCX_I64 <vopc<0xf4, 0xfc>, "v_cmpx_gt_u64">; defm V_CMPX_NE_U64 : VOPCX_I64 <vopc<0xf5, 0xfd>, "v_cmpx_ne_u64">; defm V_CMPX_GE_U64 : VOPCX_I64 <vopc<0xf6, 0xfe>, "v_cmpx_ge_u64">; defm V_CMPX_T_U64 : VOPCX_I64 <vopc<0xf7, 0xff>, "v_cmpx_t_u64">; } // End isCompare = 1, isCommutable = 1 defm V_CMP_CLASS_F32 : VOPC_CLASS_F32 <vopc<0x88, 0x10>, "v_cmp_class_f32">; defm V_CMPX_CLASS_F32 : VOPCX_CLASS_F32 <vopc<0x98, 0x11>, "v_cmpx_class_f32">; defm V_CMP_CLASS_F64 : VOPC_CLASS_F64 <vopc<0xa8, 0x12>, "v_cmp_class_f64">; defm V_CMPX_CLASS_F64 : VOPCX_CLASS_F64 <vopc<0xb8, 0x13>, "v_cmpx_class_f64">; //===----------------------------------------------------------------------===// // DS Instructions //===----------------------------------------------------------------------===// defm DS_ADD_U32 : DS_1A1D_NORET <0x0, "ds_add_u32", VGPR_32>; defm DS_SUB_U32 : DS_1A1D_NORET <0x1, "ds_sub_u32", VGPR_32>; defm DS_RSUB_U32 : DS_1A1D_NORET <0x2, "ds_rsub_u32", VGPR_32>; defm DS_INC_U32 : DS_1A1D_NORET <0x3, "ds_inc_u32", VGPR_32>; defm DS_DEC_U32 : DS_1A1D_NORET <0x4, "ds_dec_u32", VGPR_32>; defm DS_MIN_I32 : DS_1A1D_NORET <0x5, "ds_min_i32", VGPR_32>; defm DS_MAX_I32 : DS_1A1D_NORET <0x6, "ds_max_i32", VGPR_32>; defm DS_MIN_U32 : DS_1A1D_NORET <0x7, "ds_min_u32", VGPR_32>; defm DS_MAX_U32 : DS_1A1D_NORET <0x8, "ds_max_u32", VGPR_32>; defm DS_AND_B32 : DS_1A1D_NORET <0x9, "ds_and_b32", VGPR_32>; defm DS_OR_B32 : DS_1A1D_NORET <0xa, "ds_or_b32", VGPR_32>; defm DS_XOR_B32 : DS_1A1D_NORET <0xb, "ds_xor_b32", VGPR_32>; defm DS_MSKOR_B32 : DS_1A2D_NORET <0xc, "ds_mskor_b32", VGPR_32>; let mayLoad = 0 in { defm DS_WRITE_B32 : DS_1A1D_NORET <0xd, "ds_write_b32", VGPR_32>; defm DS_WRITE2_B32 : DS_1A1D_Off8_NORET <0xe, "ds_write2_b32", VGPR_32>; defm DS_WRITE2ST64_B32 : DS_1A1D_Off8_NORET <0xf, "ds_write2st64_b32", VGPR_32>; } defm DS_CMPST_B32 : DS_1A2D_NORET <0x10, "ds_cmpst_b32", VGPR_32>; defm DS_CMPST_F32 : DS_1A2D_NORET <0x11, "ds_cmpst_f32", VGPR_32>; defm DS_MIN_F32 : DS_1A2D_NORET <0x12, "ds_min_f32", VGPR_32>; defm DS_MAX_F32 : DS_1A2D_NORET <0x13, "ds_max_f32", VGPR_32>; defm DS_GWS_INIT : DS_1A_GDS <0x19, "ds_gws_init">; defm DS_GWS_SEMA_V : DS_1A_GDS <0x1a, "ds_gws_sema_v">; defm DS_GWS_SEMA_BR : DS_1A_GDS <0x1b, "ds_gws_sema_br">; defm DS_GWS_SEMA_P : DS_1A_GDS <0x1c, "ds_gws_sema_p">; defm DS_GWS_BARRIER : DS_1A_GDS <0x1d, "ds_gws_barrier">; let mayLoad = 0 in { defm DS_WRITE_B8 : DS_1A1D_NORET <0x1e, "ds_write_b8", VGPR_32>; defm DS_WRITE_B16 : DS_1A1D_NORET <0x1f, "ds_write_b16", VGPR_32>; } defm DS_ADD_RTN_U32 : DS_1A1D_RET <0x20, "ds_add_rtn_u32", VGPR_32, "ds_add_u32">; defm DS_SUB_RTN_U32 : DS_1A1D_RET <0x21, "ds_sub_rtn_u32", VGPR_32, "ds_sub_u32">; defm DS_RSUB_RTN_U32 : DS_1A1D_RET <0x22, "ds_rsub_rtn_u32", VGPR_32, "ds_rsub_u32">; defm DS_INC_RTN_U32 : DS_1A1D_RET <0x23, "ds_inc_rtn_u32", VGPR_32, "ds_inc_u32">; defm DS_DEC_RTN_U32 : DS_1A1D_RET <0x24, "ds_dec_rtn_u32", VGPR_32, "ds_dec_u32">; defm DS_MIN_RTN_I32 : DS_1A1D_RET <0x25, "ds_min_rtn_i32", VGPR_32, "ds_min_i32">; defm DS_MAX_RTN_I32 : DS_1A1D_RET <0x26, "ds_max_rtn_i32", VGPR_32, "ds_max_i32">; defm DS_MIN_RTN_U32 : DS_1A1D_RET <0x27, "ds_min_rtn_u32", VGPR_32, "ds_min_u32">; defm DS_MAX_RTN_U32 : DS_1A1D_RET <0x28, "ds_max_rtn_u32", VGPR_32, "ds_max_u32">; defm DS_AND_RTN_B32 : DS_1A1D_RET <0x29, "ds_and_rtn_b32", VGPR_32, "ds_and_b32">; defm DS_OR_RTN_B32 : DS_1A1D_RET <0x2a, "ds_or_rtn_b32", VGPR_32, "ds_or_b32">; defm DS_XOR_RTN_B32 : DS_1A1D_RET <0x2b, "ds_xor_rtn_b32", VGPR_32, "ds_xor_b32">; defm DS_MSKOR_RTN_B32 : DS_1A2D_RET <0x2c, "ds_mskor_rtn_b32", VGPR_32, "ds_mskor_b32">; defm DS_WRXCHG_RTN_B32 : DS_1A1D_RET <0x2d, "ds_wrxchg_rtn_b32", VGPR_32>; defm DS_WRXCHG2_RTN_B32 : DS_1A2D_RET < 0x2e, "ds_wrxchg2_rtn_b32", VReg_64, "", VGPR_32 >; defm DS_WRXCHG2ST64_RTN_B32 : DS_1A2D_RET < 0x2f, "ds_wrxchg2st64_rtn_b32", VReg_64, "", VGPR_32 >; defm DS_CMPST_RTN_B32 : DS_1A2D_RET <0x30, "ds_cmpst_rtn_b32", VGPR_32, "ds_cmpst_b32">; defm DS_CMPST_RTN_F32 : DS_1A2D_RET <0x31, "ds_cmpst_rtn_f32", VGPR_32, "ds_cmpst_f32">; defm DS_MIN_RTN_F32 : DS_1A2D_RET <0x32, "ds_min_rtn_f32", VGPR_32, "ds_min_f32">; defm DS_MAX_RTN_F32 : DS_1A2D_RET <0x33, "ds_max_rtn_f32", VGPR_32, "ds_max_f32">; defm DS_SWIZZLE_B32 : DS_1A_RET <0x35, "ds_swizzle_b32", VGPR_32>; let mayStore = 0 in { defm DS_READ_B32 : DS_1A_RET <0x36, "ds_read_b32", VGPR_32>; defm DS_READ2_B32 : DS_1A_Off8_RET <0x37, "ds_read2_b32", VReg_64>; defm DS_READ2ST64_B32 : DS_1A_Off8_RET <0x38, "ds_read2st64_b32", VReg_64>; defm DS_READ_I8 : DS_1A_RET <0x39, "ds_read_i8", VGPR_32>; defm DS_READ_U8 : DS_1A_RET <0x3a, "ds_read_u8", VGPR_32>; defm DS_READ_I16 : DS_1A_RET <0x3b, "ds_read_i16", VGPR_32>; defm DS_READ_U16 : DS_1A_RET <0x3c, "ds_read_u16", VGPR_32>; } defm DS_CONSUME : DS_0A_RET <0x3d, "ds_consume">; defm DS_APPEND : DS_0A_RET <0x3e, "ds_append">; defm DS_ORDERED_COUNT : DS_1A_RET_GDS <0x3f, "ds_ordered_count">; defm DS_ADD_U64 : DS_1A1D_NORET <0x40, "ds_add_u64", VReg_64>; defm DS_SUB_U64 : DS_1A1D_NORET <0x41, "ds_sub_u64", VReg_64>; defm DS_RSUB_U64 : DS_1A1D_NORET <0x42, "ds_rsub_u64", VReg_64>; defm DS_INC_U64 : DS_1A1D_NORET <0x43, "ds_inc_u64", VReg_64>; defm DS_DEC_U64 : DS_1A1D_NORET <0x44, "ds_dec_u64", VReg_64>; defm DS_MIN_I64 : DS_1A1D_NORET <0x45, "ds_min_i64", VReg_64>; defm DS_MAX_I64 : DS_1A1D_NORET <0x46, "ds_max_i64", VReg_64>; defm DS_MIN_U64 : DS_1A1D_NORET <0x47, "ds_min_u64", VReg_64>; defm DS_MAX_U64 : DS_1A1D_NORET <0x48, "ds_max_u64", VReg_64>; defm DS_AND_B64 : DS_1A1D_NORET <0x49, "ds_and_b64", VReg_64>; defm DS_OR_B64 : DS_1A1D_NORET <0x4a, "ds_or_b64", VReg_64>; defm DS_XOR_B64 : DS_1A1D_NORET <0x4b, "ds_xor_b64", VReg_64>; defm DS_MSKOR_B64 : DS_1A2D_NORET <0x4c, "ds_mskor_b64", VReg_64>; let mayLoad = 0 in { defm DS_WRITE_B64 : DS_1A1D_NORET <0x4d, "ds_write_b64", VReg_64>; defm DS_WRITE2_B64 : DS_1A1D_Off8_NORET <0x4E, "ds_write2_b64", VReg_64>; defm DS_WRITE2ST64_B64 : DS_1A1D_Off8_NORET <0x4f, "ds_write2st64_b64", VReg_64>; } defm DS_CMPST_B64 : DS_1A2D_NORET <0x50, "ds_cmpst_b64", VReg_64>; defm DS_CMPST_F64 : DS_1A2D_NORET <0x51, "ds_cmpst_f64", VReg_64>; defm DS_MIN_F64 : DS_1A1D_NORET <0x52, "ds_min_f64", VReg_64>; defm DS_MAX_F64 : DS_1A1D_NORET <0x53, "ds_max_f64", VReg_64>; defm DS_ADD_RTN_U64 : DS_1A1D_RET <0x60, "ds_add_rtn_u64", VReg_64, "ds_add_u64">; defm DS_SUB_RTN_U64 : DS_1A1D_RET <0x61, "ds_sub_rtn_u64", VReg_64, "ds_sub_u64">; defm DS_RSUB_RTN_U64 : DS_1A1D_RET <0x62, "ds_rsub_rtn_u64", VReg_64, "ds_rsub_u64">; defm DS_INC_RTN_U64 : DS_1A1D_RET <0x63, "ds_inc_rtn_u64", VReg_64, "ds_inc_u64">; defm DS_DEC_RTN_U64 : DS_1A1D_RET <0x64, "ds_dec_rtn_u64", VReg_64, "ds_dec_u64">; defm DS_MIN_RTN_I64 : DS_1A1D_RET <0x65, "ds_min_rtn_i64", VReg_64, "ds_min_i64">; defm DS_MAX_RTN_I64 : DS_1A1D_RET <0x66, "ds_max_rtn_i64", VReg_64, "ds_max_i64">; defm DS_MIN_RTN_U64 : DS_1A1D_RET <0x67, "ds_min_rtn_u64", VReg_64, "ds_min_u64">; defm DS_MAX_RTN_U64 : DS_1A1D_RET <0x68, "ds_max_rtn_u64", VReg_64, "ds_max_u64">; defm DS_AND_RTN_B64 : DS_1A1D_RET <0x69, "ds_and_rtn_b64", VReg_64, "ds_and_b64">; defm DS_OR_RTN_B64 : DS_1A1D_RET <0x6a, "ds_or_rtn_b64", VReg_64, "ds_or_b64">; defm DS_XOR_RTN_B64 : DS_1A1D_RET <0x6b, "ds_xor_rtn_b64", VReg_64, "ds_xor_b64">; defm DS_MSKOR_RTN_B64 : DS_1A2D_RET <0x6c, "ds_mskor_rtn_b64", VReg_64, "ds_mskor_b64">; defm DS_WRXCHG_RTN_B64 : DS_1A1D_RET <0x6d, "ds_wrxchg_rtn_b64", VReg_64, "ds_wrxchg_b64">; defm DS_WRXCHG2_RTN_B64 : DS_1A2D_RET <0x6e, "ds_wrxchg2_rtn_b64", VReg_128, "ds_wrxchg2_b64", VReg_64>; defm DS_WRXCHG2ST64_RTN_B64 : DS_1A2D_RET <0x6f, "ds_wrxchg2st64_rtn_b64", VReg_128, "ds_wrxchg2st64_b64", VReg_64>; defm DS_CMPST_RTN_B64 : DS_1A2D_RET <0x70, "ds_cmpst_rtn_b64", VReg_64, "ds_cmpst_b64">; defm DS_CMPST_RTN_F64 : DS_1A2D_RET <0x71, "ds_cmpst_rtn_f64", VReg_64, "ds_cmpst_f64">; defm DS_MIN_RTN_F64 : DS_1A1D_RET <0x72, "ds_min_rtn_f64", VReg_64, "ds_min_f64">; defm DS_MAX_RTN_F64 : DS_1A1D_RET <0x73, "ds_max_rtn_f64", VReg_64, "ds_max_f64">; let mayStore = 0 in { defm DS_READ_B64 : DS_1A_RET <0x76, "ds_read_b64", VReg_64>; defm DS_READ2_B64 : DS_1A_Off8_RET <0x77, "ds_read2_b64", VReg_128>; defm DS_READ2ST64_B64 : DS_1A_Off8_RET <0x78, "ds_read2st64_b64", VReg_128>; } defm DS_ADD_SRC2_U32 : DS_1A <0x80, "ds_add_src2_u32">; defm DS_SUB_SRC2_U32 : DS_1A <0x81, "ds_sub_src2_u32">; defm DS_RSUB_SRC2_U32 : DS_1A <0x82, "ds_rsub_src2_u32">; defm DS_INC_SRC2_U32 : DS_1A <0x83, "ds_inc_src2_u32">; defm DS_DEC_SRC2_U32 : DS_1A <0x84, "ds_dec_src2_u32">; defm DS_MIN_SRC2_I32 : DS_1A <0x85, "ds_min_src2_i32">; defm DS_MAX_SRC2_I32 : DS_1A <0x86, "ds_max_src2_i32">; defm DS_MIN_SRC2_U32 : DS_1A <0x87, "ds_min_src2_u32">; defm DS_MAX_SRC2_U32 : DS_1A <0x88, "ds_max_src2_u32">; defm DS_AND_SRC2_B32 : DS_1A <0x89, "ds_and_src_b32">; defm DS_OR_SRC2_B32 : DS_1A <0x8a, "ds_or_src2_b32">; defm DS_XOR_SRC2_B32 : DS_1A <0x8b, "ds_xor_src2_b32">; defm DS_WRITE_SRC2_B32 : DS_1A <0x8c, "ds_write_src2_b32">; defm DS_MIN_SRC2_F32 : DS_1A <0x92, "ds_min_src2_f32">; defm DS_MAX_SRC2_F32 : DS_1A <0x93, "ds_max_src2_f32">; defm DS_ADD_SRC2_U64 : DS_1A <0xc0, "ds_add_src2_u64">; defm DS_SUB_SRC2_U64 : DS_1A <0xc1, "ds_sub_src2_u64">; defm DS_RSUB_SRC2_U64 : DS_1A <0xc2, "ds_rsub_src2_u64">; defm DS_INC_SRC2_U64 : DS_1A <0xc3, "ds_inc_src2_u64">; defm DS_DEC_SRC2_U64 : DS_1A <0xc4, "ds_dec_src2_u64">; defm DS_MIN_SRC2_I64 : DS_1A <0xc5, "ds_min_src2_i64">; defm DS_MAX_SRC2_I64 : DS_1A <0xc6, "ds_max_src2_i64">; defm DS_MIN_SRC2_U64 : DS_1A <0xc7, "ds_min_src2_u64">; defm DS_MAX_SRC2_U64 : DS_1A <0xc8, "ds_max_src2_u64">; defm DS_AND_SRC2_B64 : DS_1A <0xc9, "ds_and_src2_b64">; defm DS_OR_SRC2_B64 : DS_1A <0xca, "ds_or_src2_b64">; defm DS_XOR_SRC2_B64 : DS_1A <0xcb, "ds_xor_src2_b64">; defm DS_WRITE_SRC2_B64 : DS_1A <0xcc, "ds_write_src2_b64">; defm DS_MIN_SRC2_F64 : DS_1A <0xd2, "ds_min_src2_f64">; defm DS_MAX_SRC2_F64 : DS_1A <0xd3, "ds_max_src2_f64">; //===----------------------------------------------------------------------===// // MUBUF Instructions //===----------------------------------------------------------------------===// defm BUFFER_LOAD_FORMAT_X : MUBUF_Load_Helper < mubuf<0x00>, "buffer_load_format_x", VGPR_32 >; defm BUFFER_LOAD_FORMAT_XY : MUBUF_Load_Helper < mubuf<0x01>, "buffer_load_format_xy", VReg_64 >; defm BUFFER_LOAD_FORMAT_XYZ : MUBUF_Load_Helper < mubuf<0x02>, "buffer_load_format_xyz", VReg_96 >; defm BUFFER_LOAD_FORMAT_XYZW : MUBUF_Load_Helper < mubuf<0x03>, "buffer_load_format_xyzw", VReg_128 >; defm BUFFER_STORE_FORMAT_X : MUBUF_Store_Helper < mubuf<0x04>, "buffer_store_format_x", VGPR_32 >; defm BUFFER_STORE_FORMAT_XY : MUBUF_Store_Helper < mubuf<0x05>, "buffer_store_format_xy", VReg_64 >; defm BUFFER_STORE_FORMAT_XYZ : MUBUF_Store_Helper < mubuf<0x06>, "buffer_store_format_xyz", VReg_96 >; defm BUFFER_STORE_FORMAT_XYZW : MUBUF_Store_Helper < mubuf<0x07>, "buffer_store_format_xyzw", VReg_128 >; defm BUFFER_LOAD_UBYTE : MUBUF_Load_Helper < mubuf<0x08, 0x10>, "buffer_load_ubyte", VGPR_32, i32, az_extloadi8_global >; defm BUFFER_LOAD_SBYTE : MUBUF_Load_Helper < mubuf<0x09, 0x11>, "buffer_load_sbyte", VGPR_32, i32, sextloadi8_global >; defm BUFFER_LOAD_USHORT : MUBUF_Load_Helper < mubuf<0x0a, 0x12>, "buffer_load_ushort", VGPR_32, i32, az_extloadi16_global >; defm BUFFER_LOAD_SSHORT : MUBUF_Load_Helper < mubuf<0x0b, 0x13>, "buffer_load_sshort", VGPR_32, i32, sextloadi16_global >; defm BUFFER_LOAD_DWORD : MUBUF_Load_Helper < mubuf<0x0c, 0x14>, "buffer_load_dword", VGPR_32, i32, mubuf_load >; defm BUFFER_LOAD_DWORDX2 : MUBUF_Load_Helper < mubuf<0x0d, 0x15>, "buffer_load_dwordx2", VReg_64, v2i32, mubuf_load >; defm BUFFER_LOAD_DWORDX4 : MUBUF_Load_Helper < mubuf<0x0e, 0x17>, "buffer_load_dwordx4", VReg_128, v4i32, mubuf_load >; defm BUFFER_STORE_BYTE : MUBUF_Store_Helper < mubuf<0x18>, "buffer_store_byte", VGPR_32, i32, truncstorei8_global >; defm BUFFER_STORE_SHORT : MUBUF_Store_Helper < mubuf<0x1a>, "buffer_store_short", VGPR_32, i32, truncstorei16_global >; defm BUFFER_STORE_DWORD : MUBUF_Store_Helper < mubuf<0x1c>, "buffer_store_dword", VGPR_32, i32, global_store >; defm BUFFER_STORE_DWORDX2 : MUBUF_Store_Helper < mubuf<0x1d>, "buffer_store_dwordx2", VReg_64, v2i32, global_store >; defm BUFFER_STORE_DWORDX4 : MUBUF_Store_Helper < mubuf<0x1e, 0x1f>, "buffer_store_dwordx4", VReg_128, v4i32, global_store >; defm BUFFER_ATOMIC_SWAP : MUBUF_Atomic < mubuf<0x30, 0x40>, "buffer_atomic_swap", VGPR_32, i32, atomic_swap_global >; //def BUFFER_ATOMIC_CMPSWAP : MUBUF_ <mubuf<0x31, 0x41>, "buffer_atomic_cmpswap", []>; defm BUFFER_ATOMIC_ADD : MUBUF_Atomic < mubuf<0x32, 0x42>, "buffer_atomic_add", VGPR_32, i32, atomic_add_global >; defm BUFFER_ATOMIC_SUB : MUBUF_Atomic < mubuf<0x33, 0x43>, "buffer_atomic_sub", VGPR_32, i32, atomic_sub_global >; //def BUFFER_ATOMIC_RSUB : MUBUF_ <mubuf<0x34>, "buffer_atomic_rsub", []>; // isn't on CI & VI defm BUFFER_ATOMIC_SMIN : MUBUF_Atomic < mubuf<0x35, 0x44>, "buffer_atomic_smin", VGPR_32, i32, atomic_min_global >; defm BUFFER_ATOMIC_UMIN : MUBUF_Atomic < mubuf<0x36, 0x45>, "buffer_atomic_umin", VGPR_32, i32, atomic_umin_global >; defm BUFFER_ATOMIC_SMAX : MUBUF_Atomic < mubuf<0x37, 0x46>, "buffer_atomic_smax", VGPR_32, i32, atomic_max_global >; defm BUFFER_ATOMIC_UMAX : MUBUF_Atomic < mubuf<0x38, 0x47>, "buffer_atomic_umax", VGPR_32, i32, atomic_umax_global >; defm BUFFER_ATOMIC_AND : MUBUF_Atomic < mubuf<0x39, 0x48>, "buffer_atomic_and", VGPR_32, i32, atomic_and_global >; defm BUFFER_ATOMIC_OR : MUBUF_Atomic < mubuf<0x3a, 0x49>, "buffer_atomic_or", VGPR_32, i32, atomic_or_global >; defm BUFFER_ATOMIC_XOR : MUBUF_Atomic < mubuf<0x3b, 0x4a>, "buffer_atomic_xor", VGPR_32, i32, atomic_xor_global >; //def BUFFER_ATOMIC_INC : MUBUF_ <mubuf<0x3c, 0x4b>, "buffer_atomic_inc", []>; //def BUFFER_ATOMIC_DEC : MUBUF_ <mubuf<0x3d, 0x4c>, "buffer_atomic_dec", []>; //def BUFFER_ATOMIC_FCMPSWAP : MUBUF_ <mubuf<0x3e>, "buffer_atomic_fcmpswap", []>; // isn't on VI //def BUFFER_ATOMIC_FMIN : MUBUF_ <mubuf<0x3f>, "buffer_atomic_fmin", []>; // isn't on VI //def BUFFER_ATOMIC_FMAX : MUBUF_ <mubuf<0x40>, "buffer_atomic_fmax", []>; // isn't on VI //def BUFFER_ATOMIC_SWAP_X2 : MUBUF_X2 <mubuf<0x50, 0x60>, "buffer_atomic_swap_x2", []>; //def BUFFER_ATOMIC_CMPSWAP_X2 : MUBUF_X2 <mubuf<0x51, 0x61>, "buffer_atomic_cmpswap_x2", []>; //def BUFFER_ATOMIC_ADD_X2 : MUBUF_X2 <mubuf<0x52, 0x62>, "buffer_atomic_add_x2", []>; //def BUFFER_ATOMIC_SUB_X2 : MUBUF_X2 <mubuf<0x53, 0x63>, "buffer_atomic_sub_x2", []>; //def BUFFER_ATOMIC_RSUB_X2 : MUBUF_X2 <mubuf<0x54>, "buffer_atomic_rsub_x2", []>; // isn't on CI & VI //def BUFFER_ATOMIC_SMIN_X2 : MUBUF_X2 <mubuf<0x55, 0x64>, "buffer_atomic_smin_x2", []>; //def BUFFER_ATOMIC_UMIN_X2 : MUBUF_X2 <mubuf<0x56, 0x65>, "buffer_atomic_umin_x2", []>; //def BUFFER_ATOMIC_SMAX_X2 : MUBUF_X2 <mubuf<0x57, 0x66>, "buffer_atomic_smax_x2", []>; //def BUFFER_ATOMIC_UMAX_X2 : MUBUF_X2 <mubuf<0x58, 0x67>, "buffer_atomic_umax_x2", []>; //def BUFFER_ATOMIC_AND_X2 : MUBUF_X2 <mubuf<0x59, 0x68>, "buffer_atomic_and_x2", []>; //def BUFFER_ATOMIC_OR_X2 : MUBUF_X2 <mubuf<0x5a, 0x69>, "buffer_atomic_or_x2", []>; //def BUFFER_ATOMIC_XOR_X2 : MUBUF_X2 <mubuf<0x5b, 0x6a>, "buffer_atomic_xor_x2", []>; //def BUFFER_ATOMIC_INC_X2 : MUBUF_X2 <mubuf<0x5c, 0x6b>, "buffer_atomic_inc_x2", []>; //def BUFFER_ATOMIC_DEC_X2 : MUBUF_X2 <mubuf<0x5d, 0x6c>, "buffer_atomic_dec_x2", []>; //def BUFFER_ATOMIC_FCMPSWAP_X2 : MUBUF_X2 <mubuf<0x5e>, "buffer_atomic_fcmpswap_x2", []>; // isn't on VI //def BUFFER_ATOMIC_FMIN_X2 : MUBUF_X2 <mubuf<0x5f>, "buffer_atomic_fmin_x2", []>; // isn't on VI //def BUFFER_ATOMIC_FMAX_X2 : MUBUF_X2 <mubuf<0x60>, "buffer_atomic_fmax_x2", []>; // isn't on VI let SubtargetPredicate = isSI in { defm BUFFER_WBINVL1_SC : MUBUF_Invalidate <mubuf<0x70>, "buffer_wbinvl1_sc", int_amdgcn_buffer_wbinvl1_sc>; // isn't on CI & VI } defm BUFFER_WBINVL1 : MUBUF_Invalidate <mubuf<0x71, 0x3e>, "buffer_wbinvl1", int_amdgcn_buffer_wbinvl1>; //===----------------------------------------------------------------------===// // MTBUF Instructions //===----------------------------------------------------------------------===// //def TBUFFER_LOAD_FORMAT_X : MTBUF_ <0x00000000, "tbuffer_load_format_x", []>; //def TBUFFER_LOAD_FORMAT_XY : MTBUF_ <0x00000001, "tbuffer_load_format_xy", []>; //def TBUFFER_LOAD_FORMAT_XYZ : MTBUF_ <0x00000002, "tbuffer_load_format_xyz", []>; defm TBUFFER_LOAD_FORMAT_XYZW : MTBUF_Load_Helper <0x00000003, "tbuffer_load_format_xyzw", VReg_128>; defm TBUFFER_STORE_FORMAT_X : MTBUF_Store_Helper <0x00000004, "tbuffer_store_format_x", VGPR_32>; defm TBUFFER_STORE_FORMAT_XY : MTBUF_Store_Helper <0x00000005, "tbuffer_store_format_xy", VReg_64>; defm TBUFFER_STORE_FORMAT_XYZ : MTBUF_Store_Helper <0x00000006, "tbuffer_store_format_xyz", VReg_128>; defm TBUFFER_STORE_FORMAT_XYZW : MTBUF_Store_Helper <0x00000007, "tbuffer_store_format_xyzw", VReg_128>; //===----------------------------------------------------------------------===// // MIMG Instructions //===----------------------------------------------------------------------===// defm IMAGE_LOAD : MIMG_NoSampler <0x00000000, "image_load">; defm IMAGE_LOAD_MIP : MIMG_NoSampler <0x00000001, "image_load_mip">; //def IMAGE_LOAD_PCK : MIMG_NoPattern_ <"image_load_pck", 0x00000002>; //def IMAGE_LOAD_PCK_SGN : MIMG_NoPattern_ <"image_load_pck_sgn", 0x00000003>; //def IMAGE_LOAD_MIP_PCK : MIMG_NoPattern_ <"image_load_mip_pck", 0x00000004>; //def IMAGE_LOAD_MIP_PCK_SGN : MIMG_NoPattern_ <"image_load_mip_pck_sgn", 0x00000005>; //def IMAGE_STORE : MIMG_NoPattern_ <"image_store", 0x00000008>; //def IMAGE_STORE_MIP : MIMG_NoPattern_ <"image_store_mip", 0x00000009>; //def IMAGE_STORE_PCK : MIMG_NoPattern_ <"image_store_pck", 0x0000000a>; //def IMAGE_STORE_MIP_PCK : MIMG_NoPattern_ <"image_store_mip_pck", 0x0000000b>; defm IMAGE_GET_RESINFO : MIMG_NoSampler <0x0000000e, "image_get_resinfo">; //def IMAGE_ATOMIC_SWAP : MIMG_NoPattern_ <"image_atomic_swap", 0x0000000f>; //def IMAGE_ATOMIC_CMPSWAP : MIMG_NoPattern_ <"image_atomic_cmpswap", 0x00000010>; //def IMAGE_ATOMIC_ADD : MIMG_NoPattern_ <"image_atomic_add", 0x00000011>; //def IMAGE_ATOMIC_SUB : MIMG_NoPattern_ <"image_atomic_sub", 0x00000012>; //def IMAGE_ATOMIC_RSUB : MIMG_NoPattern_ <"image_atomic_rsub", 0x00000013>; //def IMAGE_ATOMIC_SMIN : MIMG_NoPattern_ <"image_atomic_smin", 0x00000014>; //def IMAGE_ATOMIC_UMIN : MIMG_NoPattern_ <"image_atomic_umin", 0x00000015>; //def IMAGE_ATOMIC_SMAX : MIMG_NoPattern_ <"image_atomic_smax", 0x00000016>; //def IMAGE_ATOMIC_UMAX : MIMG_NoPattern_ <"image_atomic_umax", 0x00000017>; //def IMAGE_ATOMIC_AND : MIMG_NoPattern_ <"image_atomic_and", 0x00000018>; //def IMAGE_ATOMIC_OR : MIMG_NoPattern_ <"image_atomic_or", 0x00000019>; //def IMAGE_ATOMIC_XOR : MIMG_NoPattern_ <"image_atomic_xor", 0x0000001a>; //def IMAGE_ATOMIC_INC : MIMG_NoPattern_ <"image_atomic_inc", 0x0000001b>; //def IMAGE_ATOMIC_DEC : MIMG_NoPattern_ <"image_atomic_dec", 0x0000001c>; //def IMAGE_ATOMIC_FCMPSWAP : MIMG_NoPattern_ <"image_atomic_fcmpswap", 0x0000001d>; //def IMAGE_ATOMIC_FMIN : MIMG_NoPattern_ <"image_atomic_fmin", 0x0000001e>; //def IMAGE_ATOMIC_FMAX : MIMG_NoPattern_ <"image_atomic_fmax", 0x0000001f>; defm IMAGE_SAMPLE : MIMG_Sampler_WQM <0x00000020, "image_sample">; defm IMAGE_SAMPLE_CL : MIMG_Sampler_WQM <0x00000021, "image_sample_cl">; defm IMAGE_SAMPLE_D : MIMG_Sampler <0x00000022, "image_sample_d">; defm IMAGE_SAMPLE_D_CL : MIMG_Sampler <0x00000023, "image_sample_d_cl">; defm IMAGE_SAMPLE_L : MIMG_Sampler <0x00000024, "image_sample_l">; defm IMAGE_SAMPLE_B : MIMG_Sampler_WQM <0x00000025, "image_sample_b">; defm IMAGE_SAMPLE_B_CL : MIMG_Sampler_WQM <0x00000026, "image_sample_b_cl">; defm IMAGE_SAMPLE_LZ : MIMG_Sampler <0x00000027, "image_sample_lz">; defm IMAGE_SAMPLE_C : MIMG_Sampler_WQM <0x00000028, "image_sample_c">; defm IMAGE_SAMPLE_C_CL : MIMG_Sampler_WQM <0x00000029, "image_sample_c_cl">; defm IMAGE_SAMPLE_C_D : MIMG_Sampler <0x0000002a, "image_sample_c_d">; defm IMAGE_SAMPLE_C_D_CL : MIMG_Sampler <0x0000002b, "image_sample_c_d_cl">; defm IMAGE_SAMPLE_C_L : MIMG_Sampler <0x0000002c, "image_sample_c_l">; defm IMAGE_SAMPLE_C_B : MIMG_Sampler_WQM <0x0000002d, "image_sample_c_b">; defm IMAGE_SAMPLE_C_B_CL : MIMG_Sampler_WQM <0x0000002e, "image_sample_c_b_cl">; defm IMAGE_SAMPLE_C_LZ : MIMG_Sampler <0x0000002f, "image_sample_c_lz">; defm IMAGE_SAMPLE_O : MIMG_Sampler_WQM <0x00000030, "image_sample_o">; defm IMAGE_SAMPLE_CL_O : MIMG_Sampler_WQM <0x00000031, "image_sample_cl_o">; defm IMAGE_SAMPLE_D_O : MIMG_Sampler <0x00000032, "image_sample_d_o">; defm IMAGE_SAMPLE_D_CL_O : MIMG_Sampler <0x00000033, "image_sample_d_cl_o">; defm IMAGE_SAMPLE_L_O : MIMG_Sampler <0x00000034, "image_sample_l_o">; defm IMAGE_SAMPLE_B_O : MIMG_Sampler_WQM <0x00000035, "image_sample_b_o">; defm IMAGE_SAMPLE_B_CL_O : MIMG_Sampler_WQM <0x00000036, "image_sample_b_cl_o">; defm IMAGE_SAMPLE_LZ_O : MIMG_Sampler <0x00000037, "image_sample_lz_o">; defm IMAGE_SAMPLE_C_O : MIMG_Sampler_WQM <0x00000038, "image_sample_c_o">; defm IMAGE_SAMPLE_C_CL_O : MIMG_Sampler_WQM <0x00000039, "image_sample_c_cl_o">; defm IMAGE_SAMPLE_C_D_O : MIMG_Sampler <0x0000003a, "image_sample_c_d_o">; defm IMAGE_SAMPLE_C_D_CL_O : MIMG_Sampler <0x0000003b, "image_sample_c_d_cl_o">; defm IMAGE_SAMPLE_C_L_O : MIMG_Sampler <0x0000003c, "image_sample_c_l_o">; defm IMAGE_SAMPLE_C_B_O : MIMG_Sampler_WQM <0x0000003d, "image_sample_c_b_o">; defm IMAGE_SAMPLE_C_B_CL_O : MIMG_Sampler_WQM <0x0000003e, "image_sample_c_b_cl_o">; defm IMAGE_SAMPLE_C_LZ_O : MIMG_Sampler <0x0000003f, "image_sample_c_lz_o">; defm IMAGE_GATHER4 : MIMG_Gather_WQM <0x00000040, "image_gather4">; defm IMAGE_GATHER4_CL : MIMG_Gather_WQM <0x00000041, "image_gather4_cl">; defm IMAGE_GATHER4_L : MIMG_Gather <0x00000044, "image_gather4_l">; defm IMAGE_GATHER4_B : MIMG_Gather_WQM <0x00000045, "image_gather4_b">; defm IMAGE_GATHER4_B_CL : MIMG_Gather_WQM <0x00000046, "image_gather4_b_cl">; defm IMAGE_GATHER4_LZ : MIMG_Gather <0x00000047, "image_gather4_lz">; defm IMAGE_GATHER4_C : MIMG_Gather_WQM <0x00000048, "image_gather4_c">; defm IMAGE_GATHER4_C_CL : MIMG_Gather_WQM <0x00000049, "image_gather4_c_cl">; defm IMAGE_GATHER4_C_L : MIMG_Gather <0x0000004c, "image_gather4_c_l">; defm IMAGE_GATHER4_C_B : MIMG_Gather_WQM <0x0000004d, "image_gather4_c_b">; defm IMAGE_GATHER4_C_B_CL : MIMG_Gather_WQM <0x0000004e, "image_gather4_c_b_cl">; defm IMAGE_GATHER4_C_LZ : MIMG_Gather <0x0000004f, "image_gather4_c_lz">; defm IMAGE_GATHER4_O : MIMG_Gather_WQM <0x00000050, "image_gather4_o">; defm IMAGE_GATHER4_CL_O : MIMG_Gather_WQM <0x00000051, "image_gather4_cl_o">; defm IMAGE_GATHER4_L_O : MIMG_Gather <0x00000054, "image_gather4_l_o">; defm IMAGE_GATHER4_B_O : MIMG_Gather_WQM <0x00000055, "image_gather4_b_o">; defm IMAGE_GATHER4_B_CL_O : MIMG_Gather <0x00000056, "image_gather4_b_cl_o">; defm IMAGE_GATHER4_LZ_O : MIMG_Gather <0x00000057, "image_gather4_lz_o">; defm IMAGE_GATHER4_C_O : MIMG_Gather_WQM <0x00000058, "image_gather4_c_o">; defm IMAGE_GATHER4_C_CL_O : MIMG_Gather_WQM <0x00000059, "image_gather4_c_cl_o">; defm IMAGE_GATHER4_C_L_O : MIMG_Gather <0x0000005c, "image_gather4_c_l_o">; defm IMAGE_GATHER4_C_B_O : MIMG_Gather_WQM <0x0000005d, "image_gather4_c_b_o">; defm IMAGE_GATHER4_C_B_CL_O : MIMG_Gather_WQM <0x0000005e, "image_gather4_c_b_cl_o">; defm IMAGE_GATHER4_C_LZ_O : MIMG_Gather <0x0000005f, "image_gather4_c_lz_o">; defm IMAGE_GET_LOD : MIMG_Sampler_WQM <0x00000060, "image_get_lod">; defm IMAGE_SAMPLE_CD : MIMG_Sampler <0x00000068, "image_sample_cd">; defm IMAGE_SAMPLE_CD_CL : MIMG_Sampler <0x00000069, "image_sample_cd_cl">; defm IMAGE_SAMPLE_C_CD : MIMG_Sampler <0x0000006a, "image_sample_c_cd">; defm IMAGE_SAMPLE_C_CD_CL : MIMG_Sampler <0x0000006b, "image_sample_c_cd_cl">; defm IMAGE_SAMPLE_CD_O : MIMG_Sampler <0x0000006c, "image_sample_cd_o">; defm IMAGE_SAMPLE_CD_CL_O : MIMG_Sampler <0x0000006d, "image_sample_cd_cl_o">; defm IMAGE_SAMPLE_C_CD_O : MIMG_Sampler <0x0000006e, "image_sample_c_cd_o">; defm IMAGE_SAMPLE_C_CD_CL_O : MIMG_Sampler <0x0000006f, "image_sample_c_cd_cl_o">; //def IMAGE_RSRC256 : MIMG_NoPattern_RSRC256 <"image_rsrc256", 0x0000007e>; //def IMAGE_SAMPLER : MIMG_NoPattern_ <"image_sampler", 0x0000007f>; //===----------------------------------------------------------------------===// // VOP1 Instructions //===----------------------------------------------------------------------===// let vdst = 0, src0 = 0, VOPAsmPrefer32Bit = 1 in { defm V_NOP : VOP1Inst <vop1<0x0>, "v_nop", VOP_NONE>; } let isMoveImm = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in { defm V_MOV_B32 : VOP1Inst <vop1<0x1>, "v_mov_b32", VOP_I32_I32>; } // End isMoveImm = 1 let Uses = [EXEC] in { // FIXME: Specify SchedRW for READFIRSTLANE_B32 def V_READFIRSTLANE_B32 : VOP1 < 0x00000002, (outs SReg_32:$vdst), (ins VGPR_32:$src0), "v_readfirstlane_b32 $vdst, $src0", [] >; } let SchedRW = [WriteQuarterRate32] in { defm V_CVT_I32_F64 : VOP1Inst <vop1<0x3>, "v_cvt_i32_f64", VOP_I32_F64, fp_to_sint >; defm V_CVT_F64_I32 : VOP1Inst <vop1<0x4>, "v_cvt_f64_i32", VOP_F64_I32, sint_to_fp >; defm V_CVT_F32_I32 : VOP1Inst <vop1<0x5>, "v_cvt_f32_i32", VOP_F32_I32, sint_to_fp >; defm V_CVT_F32_U32 : VOP1Inst <vop1<0x6>, "v_cvt_f32_u32", VOP_F32_I32, uint_to_fp >; defm V_CVT_U32_F32 : VOP1Inst <vop1<0x7>, "v_cvt_u32_f32", VOP_I32_F32, fp_to_uint >; defm V_CVT_I32_F32 : VOP1Inst <vop1<0x8>, "v_cvt_i32_f32", VOP_I32_F32, fp_to_sint >; defm V_CVT_F16_F32 : VOP1Inst <vop1<0xa>, "v_cvt_f16_f32", VOP_I32_F32, fp_to_f16 >; defm V_CVT_F32_F16 : VOP1Inst <vop1<0xb>, "v_cvt_f32_f16", VOP_F32_I32, f16_to_fp >; defm V_CVT_RPI_I32_F32 : VOP1Inst <vop1<0xc>, "v_cvt_rpi_i32_f32", VOP_I32_F32, cvt_rpi_i32_f32>; defm V_CVT_FLR_I32_F32 : VOP1Inst <vop1<0xd>, "v_cvt_flr_i32_f32", VOP_I32_F32, cvt_flr_i32_f32>; defm V_CVT_OFF_F32_I4 : VOP1Inst <vop1<0x0e>, "v_cvt_off_f32_i4", VOP_F32_I32>; defm V_CVT_F32_F64 : VOP1Inst <vop1<0xf>, "v_cvt_f32_f64", VOP_F32_F64, fround >; defm V_CVT_F64_F32 : VOP1Inst <vop1<0x10>, "v_cvt_f64_f32", VOP_F64_F32, fextend >; defm V_CVT_F32_UBYTE0 : VOP1Inst <vop1<0x11>, "v_cvt_f32_ubyte0", VOP_F32_I32, AMDGPUcvt_f32_ubyte0 >; defm V_CVT_F32_UBYTE1 : VOP1Inst <vop1<0x12>, "v_cvt_f32_ubyte1", VOP_F32_I32, AMDGPUcvt_f32_ubyte1 >; defm V_CVT_F32_UBYTE2 : VOP1Inst <vop1<0x13>, "v_cvt_f32_ubyte2", VOP_F32_I32, AMDGPUcvt_f32_ubyte2 >; defm V_CVT_F32_UBYTE3 : VOP1Inst <vop1<0x14>, "v_cvt_f32_ubyte3", VOP_F32_I32, AMDGPUcvt_f32_ubyte3 >; defm V_CVT_U32_F64 : VOP1Inst <vop1<0x15>, "v_cvt_u32_f64", VOP_I32_F64, fp_to_uint >; defm V_CVT_F64_U32 : VOP1Inst <vop1<0x16>, "v_cvt_f64_u32", VOP_F64_I32, uint_to_fp >; } // let SchedRW = [WriteQuarterRate32] defm V_FRACT_F32 : VOP1Inst <vop1<0x20, 0x1b>, "v_fract_f32", VOP_F32_F32, AMDGPUfract >; defm V_TRUNC_F32 : VOP1Inst <vop1<0x21, 0x1c>, "v_trunc_f32", VOP_F32_F32, ftrunc >; defm V_CEIL_F32 : VOP1Inst <vop1<0x22, 0x1d>, "v_ceil_f32", VOP_F32_F32, fceil >; defm V_RNDNE_F32 : VOP1Inst <vop1<0x23, 0x1e>, "v_rndne_f32", VOP_F32_F32, frint >; defm V_FLOOR_F32 : VOP1Inst <vop1<0x24, 0x1f>, "v_floor_f32", VOP_F32_F32, ffloor >; defm V_EXP_F32 : VOP1Inst <vop1<0x25, 0x20>, "v_exp_f32", VOP_F32_F32, fexp2 >; let SchedRW = [WriteQuarterRate32] in { defm V_LOG_F32 : VOP1Inst <vop1<0x27, 0x21>, "v_log_f32", VOP_F32_F32, flog2 >; defm V_RCP_F32 : VOP1Inst <vop1<0x2a, 0x22>, "v_rcp_f32", VOP_F32_F32, AMDGPUrcp >; defm V_RCP_IFLAG_F32 : VOP1Inst <vop1<0x2b, 0x23>, "v_rcp_iflag_f32", VOP_F32_F32 >; defm V_RSQ_F32 : VOP1Inst <vop1<0x2e, 0x24>, "v_rsq_f32", VOP_F32_F32, AMDGPUrsq >; } //let SchedRW = [WriteQuarterRate32] let SchedRW = [WriteDouble] in { defm V_RCP_F64 : VOP1Inst <vop1<0x2f, 0x25>, "v_rcp_f64", VOP_F64_F64, AMDGPUrcp >; defm V_RSQ_F64 : VOP1Inst <vop1<0x31, 0x26>, "v_rsq_f64", VOP_F64_F64, AMDGPUrsq >; } // let SchedRW = [WriteDouble]; defm V_SQRT_F32 : VOP1Inst <vop1<0x33, 0x27>, "v_sqrt_f32", VOP_F32_F32, fsqrt >; let SchedRW = [WriteDouble] in { defm V_SQRT_F64 : VOP1Inst <vop1<0x34, 0x28>, "v_sqrt_f64", VOP_F64_F64, fsqrt >; } // End SchedRW = [WriteDouble] let SchedRW = [WriteQuarterRate32] in { defm V_SIN_F32 : VOP1Inst <vop1<0x35, 0x29>, "v_sin_f32", VOP_F32_F32, AMDGPUsin >; defm V_COS_F32 : VOP1Inst <vop1<0x36, 0x2a>, "v_cos_f32", VOP_F32_F32, AMDGPUcos >; } // End SchedRW = [WriteQuarterRate32] defm V_NOT_B32 : VOP1Inst <vop1<0x37, 0x2b>, "v_not_b32", VOP_I32_I32>; defm V_BFREV_B32 : VOP1Inst <vop1<0x38, 0x2c>, "v_bfrev_b32", VOP_I32_I32>; defm V_FFBH_U32 : VOP1Inst <vop1<0x39, 0x2d>, "v_ffbh_u32", VOP_I32_I32>; defm V_FFBL_B32 : VOP1Inst <vop1<0x3a, 0x2e>, "v_ffbl_b32", VOP_I32_I32>; defm V_FFBH_I32 : VOP1Inst <vop1<0x3b, 0x2f>, "v_ffbh_i32", VOP_I32_I32>; defm V_FREXP_EXP_I32_F64 : VOP1Inst <vop1<0x3c,0x30>, "v_frexp_exp_i32_f64", VOP_I32_F64 >; let SchedRW = [WriteDoubleAdd] in { defm V_FREXP_MANT_F64 : VOP1Inst <vop1<0x3d, 0x31>, "v_frexp_mant_f64", VOP_F64_F64 >; defm V_FRACT_F64 : VOP1Inst <vop1<0x3e, 0x32>, "v_fract_f64", VOP_F64_F64 >; } // End SchedRW = [WriteDoubleAdd] defm V_FREXP_EXP_I32_F32 : VOP1Inst <vop1<0x3f, 0x33>, "v_frexp_exp_i32_f32", VOP_I32_F32 >; defm V_FREXP_MANT_F32 : VOP1Inst <vop1<0x40, 0x34>, "v_frexp_mant_f32", VOP_F32_F32 >; let vdst = 0, src0 = 0, VOPAsmPrefer32Bit = 1 in { defm V_CLREXCP : VOP1Inst <vop1<0x41,0x35>, "v_clrexcp", VOP_NONE>; } let Uses = [M0, EXEC] in { defm V_MOVRELD_B32 : VOP1Inst <vop1<0x42, 0x36>, "v_movreld_b32", VOP_I32_I32>; defm V_MOVRELS_B32 : VOP1Inst <vop1<0x43, 0x37>, "v_movrels_b32", VOP_I32_I32>; defm V_MOVRELSD_B32 : VOP1Inst <vop1<0x44, 0x38>, "v_movrelsd_b32", VOP_I32_I32>; } // End Uses = [M0, EXEC] // These instruction only exist on SI and CI let SubtargetPredicate = isSICI in { let SchedRW = [WriteQuarterRate32] in { defm V_MOV_FED_B32 : VOP1InstSI <vop1<0x9>, "v_mov_fed_b32", VOP_I32_I32>; defm V_LOG_CLAMP_F32 : VOP1InstSI <vop1<0x26>, "v_log_clamp_f32", VOP_F32_F32>; defm V_RCP_CLAMP_F32 : VOP1InstSI <vop1<0x28>, "v_rcp_clamp_f32", VOP_F32_F32>; defm V_RCP_LEGACY_F32 : VOP1InstSI <vop1<0x29>, "v_rcp_legacy_f32", VOP_F32_F32>; defm V_RSQ_CLAMP_F32 : VOP1InstSI <vop1<0x2c>, "v_rsq_clamp_f32", VOP_F32_F32, AMDGPUrsq_clamped >; defm V_RSQ_LEGACY_F32 : VOP1InstSI <vop1<0x2d>, "v_rsq_legacy_f32", VOP_F32_F32, AMDGPUrsq_legacy >; } // End SchedRW = [WriteQuarterRate32] let SchedRW = [WriteDouble] in { defm V_RCP_CLAMP_F64 : VOP1InstSI <vop1<0x30>, "v_rcp_clamp_f64", VOP_F64_F64>; defm V_RSQ_CLAMP_F64 : VOP1InstSI <vop1<0x32>, "v_rsq_clamp_f64", VOP_F64_F64, AMDGPUrsq_clamped >; } // End SchedRW = [WriteDouble] } // End SubtargetPredicate = isSICI //===----------------------------------------------------------------------===// // VINTRP Instructions //===----------------------------------------------------------------------===// let Uses = [M0, EXEC] in { // FIXME: Specify SchedRW for VINTRP insturctions. multiclass V_INTERP_P1_F32_m : VINTRP_m < 0x00000000, (outs VGPR_32:$dst), (ins VGPR_32:$i, i32imm:$attr_chan, i32imm:$attr), "v_interp_p1_f32 $dst, $i, $attr_chan, $attr, [m0]", [(set f32:$dst, (AMDGPUinterp_p1 i32:$i, (i32 imm:$attr_chan), (i32 imm:$attr)))] >; let OtherPredicates = [has32BankLDS] in { defm V_INTERP_P1_F32 : V_INTERP_P1_F32_m; } // End OtherPredicates = [has32BankLDS] let OtherPredicates = [has16BankLDS], Constraints = "@earlyclobber $dst" in { defm V_INTERP_P1_F32_16bank : V_INTERP_P1_F32_m; } // End OtherPredicates = [has32BankLDS], Constraints = "@earlyclobber $dst" let DisableEncoding = "$src0", Constraints = "$src0 = $dst" in { defm V_INTERP_P2_F32 : VINTRP_m < 0x00000001, (outs VGPR_32:$dst), (ins VGPR_32:$src0, VGPR_32:$j, i32imm:$attr_chan, i32imm:$attr), "v_interp_p2_f32 $dst, [$src0], $j, $attr_chan, $attr, [m0]", [(set f32:$dst, (AMDGPUinterp_p2 f32:$src0, i32:$j, (i32 imm:$attr_chan), (i32 imm:$attr)))]>; } // End DisableEncoding = "$src0", Constraints = "$src0 = $dst" defm V_INTERP_MOV_F32 : VINTRP_m < 0x00000002, (outs VGPR_32:$dst), (ins InterpSlot:$src0, i32imm:$attr_chan, i32imm:$attr), "v_interp_mov_f32 $dst, $src0, $attr_chan, $attr, [m0]", [(set f32:$dst, (AMDGPUinterp_mov (i32 imm:$src0), (i32 imm:$attr_chan), (i32 imm:$attr)))]>; } // End Uses = [M0, EXEC] //===----------------------------------------------------------------------===// // VOP2 Instructions //===----------------------------------------------------------------------===// multiclass V_CNDMASK <vop2 op, string name> { defm _e32 : VOP2_m <op, name, VOP_CNDMASK, [], name>; defm _e64 : VOP3_m < op, VOP_CNDMASK.Outs, VOP_CNDMASK.Ins64, name#!cast<string>(VOP_CNDMASK.Asm64), [], name, 3>; } defm V_CNDMASK_B32 : V_CNDMASK<vop2<0x0>, "v_cndmask_b32">; let isCommutable = 1 in { defm V_ADD_F32 : VOP2Inst <vop2<0x3, 0x1>, "v_add_f32", VOP_F32_F32_F32, fadd >; defm V_SUB_F32 : VOP2Inst <vop2<0x4, 0x2>, "v_sub_f32", VOP_F32_F32_F32, fsub>; defm V_SUBREV_F32 : VOP2Inst <vop2<0x5, 0x3>, "v_subrev_f32", VOP_F32_F32_F32, null_frag, "v_sub_f32" >; } // End isCommutable = 1 let isCommutable = 1 in { defm V_MUL_LEGACY_F32 : VOP2Inst <vop2<0x7, 0x4>, "v_mul_legacy_f32", VOP_F32_F32_F32, int_AMDGPU_mul >; defm V_MUL_F32 : VOP2Inst <vop2<0x8, 0x5>, "v_mul_f32", VOP_F32_F32_F32, fmul >; defm V_MUL_I32_I24 : VOP2Inst <vop2<0x9, 0x6>, "v_mul_i32_i24", VOP_I32_I32_I32, AMDGPUmul_i24 >; defm V_MUL_HI_I32_I24 : VOP2Inst <vop2<0xa,0x7>, "v_mul_hi_i32_i24", VOP_I32_I32_I32 >; defm V_MUL_U32_U24 : VOP2Inst <vop2<0xb, 0x8>, "v_mul_u32_u24", VOP_I32_I32_I32, AMDGPUmul_u24 >; defm V_MUL_HI_U32_U24 : VOP2Inst <vop2<0xc,0x9>, "v_mul_hi_u32_u24", VOP_I32_I32_I32 >; defm V_MIN_F32 : VOP2Inst <vop2<0xf, 0xa>, "v_min_f32", VOP_F32_F32_F32, fminnum>; defm V_MAX_F32 : VOP2Inst <vop2<0x10, 0xb>, "v_max_f32", VOP_F32_F32_F32, fmaxnum>; defm V_MIN_I32 : VOP2Inst <vop2<0x11, 0xc>, "v_min_i32", VOP_I32_I32_I32>; defm V_MAX_I32 : VOP2Inst <vop2<0x12, 0xd>, "v_max_i32", VOP_I32_I32_I32>; defm V_MIN_U32 : VOP2Inst <vop2<0x13, 0xe>, "v_min_u32", VOP_I32_I32_I32>; defm V_MAX_U32 : VOP2Inst <vop2<0x14, 0xf>, "v_max_u32", VOP_I32_I32_I32>; defm V_LSHRREV_B32 : VOP2Inst < vop2<0x16, 0x10>, "v_lshrrev_b32", VOP_I32_I32_I32, null_frag, "v_lshr_b32" >; defm V_ASHRREV_I32 : VOP2Inst < vop2<0x18, 0x11>, "v_ashrrev_i32", VOP_I32_I32_I32, null_frag, "v_ashr_i32" >; defm V_LSHLREV_B32 : VOP2Inst < vop2<0x1a, 0x12>, "v_lshlrev_b32", VOP_I32_I32_I32, null_frag, "v_lshl_b32" >; defm V_AND_B32 : VOP2Inst <vop2<0x1b, 0x13>, "v_and_b32", VOP_I32_I32_I32>; defm V_OR_B32 : VOP2Inst <vop2<0x1c, 0x14>, "v_or_b32", VOP_I32_I32_I32>; defm V_XOR_B32 : VOP2Inst <vop2<0x1d, 0x15>, "v_xor_b32", VOP_I32_I32_I32>; let Constraints = "$dst = $src2", DisableEncoding="$src2", isConvertibleToThreeAddress = 1 in { defm V_MAC_F32 : VOP2Inst <vop2<0x1f, 0x16>, "v_mac_f32", VOP_MAC>; } } // End isCommutable = 1 defm V_MADMK_F32 : VOP2MADK <vop2<0x20, 0x17>, "v_madmk_f32">; let isCommutable = 1 in { defm V_MADAK_F32 : VOP2MADK <vop2<0x21, 0x18>, "v_madak_f32">; } // End isCommutable = 1 let isCommutable = 1 in { // No patterns so that the scalar instructions are always selected. // The scalar versions will be replaced with vector when needed later. // V_ADD_I32, V_SUB_I32, and V_SUBREV_I32 where renamed to *_U32 in VI, // but the VI instructions behave the same as the SI versions. defm V_ADD_I32 : VOP2bInst <vop2<0x25, 0x19>, "v_add_i32", VOP2b_I32_I1_I32_I32 >; defm V_SUB_I32 : VOP2bInst <vop2<0x26, 0x1a>, "v_sub_i32", VOP2b_I32_I1_I32_I32>; defm V_SUBREV_I32 : VOP2bInst <vop2<0x27, 0x1b>, "v_subrev_i32", VOP2b_I32_I1_I32_I32, null_frag, "v_sub_i32" >; defm V_ADDC_U32 : VOP2bInst <vop2<0x28, 0x1c>, "v_addc_u32", VOP2b_I32_I1_I32_I32_I1 >; defm V_SUBB_U32 : VOP2bInst <vop2<0x29, 0x1d>, "v_subb_u32", VOP2b_I32_I1_I32_I32_I1 >; defm V_SUBBREV_U32 : VOP2bInst <vop2<0x2a, 0x1e>, "v_subbrev_u32", VOP2b_I32_I1_I32_I32_I1, null_frag, "v_subb_u32" >; } // End isCommutable = 1 defm V_READLANE_B32 : VOP2SI_3VI_m < vop3 <0x001, 0x289>, "v_readlane_b32", (outs SReg_32:$vdst), (ins VGPR_32:$src0, SCSrc_32:$src1), "v_readlane_b32 $vdst, $src0, $src1" >; defm V_WRITELANE_B32 : VOP2SI_3VI_m < vop3 <0x002, 0x28a>, "v_writelane_b32", (outs VGPR_32:$vdst), (ins SReg_32:$src0, SCSrc_32:$src1), "v_writelane_b32 $vdst, $src0, $src1" >; // These instructions only exist on SI and CI let SubtargetPredicate = isSICI in { let isCommutable = 1 in { defm V_MAC_LEGACY_F32 : VOP2InstSI <vop2<0x6>, "v_mac_legacy_f32", VOP_F32_F32_F32 >; } // End isCommutable = 1 defm V_MIN_LEGACY_F32 : VOP2InstSI <vop2<0xd>, "v_min_legacy_f32", VOP_F32_F32_F32, AMDGPUfmin_legacy >; defm V_MAX_LEGACY_F32 : VOP2InstSI <vop2<0xe>, "v_max_legacy_f32", VOP_F32_F32_F32, AMDGPUfmax_legacy >; let isCommutable = 1 in { defm V_LSHR_B32 : VOP2InstSI <vop2<0x15>, "v_lshr_b32", VOP_I32_I32_I32>; defm V_ASHR_I32 : VOP2InstSI <vop2<0x17>, "v_ashr_i32", VOP_I32_I32_I32>; defm V_LSHL_B32 : VOP2InstSI <vop2<0x19>, "v_lshl_b32", VOP_I32_I32_I32>; } // End isCommutable = 1 } // End let SubtargetPredicate = SICI defm V_BFM_B32 : VOP2_VI3_Inst <vop23<0x1e, 0x293>, "v_bfm_b32", VOP_I32_I32_I32 >; defm V_BCNT_U32_B32 : VOP2_VI3_Inst <vop23<0x22, 0x28b>, "v_bcnt_u32_b32", VOP_I32_I32_I32 >; defm V_MBCNT_LO_U32_B32 : VOP2_VI3_Inst <vop23<0x23, 0x28c>, "v_mbcnt_lo_u32_b32", VOP_I32_I32_I32, int_amdgcn_mbcnt_lo >; defm V_MBCNT_HI_U32_B32 : VOP2_VI3_Inst <vop23<0x24, 0x28d>, "v_mbcnt_hi_u32_b32", VOP_I32_I32_I32, int_amdgcn_mbcnt_hi >; defm V_LDEXP_F32 : VOP2_VI3_Inst <vop23<0x2b, 0x288>, "v_ldexp_f32", VOP_F32_F32_I32, AMDGPUldexp >; defm V_CVT_PKACCUM_U8_F32 : VOP2_VI3_Inst <vop23<0x2c, 0x1f0>, "v_cvt_pkaccum_u8_f32", VOP_I32_F32_I32>; // TODO: set "Uses = dst" defm V_CVT_PKNORM_I16_F32 : VOP2_VI3_Inst <vop23<0x2d, 0x294>, "v_cvt_pknorm_i16_f32", VOP_I32_F32_F32 >; defm V_CVT_PKNORM_U16_F32 : VOP2_VI3_Inst <vop23<0x2e, 0x295>, "v_cvt_pknorm_u16_f32", VOP_I32_F32_F32 >; defm V_CVT_PKRTZ_F16_F32 : VOP2_VI3_Inst <vop23<0x2f, 0x296>, "v_cvt_pkrtz_f16_f32", VOP_I32_F32_F32, int_SI_packf16 >; defm V_CVT_PK_U16_U32 : VOP2_VI3_Inst <vop23<0x30, 0x297>, "v_cvt_pk_u16_u32", VOP_I32_I32_I32 >; defm V_CVT_PK_I16_I32 : VOP2_VI3_Inst <vop23<0x31, 0x298>, "v_cvt_pk_i16_i32", VOP_I32_I32_I32 >; //===----------------------------------------------------------------------===// // VOP3 Instructions //===----------------------------------------------------------------------===// let isCommutable = 1 in { defm V_MAD_LEGACY_F32 : VOP3Inst <vop3<0x140, 0x1c0>, "v_mad_legacy_f32", VOP_F32_F32_F32_F32 >; defm V_MAD_F32 : VOP3Inst <vop3<0x141, 0x1c1>, "v_mad_f32", VOP_F32_F32_F32_F32, fmad >; defm V_MAD_I32_I24 : VOP3Inst <vop3<0x142, 0x1c2>, "v_mad_i32_i24", VOP_I32_I32_I32_I32, AMDGPUmad_i24 >; defm V_MAD_U32_U24 : VOP3Inst <vop3<0x143, 0x1c3>, "v_mad_u32_u24", VOP_I32_I32_I32_I32, AMDGPUmad_u24 >; } // End isCommutable = 1 defm V_CUBEID_F32 : VOP3Inst <vop3<0x144, 0x1c4>, "v_cubeid_f32", VOP_F32_F32_F32_F32 >; defm V_CUBESC_F32 : VOP3Inst <vop3<0x145, 0x1c5>, "v_cubesc_f32", VOP_F32_F32_F32_F32 >; defm V_CUBETC_F32 : VOP3Inst <vop3<0x146, 0x1c6>, "v_cubetc_f32", VOP_F32_F32_F32_F32 >; defm V_CUBEMA_F32 : VOP3Inst <vop3<0x147, 0x1c7>, "v_cubema_f32", VOP_F32_F32_F32_F32 >; defm V_BFE_U32 : VOP3Inst <vop3<0x148, 0x1c8>, "v_bfe_u32", VOP_I32_I32_I32_I32, AMDGPUbfe_u32 >; defm V_BFE_I32 : VOP3Inst <vop3<0x149, 0x1c9>, "v_bfe_i32", VOP_I32_I32_I32_I32, AMDGPUbfe_i32 >; defm V_BFI_B32 : VOP3Inst <vop3<0x14a, 0x1ca>, "v_bfi_b32", VOP_I32_I32_I32_I32, AMDGPUbfi >; let isCommutable = 1 in { defm V_FMA_F32 : VOP3Inst <vop3<0x14b, 0x1cb>, "v_fma_f32", VOP_F32_F32_F32_F32, fma >; defm V_FMA_F64 : VOP3Inst <vop3<0x14c, 0x1cc>, "v_fma_f64", VOP_F64_F64_F64_F64, fma >; } // End isCommutable = 1 //def V_LERP_U8 : VOP3_U8 <0x0000014d, "v_lerp_u8", []>; defm V_ALIGNBIT_B32 : VOP3Inst <vop3<0x14e, 0x1ce>, "v_alignbit_b32", VOP_I32_I32_I32_I32 >; defm V_ALIGNBYTE_B32 : VOP3Inst <vop3<0x14f, 0x1cf>, "v_alignbyte_b32", VOP_I32_I32_I32_I32 >; defm V_MIN3_F32 : VOP3Inst <vop3<0x151, 0x1d0>, "v_min3_f32", VOP_F32_F32_F32_F32, AMDGPUfmin3>; defm V_MIN3_I32 : VOP3Inst <vop3<0x152, 0x1d1>, "v_min3_i32", VOP_I32_I32_I32_I32, AMDGPUsmin3 >; defm V_MIN3_U32 : VOP3Inst <vop3<0x153, 0x1d2>, "v_min3_u32", VOP_I32_I32_I32_I32, AMDGPUumin3 >; defm V_MAX3_F32 : VOP3Inst <vop3<0x154, 0x1d3>, "v_max3_f32", VOP_F32_F32_F32_F32, AMDGPUfmax3 >; defm V_MAX3_I32 : VOP3Inst <vop3<0x155, 0x1d4>, "v_max3_i32", VOP_I32_I32_I32_I32, AMDGPUsmax3 >; defm V_MAX3_U32 : VOP3Inst <vop3<0x156, 0x1d5>, "v_max3_u32", VOP_I32_I32_I32_I32, AMDGPUumax3 >; defm V_MED3_F32 : VOP3Inst <vop3<0x157, 0x1d6>, "v_med3_f32", VOP_F32_F32_F32_F32 >; defm V_MED3_I32 : VOP3Inst <vop3<0x158, 0x1d7>, "v_med3_i32", VOP_I32_I32_I32_I32 >; defm V_MED3_U32 : VOP3Inst <vop3<0x159, 0x1d8>, "v_med3_u32", VOP_I32_I32_I32_I32 >; //def V_SAD_U8 : VOP3_U8 <0x0000015a, "v_sad_u8", []>; //def V_SAD_HI_U8 : VOP3_U8 <0x0000015b, "v_sad_hi_u8", []>; //def V_SAD_U16 : VOP3_U16 <0x0000015c, "v_sad_u16", []>; defm V_SAD_U32 : VOP3Inst <vop3<0x15d, 0x1dc>, "v_sad_u32", VOP_I32_I32_I32_I32 >; ////def V_CVT_PK_U8_F32 : VOP3_U8 <0x0000015e, "v_cvt_pk_u8_f32", []>; defm V_DIV_FIXUP_F32 : VOP3Inst < vop3<0x15f, 0x1de>, "v_div_fixup_f32", VOP_F32_F32_F32_F32, AMDGPUdiv_fixup >; let SchedRW = [WriteDoubleAdd] in { defm V_DIV_FIXUP_F64 : VOP3Inst < vop3<0x160, 0x1df>, "v_div_fixup_f64", VOP_F64_F64_F64_F64, AMDGPUdiv_fixup >; } // End SchedRW = [WriteDouble] let SchedRW = [WriteDoubleAdd] in { let isCommutable = 1 in { defm V_ADD_F64 : VOP3Inst <vop3<0x164, 0x280>, "v_add_f64", VOP_F64_F64_F64, fadd >; defm V_MUL_F64 : VOP3Inst <vop3<0x165, 0x281>, "v_mul_f64", VOP_F64_F64_F64, fmul >; defm V_MIN_F64 : VOP3Inst <vop3<0x166, 0x282>, "v_min_f64", VOP_F64_F64_F64, fminnum >; defm V_MAX_F64 : VOP3Inst <vop3<0x167, 0x283>, "v_max_f64", VOP_F64_F64_F64, fmaxnum >; } // isCommutable = 1 defm V_LDEXP_F64 : VOP3Inst <vop3<0x168, 0x284>, "v_ldexp_f64", VOP_F64_F64_I32, AMDGPUldexp >; } // let SchedRW = [WriteDoubleAdd] let isCommutable = 1, SchedRW = [WriteQuarterRate32] in { defm V_MUL_LO_U32 : VOP3Inst <vop3<0x169, 0x285>, "v_mul_lo_u32", VOP_I32_I32_I32 >; defm V_MUL_HI_U32 : VOP3Inst <vop3<0x16a, 0x286>, "v_mul_hi_u32", VOP_I32_I32_I32 >; defm V_MUL_LO_I32 : VOP3Inst <vop3<0x16b, 0x285>, "v_mul_lo_i32", VOP_I32_I32_I32 >; defm V_MUL_HI_I32 : VOP3Inst <vop3<0x16c, 0x287>, "v_mul_hi_i32", VOP_I32_I32_I32 >; } // isCommutable = 1, SchedRW = [WriteQuarterRate32] let SchedRW = [WriteFloatFMA, WriteSALU] in { defm V_DIV_SCALE_F32 : VOP3bInst <vop3<0x16d, 0x1e0>, "v_div_scale_f32", VOP3b_F32_I1_F32_F32_F32 >; } let SchedRW = [WriteDouble, WriteSALU] in { // Double precision division pre-scale. defm V_DIV_SCALE_F64 : VOP3bInst <vop3<0x16e, 0x1e1>, "v_div_scale_f64", VOP3b_F64_I1_F64_F64_F64 >; } // let SchedRW = [WriteDouble] let isCommutable = 1, Uses = [VCC, EXEC] in { let SchedRW = [WriteFloatFMA] in { // v_div_fmas_f32: // result = src0 * src1 + src2 // if (vcc) // result *= 2^32 // defm V_DIV_FMAS_F32 : VOP3_VCC_Inst <vop3<0x16f, 0x1e2>, "v_div_fmas_f32", VOP_F32_F32_F32_F32, AMDGPUdiv_fmas >; } let SchedRW = [WriteDouble] in { // v_div_fmas_f64: // result = src0 * src1 + src2 // if (vcc) // result *= 2^64 // defm V_DIV_FMAS_F64 : VOP3_VCC_Inst <vop3<0x170, 0x1e3>, "v_div_fmas_f64", VOP_F64_F64_F64_F64, AMDGPUdiv_fmas >; } // End SchedRW = [WriteDouble] } // End isCommutable = 1, Uses = [VCC, EXEC] //def V_MSAD_U8 : VOP3_U8 <0x00000171, "v_msad_u8", []>; //def V_QSAD_U8 : VOP3_U8 <0x00000172, "v_qsad_u8", []>; //def V_MQSAD_U8 : VOP3_U8 <0x00000173, "v_mqsad_u8", []>; let SchedRW = [WriteDouble] in { defm V_TRIG_PREOP_F64 : VOP3Inst < vop3<0x174, 0x292>, "v_trig_preop_f64", VOP_F64_F64_I32, AMDGPUtrig_preop >; } // let SchedRW = [WriteDouble] // These instructions only exist on SI and CI let SubtargetPredicate = isSICI in { defm V_LSHL_B64 : VOP3Inst <vop3<0x161>, "v_lshl_b64", VOP_I64_I64_I32>; defm V_LSHR_B64 : VOP3Inst <vop3<0x162>, "v_lshr_b64", VOP_I64_I64_I32>; defm V_ASHR_I64 : VOP3Inst <vop3<0x163>, "v_ashr_i64", VOP_I64_I64_I32>; defm V_MULLIT_F32 : VOP3Inst <vop3<0x150>, "v_mullit_f32", VOP_F32_F32_F32_F32>; } // End SubtargetPredicate = isSICI let SubtargetPredicate = isVI in { defm V_LSHLREV_B64 : VOP3Inst <vop3<0, 0x28f>, "v_lshlrev_b64", VOP_I64_I32_I64 >; defm V_LSHRREV_B64 : VOP3Inst <vop3<0, 0x290>, "v_lshrrev_b64", VOP_I64_I32_I64 >; defm V_ASHRREV_I64 : VOP3Inst <vop3<0, 0x291>, "v_ashrrev_i64", VOP_I64_I32_I64 >; } // End SubtargetPredicate = isVI //===----------------------------------------------------------------------===// // Pseudo Instructions //===----------------------------------------------------------------------===// let isCodeGenOnly = 1, isPseudo = 1 in { // For use in patterns def V_CNDMASK_B64_PSEUDO : VOP3Common <(outs VReg_64:$dst), (ins VSrc_64:$src0, VSrc_64:$src1, SSrc_64:$src2), "", [] >; let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in { // 64-bit vector move instruction. This is mainly used by the SIFoldOperands // pass to enable folding of inline immediates. def V_MOV_B64_PSEUDO : InstSI <(outs VReg_64:$dst), (ins VSrc_64:$src0), "", []>; } // end let hasSideEffects = 0, mayLoad = 0, mayStore = 0 let hasSideEffects = 1, SALU = 1 in { def SGPR_USE : InstSI <(outs),(ins), "", []>; } // SI pseudo instructions. These are used by the CFG structurizer pass // and should be lowered to ISA instructions prior to codegen. let mayLoad = 1, mayStore = 1, hasSideEffects = 1 in { let Uses = [EXEC], Defs = [EXEC] in { let isBranch = 1, isTerminator = 1 in { def SI_IF: InstSI < (outs SReg_64:$dst), (ins SReg_64:$vcc, brtarget:$target), "", [(set i64:$dst, (int_SI_if i1:$vcc, bb:$target))] >; def SI_ELSE : InstSI < (outs SReg_64:$dst), (ins SReg_64:$src, brtarget:$target), "", [(set i64:$dst, (int_SI_else i64:$src, bb:$target))] > { let Constraints = "$src = $dst"; } def SI_LOOP : InstSI < (outs), (ins SReg_64:$saved, brtarget:$target), "si_loop $saved, $target", [(int_SI_loop i64:$saved, bb:$target)] >; } // end isBranch = 1, isTerminator = 1 def SI_BREAK : InstSI < (outs SReg_64:$dst), (ins SReg_64:$src), "si_else $dst, $src", [(set i64:$dst, (int_SI_break i64:$src))] >; def SI_IF_BREAK : InstSI < (outs SReg_64:$dst), (ins SReg_64:$vcc, SReg_64:$src), "si_if_break $dst, $vcc, $src", [(set i64:$dst, (int_SI_if_break i1:$vcc, i64:$src))] >; def SI_ELSE_BREAK : InstSI < (outs SReg_64:$dst), (ins SReg_64:$src0, SReg_64:$src1), "si_else_break $dst, $src0, $src1", [(set i64:$dst, (int_SI_else_break i64:$src0, i64:$src1))] >; def SI_END_CF : InstSI < (outs), (ins SReg_64:$saved), "si_end_cf $saved", [(int_SI_end_cf i64:$saved)] >; } // End Uses = [EXEC], Defs = [EXEC] let Uses = [EXEC], Defs = [EXEC,VCC] in { def SI_KILL : InstSI < (outs), (ins VSrc_32:$src), "si_kill $src", [(int_AMDGPU_kill f32:$src)] >; } // End Uses = [EXEC], Defs = [EXEC,VCC] } // end mayLoad = 1, mayStore = 1, hasSideEffects = 1 let Uses = [EXEC], Defs = [EXEC,VCC,M0] in { class SI_INDIRECT_SRC<RegisterClass rc> : InstSI < (outs VGPR_32:$dst, SReg_64:$temp), (ins rc:$src, VSrc_32:$idx, i32imm:$off), "si_indirect_src $dst, $temp, $src, $idx, $off", [] >; class SI_INDIRECT_DST<RegisterClass rc> : InstSI < (outs rc:$dst, SReg_64:$temp), (ins unknown:$src, VSrc_32:$idx, i32imm:$off, VGPR_32:$val), "si_indirect_dst $dst, $temp, $src, $idx, $off, $val", [] > { let Constraints = "$src = $dst"; } // TODO: We can support indirect SGPR access. def SI_INDIRECT_SRC_V1 : SI_INDIRECT_SRC<VGPR_32>; def SI_INDIRECT_SRC_V2 : SI_INDIRECT_SRC<VReg_64>; def SI_INDIRECT_SRC_V4 : SI_INDIRECT_SRC<VReg_128>; def SI_INDIRECT_SRC_V8 : SI_INDIRECT_SRC<VReg_256>; def SI_INDIRECT_SRC_V16 : SI_INDIRECT_SRC<VReg_512>; def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST<VGPR_32>; def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST<VReg_64>; def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST<VReg_128>; def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST<VReg_256>; def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST<VReg_512>; } // Uses = [EXEC,VCC,M0], Defs = [EXEC,VCC,M0] multiclass SI_SPILL_SGPR <RegisterClass sgpr_class> { let UseNamedOperandTable = 1, Uses = [EXEC] in { def _SAVE : InstSI < (outs), (ins sgpr_class:$src, i32imm:$frame_idx), "", [] > { let mayStore = 1; let mayLoad = 0; } def _RESTORE : InstSI < (outs sgpr_class:$dst), (ins i32imm:$frame_idx), "", [] > { let mayStore = 0; let mayLoad = 1; } } // End UseNamedOperandTable = 1 } // It's unclear whether you can use M0 as the output of v_readlane_b32 // instructions, so use SGPR_32 register class for spills to prevent // this from happening. defm SI_SPILL_S32 : SI_SPILL_SGPR <SGPR_32>; defm SI_SPILL_S64 : SI_SPILL_SGPR <SReg_64>; defm SI_SPILL_S128 : SI_SPILL_SGPR <SReg_128>; defm SI_SPILL_S256 : SI_SPILL_SGPR <SReg_256>; defm SI_SPILL_S512 : SI_SPILL_SGPR <SReg_512>; multiclass SI_SPILL_VGPR <RegisterClass vgpr_class> { let UseNamedOperandTable = 1, VGPRSpill = 1, Uses = [EXEC] in { def _SAVE : InstSI < (outs), (ins vgpr_class:$src, i32imm:$frame_idx, SReg_128:$scratch_rsrc, SReg_32:$scratch_offset), "", [] > { let mayStore = 1; let mayLoad = 0; } def _RESTORE : InstSI < (outs vgpr_class:$dst), (ins i32imm:$frame_idx, SReg_128:$scratch_rsrc, SReg_32:$scratch_offset), "", [] > { let mayStore = 0; let mayLoad = 1; } } // End UseNamedOperandTable = 1, VGPRSpill = 1 } defm SI_SPILL_V32 : SI_SPILL_VGPR <VGPR_32>; defm SI_SPILL_V64 : SI_SPILL_VGPR <VReg_64>; defm SI_SPILL_V96 : SI_SPILL_VGPR <VReg_96>; defm SI_SPILL_V128 : SI_SPILL_VGPR <VReg_128>; defm SI_SPILL_V256 : SI_SPILL_VGPR <VReg_256>; defm SI_SPILL_V512 : SI_SPILL_VGPR <VReg_512>; let Defs = [SCC] in { def SI_CONSTDATA_PTR : InstSI < (outs SReg_64:$dst), (ins const_ga:$ptr), "", [(set SReg_64:$dst, (i64 (SIconstdata_ptr (tglobaladdr:$ptr))))] > { let SALU = 1; } } // End Defs = [SCC] } // end IsCodeGenOnly, isPseudo } // end SubtargetPredicate = isGCN let Predicates = [isGCN] in { def : Pat< (int_AMDGPU_cndlt f32:$src0, f32:$src1, f32:$src2), (V_CNDMASK_B32_e64 $src2, $src1, (V_CMP_GT_F32_e64 SRCMODS.NONE, 0, SRCMODS.NONE, $src0, DSTCLAMP.NONE, DSTOMOD.NONE)) >; def : Pat < (int_AMDGPU_kilp), (SI_KILL 0xbf800000) >; /* int_SI_vs_load_input */ def : Pat< (SIload_input v4i32:$tlst, imm:$attr_offset, i32:$buf_idx_vgpr), (BUFFER_LOAD_FORMAT_XYZW_IDXEN $buf_idx_vgpr, $tlst, 0, imm:$attr_offset, 0, 0, 0) >; /* int_SI_export */ def : Pat < (int_SI_export imm:$en, imm:$vm, imm:$done, imm:$tgt, imm:$compr, f32:$src0, f32:$src1, f32:$src2, f32:$src3), (EXP imm:$en, imm:$tgt, imm:$compr, imm:$done, imm:$vm, $src0, $src1, $src2, $src3) >; //===----------------------------------------------------------------------===// // SMRD Patterns //===----------------------------------------------------------------------===// multiclass SMRD_Pattern <string Instr, ValueType vt> { // 1. IMM offset def : Pat < (smrd_load (SMRDImm i64:$sbase, i32:$offset)), (vt (!cast<SMRD>(Instr#"_IMM") $sbase, $offset)) >; // 2. SGPR offset def : Pat < (smrd_load (SMRDSgpr i64:$sbase, i32:$offset)), (vt (!cast<SMRD>(Instr#"_SGPR") $sbase, $offset)) >; def : Pat < (smrd_load (SMRDImm32 i64:$sbase, i32:$offset)), (vt (!cast<SMRD>(Instr#"_IMM_ci") $sbase, $offset)) > { let Predicates = [isCIOnly]; } } // Global and constant loads can be selected to either MUBUF or SMRD // instructions, but SMRD instructions are faster so we want the instruction // selector to prefer those. let AddedComplexity = 100 in { defm : SMRD_Pattern <"S_LOAD_DWORD", i32>; defm : SMRD_Pattern <"S_LOAD_DWORDX2", v2i32>; defm : SMRD_Pattern <"S_LOAD_DWORDX4", v4i32>; defm : SMRD_Pattern <"S_LOAD_DWORDX8", v32i8>; defm : SMRD_Pattern <"S_LOAD_DWORDX8", v8i32>; defm : SMRD_Pattern <"S_LOAD_DWORDX16", v16i32>; // 1. Offset as an immediate def : Pat < (SIload_constant v4i32:$sbase, (SMRDBufferImm i32:$offset)), (S_BUFFER_LOAD_DWORD_IMM $sbase, $offset) >; // 2. Offset loaded in an 32bit SGPR def : Pat < (SIload_constant v4i32:$sbase, (SMRDBufferSgpr i32:$offset)), (S_BUFFER_LOAD_DWORD_SGPR $sbase, $offset) >; let Predicates = [isCI] in { def : Pat < (SIload_constant v4i32:$sbase, (SMRDBufferImm32 i32:$offset)), (S_BUFFER_LOAD_DWORD_IMM_ci $sbase, $offset) >; } // End Predicates = [isCI] } // End let AddedComplexity = 10000 //===----------------------------------------------------------------------===// // SOP1 Patterns //===----------------------------------------------------------------------===// def : Pat < (i64 (ctpop i64:$src)), (i64 (REG_SEQUENCE SReg_64, (S_BCNT1_I32_B64 $src), sub0, (S_MOV_B32 0), sub1)) >; def : Pat < (i32 (smax i32:$x, (i32 (ineg i32:$x)))), (S_ABS_I32 $x) >; //===----------------------------------------------------------------------===// // SOP2 Patterns //===----------------------------------------------------------------------===// // V_ADD_I32_e32/S_ADD_U32 produces carry in VCC/SCC. For the vector // case, the sgpr-copies pass will fix this to use the vector version. def : Pat < (i32 (addc i32:$src0, i32:$src1)), (S_ADD_U32 $src0, $src1) >; //===----------------------------------------------------------------------===// // SOPP Patterns //===----------------------------------------------------------------------===// def : Pat < (int_AMDGPU_barrier_global), (S_BARRIER) >; //===----------------------------------------------------------------------===// // VOP1 Patterns //===----------------------------------------------------------------------===// let Predicates = [UnsafeFPMath] in { //def : RcpPat<V_RCP_F64_e32, f64>; //defm : RsqPat<V_RSQ_F64_e32, f64>; //defm : RsqPat<V_RSQ_F32_e32, f32>; def : RsqPat<V_RSQ_F32_e32, f32>; def : RsqPat<V_RSQ_F64_e32, f64>; } //===----------------------------------------------------------------------===// // VOP2 Patterns //===----------------------------------------------------------------------===// def : Pat < (i32 (add (i32 (ctpop i32:$popcnt)), i32:$val)), (V_BCNT_U32_B32_e64 $popcnt, $val) >; def : Pat < (i32 (select i1:$src0, i32:$src1, i32:$src2)), (V_CNDMASK_B32_e64 $src2, $src1, $src0) >; // Pattern for V_MAC_F32 def : Pat < (fmad (VOP3NoMods0 f32:$src0, i32:$src0_modifiers, i1:$clamp, i32:$omod), (VOP3NoMods f32:$src1, i32:$src1_modifiers), (VOP3NoMods f32:$src2, i32:$src2_modifiers)), (V_MAC_F32_e64 $src0_modifiers, $src0, $src1_modifiers, $src1, $src2_modifiers, $src2, $clamp, $omod) >; /********** ======================= **********/ /********** Image sampling patterns **********/ /********** ======================= **********/ // Image + sampler class SampleRawPattern<SDPatternOperator name, MIMG opcode, ValueType vt> : Pat < (name vt:$addr, v8i32:$rsrc, v4i32:$sampler, i32:$dmask, i32:$unorm, i32:$r128, i32:$da, i32:$glc, i32:$slc, i32:$tfe, i32:$lwe), (opcode (as_i32imm $dmask), (as_i1imm $unorm), (as_i1imm $glc), (as_i1imm $da), (as_i1imm $r128), (as_i1imm $tfe), (as_i1imm $lwe), (as_i1imm $slc), $addr, $rsrc, $sampler) >; multiclass SampleRawPatterns<SDPatternOperator name, string opcode> { def : SampleRawPattern<name, !cast<MIMG>(opcode # _V4_V1), i32>; def : SampleRawPattern<name, !cast<MIMG>(opcode # _V4_V2), v2i32>; def : SampleRawPattern<name, !cast<MIMG>(opcode # _V4_V4), v4i32>; def : SampleRawPattern<name, !cast<MIMG>(opcode # _V4_V8), v8i32>; def : SampleRawPattern<name, !cast<MIMG>(opcode # _V4_V16), v16i32>; } // Image only class ImagePattern<SDPatternOperator name, MIMG opcode, ValueType vt> : Pat < (name vt:$addr, v8i32:$rsrc, i32:$dmask, i32:$unorm, i32:$r128, i32:$da, i32:$glc, i32:$slc, i32:$tfe, i32:$lwe), (opcode (as_i32imm $dmask), (as_i1imm $unorm), (as_i1imm $glc), (as_i1imm $da), (as_i1imm $r128), (as_i1imm $tfe), (as_i1imm $lwe), (as_i1imm $slc), $addr, $rsrc) >; multiclass ImagePatterns<SDPatternOperator name, string opcode> { def : ImagePattern<name, !cast<MIMG>(opcode # _V4_V1), i32>; def : ImagePattern<name, !cast<MIMG>(opcode # _V4_V2), v2i32>; def : ImagePattern<name, !cast<MIMG>(opcode # _V4_V4), v4i32>; } // Basic sample defm : SampleRawPatterns<int_SI_image_sample, "IMAGE_SAMPLE">; defm : SampleRawPatterns<int_SI_image_sample_cl, "IMAGE_SAMPLE_CL">; defm : SampleRawPatterns<int_SI_image_sample_d, "IMAGE_SAMPLE_D">; defm : SampleRawPatterns<int_SI_image_sample_d_cl, "IMAGE_SAMPLE_D_CL">; defm : SampleRawPatterns<int_SI_image_sample_l, "IMAGE_SAMPLE_L">; defm : SampleRawPatterns<int_SI_image_sample_b, "IMAGE_SAMPLE_B">; defm : SampleRawPatterns<int_SI_image_sample_b_cl, "IMAGE_SAMPLE_B_CL">; defm : SampleRawPatterns<int_SI_image_sample_lz, "IMAGE_SAMPLE_LZ">; defm : SampleRawPatterns<int_SI_image_sample_cd, "IMAGE_SAMPLE_CD">; defm : SampleRawPatterns<int_SI_image_sample_cd_cl, "IMAGE_SAMPLE_CD_CL">; // Sample with comparison defm : SampleRawPatterns<int_SI_image_sample_c, "IMAGE_SAMPLE_C">; defm : SampleRawPatterns<int_SI_image_sample_c_cl, "IMAGE_SAMPLE_C_CL">; defm : SampleRawPatterns<int_SI_image_sample_c_d, "IMAGE_SAMPLE_C_D">; defm : SampleRawPatterns<int_SI_image_sample_c_d_cl, "IMAGE_SAMPLE_C_D_CL">; defm : SampleRawPatterns<int_SI_image_sample_c_l, "IMAGE_SAMPLE_C_L">; defm : SampleRawPatterns<int_SI_image_sample_c_b, "IMAGE_SAMPLE_C_B">; defm : SampleRawPatterns<int_SI_image_sample_c_b_cl, "IMAGE_SAMPLE_C_B_CL">; defm : SampleRawPatterns<int_SI_image_sample_c_lz, "IMAGE_SAMPLE_C_LZ">; defm : SampleRawPatterns<int_SI_image_sample_c_cd, "IMAGE_SAMPLE_C_CD">; defm : SampleRawPatterns<int_SI_image_sample_c_cd_cl, "IMAGE_SAMPLE_C_CD_CL">; // Sample with offsets defm : SampleRawPatterns<int_SI_image_sample_o, "IMAGE_SAMPLE_O">; defm : SampleRawPatterns<int_SI_image_sample_cl_o, "IMAGE_SAMPLE_CL_O">; defm : SampleRawPatterns<int_SI_image_sample_d_o, "IMAGE_SAMPLE_D_O">; defm : SampleRawPatterns<int_SI_image_sample_d_cl_o, "IMAGE_SAMPLE_D_CL_O">; defm : SampleRawPatterns<int_SI_image_sample_l_o, "IMAGE_SAMPLE_L_O">; defm : SampleRawPatterns<int_SI_image_sample_b_o, "IMAGE_SAMPLE_B_O">; defm : SampleRawPatterns<int_SI_image_sample_b_cl_o, "IMAGE_SAMPLE_B_CL_O">; defm : SampleRawPatterns<int_SI_image_sample_lz_o, "IMAGE_SAMPLE_LZ_O">; defm : SampleRawPatterns<int_SI_image_sample_cd_o, "IMAGE_SAMPLE_CD_O">; defm : SampleRawPatterns<int_SI_image_sample_cd_cl_o, "IMAGE_SAMPLE_CD_CL_O">; // Sample with comparison and offsets defm : SampleRawPatterns<int_SI_image_sample_c_o, "IMAGE_SAMPLE_C_O">; defm : SampleRawPatterns<int_SI_image_sample_c_cl_o, "IMAGE_SAMPLE_C_CL_O">; defm : SampleRawPatterns<int_SI_image_sample_c_d_o, "IMAGE_SAMPLE_C_D_O">; defm : SampleRawPatterns<int_SI_image_sample_c_d_cl_o, "IMAGE_SAMPLE_C_D_CL_O">; defm : SampleRawPatterns<int_SI_image_sample_c_l_o, "IMAGE_SAMPLE_C_L_O">; defm : SampleRawPatterns<int_SI_image_sample_c_b_o, "IMAGE_SAMPLE_C_B_O">; defm : SampleRawPatterns<int_SI_image_sample_c_b_cl_o, "IMAGE_SAMPLE_C_B_CL_O">; defm : SampleRawPatterns<int_SI_image_sample_c_lz_o, "IMAGE_SAMPLE_C_LZ_O">; defm : SampleRawPatterns<int_SI_image_sample_c_cd_o, "IMAGE_SAMPLE_C_CD_O">; defm : SampleRawPatterns<int_SI_image_sample_c_cd_cl_o, "IMAGE_SAMPLE_C_CD_CL_O">; // Gather opcodes // Only the variants which make sense are defined. def : SampleRawPattern<int_SI_gather4, IMAGE_GATHER4_V4_V2, v2i32>; def : SampleRawPattern<int_SI_gather4, IMAGE_GATHER4_V4_V4, v4i32>; def : SampleRawPattern<int_SI_gather4_cl, IMAGE_GATHER4_CL_V4_V4, v4i32>; def : SampleRawPattern<int_SI_gather4_l, IMAGE_GATHER4_L_V4_V4, v4i32>; def : SampleRawPattern<int_SI_gather4_b, IMAGE_GATHER4_B_V4_V4, v4i32>; def : SampleRawPattern<int_SI_gather4_b_cl, IMAGE_GATHER4_B_CL_V4_V4, v4i32>; def : SampleRawPattern<int_SI_gather4_b_cl, IMAGE_GATHER4_B_CL_V4_V8, v8i32>; def : SampleRawPattern<int_SI_gather4_lz, IMAGE_GATHER4_LZ_V4_V2, v2i32>; def : SampleRawPattern<int_SI_gather4_lz, IMAGE_GATHER4_LZ_V4_V4, v4i32>; def : SampleRawPattern<int_SI_gather4_c, IMAGE_GATHER4_C_V4_V4, v4i32>; def : SampleRawPattern<int_SI_gather4_c_cl, IMAGE_GATHER4_C_CL_V4_V4, v4i32>; def : SampleRawPattern<int_SI_gather4_c_cl, IMAGE_GATHER4_C_CL_V4_V8, v8i32>; def : SampleRawPattern<int_SI_gather4_c_l, IMAGE_GATHER4_C_L_V4_V4, v4i32>; def : SampleRawPattern<int_SI_gather4_c_l, IMAGE_GATHER4_C_L_V4_V8, v8i32>; def : SampleRawPattern<int_SI_gather4_c_b, IMAGE_GATHER4_C_B_V4_V4, v4i32>; def : SampleRawPattern<int_SI_gather4_c_b, IMAGE_GATHER4_C_B_V4_V8, v8i32>; def : SampleRawPattern<int_SI_gather4_c_b_cl, IMAGE_GATHER4_C_B_CL_V4_V8, v8i32>; def : SampleRawPattern<int_SI_gather4_c_lz, IMAGE_GATHER4_C_LZ_V4_V4, v4i32>; def : SampleRawPattern<int_SI_gather4_o, IMAGE_GATHER4_O_V4_V4, v4i32>; def : SampleRawPattern<int_SI_gather4_cl_o, IMAGE_GATHER4_CL_O_V4_V4, v4i32>; def : SampleRawPattern<int_SI_gather4_cl_o, IMAGE_GATHER4_CL_O_V4_V8, v8i32>; def : SampleRawPattern<int_SI_gather4_l_o, IMAGE_GATHER4_L_O_V4_V4, v4i32>; def : SampleRawPattern<int_SI_gather4_l_o, IMAGE_GATHER4_L_O_V4_V8, v8i32>; def : SampleRawPattern<int_SI_gather4_b_o, IMAGE_GATHER4_B_O_V4_V4, v4i32>; def : SampleRawPattern<int_SI_gather4_b_o, IMAGE_GATHER4_B_O_V4_V8, v8i32>; def : SampleRawPattern<int_SI_gather4_b_cl_o, IMAGE_GATHER4_B_CL_O_V4_V8, v8i32>; def : SampleRawPattern<int_SI_gather4_lz_o, IMAGE_GATHER4_LZ_O_V4_V4, v4i32>; def : SampleRawPattern<int_SI_gather4_c_o, IMAGE_GATHER4_C_O_V4_V4, v4i32>; def : SampleRawPattern<int_SI_gather4_c_o, IMAGE_GATHER4_C_O_V4_V8, v8i32>; def : SampleRawPattern<int_SI_gather4_c_cl_o, IMAGE_GATHER4_C_CL_O_V4_V8, v8i32>; def : SampleRawPattern<int_SI_gather4_c_l_o, IMAGE_GATHER4_C_L_O_V4_V8, v8i32>; def : SampleRawPattern<int_SI_gather4_c_b_o, IMAGE_GATHER4_C_B_O_V4_V8, v8i32>; def : SampleRawPattern<int_SI_gather4_c_b_cl_o, IMAGE_GATHER4_C_B_CL_O_V4_V8, v8i32>; def : SampleRawPattern<int_SI_gather4_c_lz_o, IMAGE_GATHER4_C_LZ_O_V4_V4, v4i32>; def : SampleRawPattern<int_SI_gather4_c_lz_o, IMAGE_GATHER4_C_LZ_O_V4_V8, v8i32>; def : SampleRawPattern<int_SI_getlod, IMAGE_GET_LOD_V4_V1, i32>; def : SampleRawPattern<int_SI_getlod, IMAGE_GET_LOD_V4_V2, v2i32>; def : SampleRawPattern<int_SI_getlod, IMAGE_GET_LOD_V4_V4, v4i32>; def : ImagePattern<int_SI_getresinfo, IMAGE_GET_RESINFO_V4_V1, i32>; defm : ImagePatterns<int_SI_image_load, "IMAGE_LOAD">; defm : ImagePatterns<int_SI_image_load_mip, "IMAGE_LOAD_MIP">; /* SIsample for simple 1D texture lookup */ def : Pat < (SIsample i32:$addr, v32i8:$rsrc, v4i32:$sampler, imm), (IMAGE_SAMPLE_V4_V1 0xf, 0, 0, 0, 0, 0, 0, 0, $addr, $rsrc, $sampler) >; class SamplePattern<SDNode name, MIMG opcode, ValueType vt> : Pat < (name vt:$addr, v32i8:$rsrc, v4i32:$sampler, imm), (opcode 0xf, 0, 0, 0, 0, 0, 0, 0, $addr, $rsrc, $sampler) >; class SampleRectPattern<SDNode name, MIMG opcode, ValueType vt> : Pat < (name vt:$addr, v32i8:$rsrc, v4i32:$sampler, TEX_RECT), (opcode 0xf, 1, 0, 0, 0, 0, 0, 0, $addr, $rsrc, $sampler) >; class SampleArrayPattern<SDNode name, MIMG opcode, ValueType vt> : Pat < (name vt:$addr, v32i8:$rsrc, v4i32:$sampler, TEX_ARRAY), (opcode 0xf, 0, 0, 1, 0, 0, 0, 0, $addr, $rsrc, $sampler) >; class SampleShadowPattern<SDNode name, MIMG opcode, ValueType vt> : Pat < (name vt:$addr, v32i8:$rsrc, v4i32:$sampler, TEX_SHADOW), (opcode 0xf, 0, 0, 0, 0, 0, 0, 0, $addr, $rsrc, $sampler) >; class SampleShadowArrayPattern<SDNode name, MIMG opcode, ValueType vt> : Pat < (name vt:$addr, v32i8:$rsrc, v4i32:$sampler, TEX_SHADOW_ARRAY), (opcode 0xf, 0, 0, 1, 0, 0, 0, 0, $addr, $rsrc, $sampler) >; /* SIsample* for texture lookups consuming more address parameters */ multiclass SamplePatterns<MIMG sample, MIMG sample_c, MIMG sample_l, MIMG sample_c_l, MIMG sample_b, MIMG sample_c_b, MIMG sample_d, MIMG sample_c_d, ValueType addr_type> { def : SamplePattern <SIsample, sample, addr_type>; def : SampleRectPattern <SIsample, sample, addr_type>; def : SampleArrayPattern <SIsample, sample, addr_type>; def : SampleShadowPattern <SIsample, sample_c, addr_type>; def : SampleShadowArrayPattern <SIsample, sample_c, addr_type>; def : SamplePattern <SIsamplel, sample_l, addr_type>; def : SampleArrayPattern <SIsamplel, sample_l, addr_type>; def : SampleShadowPattern <SIsamplel, sample_c_l, addr_type>; def : SampleShadowArrayPattern <SIsamplel, sample_c_l, addr_type>; def : SamplePattern <SIsampleb, sample_b, addr_type>; def : SampleArrayPattern <SIsampleb, sample_b, addr_type>; def : SampleShadowPattern <SIsampleb, sample_c_b, addr_type>; def : SampleShadowArrayPattern <SIsampleb, sample_c_b, addr_type>; def : SamplePattern <SIsampled, sample_d, addr_type>; def : SampleArrayPattern <SIsampled, sample_d, addr_type>; def : SampleShadowPattern <SIsampled, sample_c_d, addr_type>; def : SampleShadowArrayPattern <SIsampled, sample_c_d, addr_type>; } defm : SamplePatterns<IMAGE_SAMPLE_V4_V2, IMAGE_SAMPLE_C_V4_V2, IMAGE_SAMPLE_L_V4_V2, IMAGE_SAMPLE_C_L_V4_V2, IMAGE_SAMPLE_B_V4_V2, IMAGE_SAMPLE_C_B_V4_V2, IMAGE_SAMPLE_D_V4_V2, IMAGE_SAMPLE_C_D_V4_V2, v2i32>; defm : SamplePatterns<IMAGE_SAMPLE_V4_V4, IMAGE_SAMPLE_C_V4_V4, IMAGE_SAMPLE_L_V4_V4, IMAGE_SAMPLE_C_L_V4_V4, IMAGE_SAMPLE_B_V4_V4, IMAGE_SAMPLE_C_B_V4_V4, IMAGE_SAMPLE_D_V4_V4, IMAGE_SAMPLE_C_D_V4_V4, v4i32>; defm : SamplePatterns<IMAGE_SAMPLE_V4_V8, IMAGE_SAMPLE_C_V4_V8, IMAGE_SAMPLE_L_V4_V8, IMAGE_SAMPLE_C_L_V4_V8, IMAGE_SAMPLE_B_V4_V8, IMAGE_SAMPLE_C_B_V4_V8, IMAGE_SAMPLE_D_V4_V8, IMAGE_SAMPLE_C_D_V4_V8, v8i32>; defm : SamplePatterns<IMAGE_SAMPLE_V4_V16, IMAGE_SAMPLE_C_V4_V16, IMAGE_SAMPLE_L_V4_V16, IMAGE_SAMPLE_C_L_V4_V16, IMAGE_SAMPLE_B_V4_V16, IMAGE_SAMPLE_C_B_V4_V16, IMAGE_SAMPLE_D_V4_V16, IMAGE_SAMPLE_C_D_V4_V16, v16i32>; /* int_SI_imageload for texture fetches consuming varying address parameters */ class ImageLoadPattern<Intrinsic name, MIMG opcode, ValueType addr_type> : Pat < (name addr_type:$addr, v32i8:$rsrc, imm), (opcode 0xf, 0, 0, 0, 0, 0, 0, 0, $addr, $rsrc) >; class ImageLoadArrayPattern<Intrinsic name, MIMG opcode, ValueType addr_type> : Pat < (name addr_type:$addr, v32i8:$rsrc, TEX_ARRAY), (opcode 0xf, 0, 0, 1, 0, 0, 0, 0, $addr, $rsrc) >; class ImageLoadMSAAPattern<Intrinsic name, MIMG opcode, ValueType addr_type> : Pat < (name addr_type:$addr, v32i8:$rsrc, TEX_MSAA), (opcode 0xf, 0, 0, 0, 0, 0, 0, 0, $addr, $rsrc) >; class ImageLoadArrayMSAAPattern<Intrinsic name, MIMG opcode, ValueType addr_type> : Pat < (name addr_type:$addr, v32i8:$rsrc, TEX_ARRAY_MSAA), (opcode 0xf, 0, 0, 1, 0, 0, 0, 0, $addr, $rsrc) >; multiclass ImageLoadPatterns<MIMG opcode, ValueType addr_type> { def : ImageLoadPattern <int_SI_imageload, opcode, addr_type>; def : ImageLoadArrayPattern <int_SI_imageload, opcode, addr_type>; } multiclass ImageLoadMSAAPatterns<MIMG opcode, ValueType addr_type> { def : ImageLoadMSAAPattern <int_SI_imageload, opcode, addr_type>; def : ImageLoadArrayMSAAPattern <int_SI_imageload, opcode, addr_type>; } defm : ImageLoadPatterns<IMAGE_LOAD_MIP_V4_V2, v2i32>; defm : ImageLoadPatterns<IMAGE_LOAD_MIP_V4_V4, v4i32>; defm : ImageLoadMSAAPatterns<IMAGE_LOAD_V4_V2, v2i32>; defm : ImageLoadMSAAPatterns<IMAGE_LOAD_V4_V4, v4i32>; /* Image resource information */ def : Pat < (int_SI_resinfo i32:$mipid, v32i8:$rsrc, imm), (IMAGE_GET_RESINFO_V4_V1 0xf, 0, 0, 0, 0, 0, 0, 0, (V_MOV_B32_e32 $mipid), $rsrc) >; def : Pat < (int_SI_resinfo i32:$mipid, v32i8:$rsrc, TEX_ARRAY), (IMAGE_GET_RESINFO_V4_V1 0xf, 0, 0, 1, 0, 0, 0, 0, (V_MOV_B32_e32 $mipid), $rsrc) >; def : Pat < (int_SI_resinfo i32:$mipid, v32i8:$rsrc, TEX_ARRAY_MSAA), (IMAGE_GET_RESINFO_V4_V1 0xf, 0, 0, 1, 0, 0, 0, 0, (V_MOV_B32_e32 $mipid), $rsrc) >; /********** ============================================ **********/ /********** Extraction, Insertion, Building and Casting **********/ /********** ============================================ **********/ //def : Extract_Element<i64, v2i64, 0, sub0_sub1>; //def : Extract_Element<i64, v2i64, 1, sub2_sub3>; //def : Extract_Element<f64, v2f64, 0, sub0_sub1>; //def : Extract_Element<f64, v2f64, 1, sub2_sub3>; foreach Index = 0-2 in { def Extract_Element_v2i32_#Index : Extract_Element < i32, v2i32, Index, !cast<SubRegIndex>(sub#Index) >; def Insert_Element_v2i32_#Index : Insert_Element < i32, v2i32, Index, !cast<SubRegIndex>(sub#Index) >; def Extract_Element_v2f32_#Index : Extract_Element < f32, v2f32, Index, !cast<SubRegIndex>(sub#Index) >; def Insert_Element_v2f32_#Index : Insert_Element < f32, v2f32, Index, !cast<SubRegIndex>(sub#Index) >; } foreach Index = 0-3 in { def Extract_Element_v4i32_#Index : Extract_Element < i32, v4i32, Index, !cast<SubRegIndex>(sub#Index) >; def Insert_Element_v4i32_#Index : Insert_Element < i32, v4i32, Index, !cast<SubRegIndex>(sub#Index) >; def Extract_Element_v4f32_#Index : Extract_Element < f32, v4f32, Index, !cast<SubRegIndex>(sub#Index) >; def Insert_Element_v4f32_#Index : Insert_Element < f32, v4f32, Index, !cast<SubRegIndex>(sub#Index) >; } foreach Index = 0-7 in { def Extract_Element_v8i32_#Index : Extract_Element < i32, v8i32, Index, !cast<SubRegIndex>(sub#Index) >; def Insert_Element_v8i32_#Index : Insert_Element < i32, v8i32, Index, !cast<SubRegIndex>(sub#Index) >; def Extract_Element_v8f32_#Index : Extract_Element < f32, v8f32, Index, !cast<SubRegIndex>(sub#Index) >; def Insert_Element_v8f32_#Index : Insert_Element < f32, v8f32, Index, !cast<SubRegIndex>(sub#Index) >; } foreach Index = 0-15 in { def Extract_Element_v16i32_#Index : Extract_Element < i32, v16i32, Index, !cast<SubRegIndex>(sub#Index) >; def Insert_Element_v16i32_#Index : Insert_Element < i32, v16i32, Index, !cast<SubRegIndex>(sub#Index) >; def Extract_Element_v16f32_#Index : Extract_Element < f32, v16f32, Index, !cast<SubRegIndex>(sub#Index) >; def Insert_Element_v16f32_#Index : Insert_Element < f32, v16f32, Index, !cast<SubRegIndex>(sub#Index) >; } def : BitConvert <i32, f32, SReg_32>; def : BitConvert <i32, f32, VGPR_32>; def : BitConvert <f32, i32, SReg_32>; def : BitConvert <f32, i32, VGPR_32>; def : BitConvert <i64, f64, VReg_64>; def : BitConvert <f64, i64, VReg_64>; def : BitConvert <v2f32, v2i32, VReg_64>; def : BitConvert <v2i32, v2f32, VReg_64>; def : BitConvert <v2i32, i64, VReg_64>; def : BitConvert <i64, v2i32, VReg_64>; def : BitConvert <v2f32, i64, VReg_64>; def : BitConvert <i64, v2f32, VReg_64>; def : BitConvert <v2f32, f64, VReg_64>; def : BitConvert <v2i32, f64, VReg_64>; def : BitConvert <f64, v2f32, VReg_64>; def : BitConvert <f64, v2i32, VReg_64>; def : BitConvert <v4f32, v4i32, VReg_128>; def : BitConvert <v4i32, v4f32, VReg_128>; def : BitConvert <v2i64, v4i32, SReg_128>; def : BitConvert <v4i32, v2i64, SReg_128>; def : BitConvert <v2f64, v4f32, VReg_128>; def : BitConvert <v2f64, v4i32, VReg_128>; def : BitConvert <v4f32, v2f64, VReg_128>; def : BitConvert <v4i32, v2f64, VReg_128>; def : BitConvert <v8f32, v8i32, SReg_256>; def : BitConvert <v8i32, v8f32, SReg_256>; def : BitConvert <v8i32, v32i8, SReg_256>; def : BitConvert <v32i8, v8i32, SReg_256>; def : BitConvert <v8i32, v32i8, VReg_256>; def : BitConvert <v8i32, v8f32, VReg_256>; def : BitConvert <v8f32, v8i32, VReg_256>; def : BitConvert <v32i8, v8i32, VReg_256>; def : BitConvert <v16i32, v16f32, VReg_512>; def : BitConvert <v16f32, v16i32, VReg_512>; /********** =================== **********/ /********** Src & Dst modifiers **********/ /********** =================== **********/ def : Pat < (AMDGPUclamp (VOP3Mods0Clamp f32:$src0, i32:$src0_modifiers, i32:$omod), (f32 FP_ZERO), (f32 FP_ONE)), (V_ADD_F32_e64 $src0_modifiers, $src0, 0, 0, 1, $omod) >; /********** ================================ **********/ /********** Floating point absolute/negative **********/ /********** ================================ **********/ // Prevent expanding both fneg and fabs. def : Pat < (fneg (fabs f32:$src)), (S_OR_B32 $src, 0x80000000) /* Set sign bit */ >; // FIXME: Should use S_OR_B32 def : Pat < (fneg (fabs f64:$src)), (REG_SEQUENCE VReg_64, (i32 (EXTRACT_SUBREG f64:$src, sub0)), sub0, (V_OR_B32_e32 (EXTRACT_SUBREG f64:$src, sub1), (V_MOV_B32_e32 0x80000000)), // Set sign bit. sub1) >; def : Pat < (fabs f32:$src), (V_AND_B32_e32 $src, (V_MOV_B32_e32 0x7fffffff)) >; def : Pat < (fneg f32:$src), (V_XOR_B32_e32 $src, (V_MOV_B32_e32 0x80000000)) >; def : Pat < (fabs f64:$src), (REG_SEQUENCE VReg_64, (i32 (EXTRACT_SUBREG f64:$src, sub0)), sub0, (V_AND_B32_e32 (EXTRACT_SUBREG f64:$src, sub1), (V_MOV_B32_e32 0x7fffffff)), // Set sign bit. sub1) >; def : Pat < (fneg f64:$src), (REG_SEQUENCE VReg_64, (i32 (EXTRACT_SUBREG f64:$src, sub0)), sub0, (V_XOR_B32_e32 (EXTRACT_SUBREG f64:$src, sub1), (V_MOV_B32_e32 0x80000000)), sub1) >; /********** ================== **********/ /********** Immediate Patterns **********/ /********** ================== **********/ def : Pat < (SGPRImm<(i32 imm)>:$imm), (S_MOV_B32 imm:$imm) >; def : Pat < (SGPRImm<(f32 fpimm)>:$imm), (S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm))) >; def : Pat < (i32 imm:$imm), (V_MOV_B32_e32 imm:$imm) >; def : Pat < (f32 fpimm:$imm), (V_MOV_B32_e32 (f32 (bitcast_fpimm_to_i32 $imm))) >; def : Pat < (i64 InlineImm<i64>:$imm), (S_MOV_B64 InlineImm<i64>:$imm) >; // XXX - Should this use a s_cmp to set SCC? // Set to sign-extended 64-bit value (true = -1, false = 0) def : Pat < (i1 imm:$imm), (S_MOV_B64 (i64 (as_i64imm $imm))) >; def : Pat < (f64 InlineFPImm<f64>:$imm), (S_MOV_B64 (f64 (bitcast_fpimm_to_i64 InlineFPImm<f64>:$imm))) >; /********** ================== **********/ /********** Intrinsic Patterns **********/ /********** ================== **********/ /* llvm.AMDGPU.pow */ def : POW_Common <V_LOG_F32_e32, V_EXP_F32_e32, V_MUL_LEGACY_F32_e32>; def : Pat < (int_AMDGPU_div f32:$src0, f32:$src1), (V_MUL_LEGACY_F32_e32 $src0, (V_RCP_LEGACY_F32_e32 $src1)) >; def : Pat < (int_AMDGPU_cube v4f32:$src), (REG_SEQUENCE VReg_128, (V_CUBETC_F32 0 /* src0_modifiers */, (EXTRACT_SUBREG $src, sub0), 0 /* src1_modifiers */, (EXTRACT_SUBREG $src, sub1), 0 /* src2_modifiers */, (EXTRACT_SUBREG $src, sub2), 0 /* clamp */, 0 /* omod */), sub0, (V_CUBESC_F32 0 /* src0_modifiers */, (EXTRACT_SUBREG $src, sub0), 0 /* src1_modifiers */,(EXTRACT_SUBREG $src, sub1), 0 /* src2_modifiers */,(EXTRACT_SUBREG $src, sub2), 0 /* clamp */, 0 /* omod */), sub1, (V_CUBEMA_F32 0 /* src1_modifiers */,(EXTRACT_SUBREG $src, sub0), 0 /* src1_modifiers */,(EXTRACT_SUBREG $src, sub1), 0 /* src1_modifiers */,(EXTRACT_SUBREG $src, sub2), 0 /* clamp */, 0 /* omod */), sub2, (V_CUBEID_F32 0 /* src1_modifiers */,(EXTRACT_SUBREG $src, sub0), 0 /* src1_modifiers */,(EXTRACT_SUBREG $src, sub1), 0 /* src1_modifiers */,(EXTRACT_SUBREG $src, sub2), 0 /* clamp */, 0 /* omod */), sub3) >; def : Pat < (i32 (sext i1:$src0)), (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src0) >; class Ext32Pat <SDNode ext> : Pat < (i32 (ext i1:$src0)), (V_CNDMASK_B32_e64 (i32 0), (i32 1), $src0) >; def : Ext32Pat <zext>; def : Ext32Pat <anyext>; // Offset in an 32Bit VGPR def : Pat < (SIload_constant v4i32:$sbase, i32:$voff), (BUFFER_LOAD_DWORD_OFFEN $voff, $sbase, 0, 0, 0, 0, 0) >; // The multiplication scales from [0,1] to the unsigned integer range def : Pat < (AMDGPUurecip i32:$src0), (V_CVT_U32_F32_e32 (V_MUL_F32_e32 CONST.FP_UINT_MAX_PLUS_1, (V_RCP_IFLAG_F32_e32 (V_CVT_F32_U32_e32 $src0)))) >; def : Pat < (int_SI_tid), (V_MBCNT_HI_U32_B32_e64 0xffffffff, (V_MBCNT_LO_U32_B32_e64 0xffffffff, 0)) >; //===----------------------------------------------------------------------===// // VOP3 Patterns //===----------------------------------------------------------------------===// def : IMad24Pat<V_MAD_I32_I24>; def : UMad24Pat<V_MAD_U32_U24>; def : Pat < (mulhu i32:$src0, i32:$src1), (V_MUL_HI_U32 $src0, $src1) >; def : Pat < (mulhs i32:$src0, i32:$src1), (V_MUL_HI_I32 $src0, $src1) >; defm : BFIPatterns <V_BFI_B32, S_MOV_B32, SReg_64>; def : ROTRPattern <V_ALIGNBIT_B32>; /********** ======================= **********/ /********** Load/Store Patterns **********/ /********** ======================= **********/ class DSReadPat <DS inst, ValueType vt, PatFrag frag> : Pat < (vt (frag (DS1Addr1Offset i32:$ptr, i32:$offset))), (inst $ptr, (as_i16imm $offset), (i1 0)) >; def : DSReadPat <DS_READ_I8, i32, si_sextload_local_i8>; def : DSReadPat <DS_READ_U8, i32, si_az_extload_local_i8>; def : DSReadPat <DS_READ_I16, i32, si_sextload_local_i16>; def : DSReadPat <DS_READ_U16, i32, si_az_extload_local_i16>; def : DSReadPat <DS_READ_B32, i32, si_load_local>; let AddedComplexity = 100 in { def : DSReadPat <DS_READ_B64, v2i32, si_load_local_align8>; } // End AddedComplexity = 100 def : Pat < (v2i32 (si_load_local (DS64Bit4ByteAligned i32:$ptr, i8:$offset0, i8:$offset1))), (DS_READ2_B32 $ptr, $offset0, $offset1, (i1 0)) >; class DSWritePat <DS inst, ValueType vt, PatFrag frag> : Pat < (frag vt:$value, (DS1Addr1Offset i32:$ptr, i32:$offset)), (inst $ptr, $value, (as_i16imm $offset), (i1 0)) >; def : DSWritePat <DS_WRITE_B8, i32, si_truncstore_local_i8>; def : DSWritePat <DS_WRITE_B16, i32, si_truncstore_local_i16>; def : DSWritePat <DS_WRITE_B32, i32, si_store_local>; let AddedComplexity = 100 in { def : DSWritePat <DS_WRITE_B64, v2i32, si_store_local_align8>; } // End AddedComplexity = 100 def : Pat < (si_store_local v2i32:$value, (DS64Bit4ByteAligned i32:$ptr, i8:$offset0, i8:$offset1)), (DS_WRITE2_B32 $ptr, (EXTRACT_SUBREG $value, sub0), (EXTRACT_SUBREG $value, sub1), $offset0, $offset1, (i1 0)) >; class DSAtomicRetPat<DS inst, ValueType vt, PatFrag frag> : Pat < (frag (DS1Addr1Offset i32:$ptr, i32:$offset), vt:$value), (inst $ptr, $value, (as_i16imm $offset), (i1 0)) >; // Special case of DSAtomicRetPat for add / sub 1 -> inc / dec // // We need to use something for the data0, so we set a register to // -1. For the non-rtn variants, the manual says it does // DS[A] = (DS[A] >= D0) ? 0 : DS[A] + 1, and setting D0 to uint_max // will always do the increment so I'm assuming it's the same. class DSAtomicIncRetPat<DS inst, ValueType vt, Instruction LoadImm, PatFrag frag> : Pat < (frag (DS1Addr1Offset i32:$ptr, i32:$offset), (vt 1)), (inst $ptr, (LoadImm (vt -1)), (as_i16imm $offset), (i1 0)) >; class DSAtomicCmpXChg <DS inst, ValueType vt, PatFrag frag> : Pat < (frag (DS1Addr1Offset i32:$ptr, i32:$offset), vt:$cmp, vt:$swap), (inst $ptr, $cmp, $swap, (as_i16imm $offset), (i1 0)) >; // 32-bit atomics. def : DSAtomicIncRetPat<DS_INC_RTN_U32, i32, V_MOV_B32_e32, si_atomic_load_add_local>; def : DSAtomicIncRetPat<DS_DEC_RTN_U32, i32, V_MOV_B32_e32, si_atomic_load_sub_local>; def : DSAtomicRetPat<DS_WRXCHG_RTN_B32, i32, si_atomic_swap_local>; def : DSAtomicRetPat<DS_ADD_RTN_U32, i32, si_atomic_load_add_local>; def : DSAtomicRetPat<DS_SUB_RTN_U32, i32, si_atomic_load_sub_local>; def : DSAtomicRetPat<DS_AND_RTN_B32, i32, si_atomic_load_and_local>; def : DSAtomicRetPat<DS_OR_RTN_B32, i32, si_atomic_load_or_local>; def : DSAtomicRetPat<DS_XOR_RTN_B32, i32, si_atomic_load_xor_local>; def : DSAtomicRetPat<DS_MIN_RTN_I32, i32, si_atomic_load_min_local>; def : DSAtomicRetPat<DS_MAX_RTN_I32, i32, si_atomic_load_max_local>; def : DSAtomicRetPat<DS_MIN_RTN_U32, i32, si_atomic_load_umin_local>; def : DSAtomicRetPat<DS_MAX_RTN_U32, i32, si_atomic_load_umax_local>; def : DSAtomicCmpXChg<DS_CMPST_RTN_B32, i32, si_atomic_cmp_swap_32_local>; // 64-bit atomics. def : DSAtomicIncRetPat<DS_INC_RTN_U64, i64, V_MOV_B64_PSEUDO, si_atomic_load_add_local>; def : DSAtomicIncRetPat<DS_DEC_RTN_U64, i64, V_MOV_B64_PSEUDO, si_atomic_load_sub_local>; def : DSAtomicRetPat<DS_WRXCHG_RTN_B64, i64, si_atomic_swap_local>; def : DSAtomicRetPat<DS_ADD_RTN_U64, i64, si_atomic_load_add_local>; def : DSAtomicRetPat<DS_SUB_RTN_U64, i64, si_atomic_load_sub_local>; def : DSAtomicRetPat<DS_AND_RTN_B64, i64, si_atomic_load_and_local>; def : DSAtomicRetPat<DS_OR_RTN_B64, i64, si_atomic_load_or_local>; def : DSAtomicRetPat<DS_XOR_RTN_B64, i64, si_atomic_load_xor_local>; def : DSAtomicRetPat<DS_MIN_RTN_I64, i64, si_atomic_load_min_local>; def : DSAtomicRetPat<DS_MAX_RTN_I64, i64, si_atomic_load_max_local>; def : DSAtomicRetPat<DS_MIN_RTN_U64, i64, si_atomic_load_umin_local>; def : DSAtomicRetPat<DS_MAX_RTN_U64, i64, si_atomic_load_umax_local>; def : DSAtomicCmpXChg<DS_CMPST_RTN_B64, i64, si_atomic_cmp_swap_64_local>; //===----------------------------------------------------------------------===// // MUBUF Patterns //===----------------------------------------------------------------------===// multiclass MUBUFLoad_Pattern <MUBUF Instr_ADDR64, ValueType vt, PatFrag constant_ld> { def : Pat < (vt (constant_ld (MUBUFAddr64 v4i32:$srsrc, i64:$vaddr, i32:$soffset, i16:$offset, i1:$glc, i1:$slc, i1:$tfe))), (Instr_ADDR64 $vaddr, $srsrc, $soffset, $offset, $glc, $slc, $tfe) >; } let Predicates = [isSICI] in { defm : MUBUFLoad_Pattern <BUFFER_LOAD_SBYTE_ADDR64, i32, sextloadi8_constant>; defm : MUBUFLoad_Pattern <BUFFER_LOAD_UBYTE_ADDR64, i32, az_extloadi8_constant>; defm : MUBUFLoad_Pattern <BUFFER_LOAD_SSHORT_ADDR64, i32, sextloadi16_constant>; defm : MUBUFLoad_Pattern <BUFFER_LOAD_USHORT_ADDR64, i32, az_extloadi16_constant>; } // End Predicates = [isSICI] class MUBUFScratchLoadPat <MUBUF Instr, ValueType vt, PatFrag ld> : Pat < (vt (ld (MUBUFScratch v4i32:$srsrc, i32:$vaddr, i32:$soffset, u16imm:$offset))), (Instr $vaddr, $srsrc, $soffset, $offset, 0, 0, 0) >; def : MUBUFScratchLoadPat <BUFFER_LOAD_SBYTE_OFFEN, i32, sextloadi8_private>; def : MUBUFScratchLoadPat <BUFFER_LOAD_UBYTE_OFFEN, i32, extloadi8_private>; def : MUBUFScratchLoadPat <BUFFER_LOAD_SSHORT_OFFEN, i32, sextloadi16_private>; def : MUBUFScratchLoadPat <BUFFER_LOAD_USHORT_OFFEN, i32, extloadi16_private>; def : MUBUFScratchLoadPat <BUFFER_LOAD_DWORD_OFFEN, i32, load_private>; def : MUBUFScratchLoadPat <BUFFER_LOAD_DWORDX2_OFFEN, v2i32, load_private>; def : MUBUFScratchLoadPat <BUFFER_LOAD_DWORDX4_OFFEN, v4i32, load_private>; // BUFFER_LOAD_DWORD*, addr64=0 multiclass MUBUF_Load_Dword <ValueType vt, MUBUF offset, MUBUF offen, MUBUF idxen, MUBUF bothen> { def : Pat < (vt (int_SI_buffer_load_dword v4i32:$rsrc, (i32 imm), i32:$soffset, imm:$offset, 0, 0, imm:$glc, imm:$slc, imm:$tfe)), (offset $rsrc, $soffset, (as_i16imm $offset), (as_i1imm $glc), (as_i1imm $slc), (as_i1imm $tfe)) >; def : Pat < (vt (int_SI_buffer_load_dword v4i32:$rsrc, i32:$vaddr, i32:$soffset, imm:$offset, 1, 0, imm:$glc, imm:$slc, imm:$tfe)), (offen $vaddr, $rsrc, $soffset, (as_i16imm $offset), (as_i1imm $glc), (as_i1imm $slc), (as_i1imm $tfe)) >; def : Pat < (vt (int_SI_buffer_load_dword v4i32:$rsrc, i32:$vaddr, i32:$soffset, imm:$offset, 0, 1, imm:$glc, imm:$slc, imm:$tfe)), (idxen $vaddr, $rsrc, $soffset, (as_i16imm $offset), (as_i1imm $glc), (as_i1imm $slc), (as_i1imm $tfe)) >; def : Pat < (vt (int_SI_buffer_load_dword v4i32:$rsrc, v2i32:$vaddr, i32:$soffset, imm:$offset, 1, 1, imm:$glc, imm:$slc, imm:$tfe)), (bothen $vaddr, $rsrc, $soffset, (as_i16imm $offset), (as_i1imm $glc), (as_i1imm $slc), (as_i1imm $tfe)) >; } defm : MUBUF_Load_Dword <i32, BUFFER_LOAD_DWORD_OFFSET, BUFFER_LOAD_DWORD_OFFEN, BUFFER_LOAD_DWORD_IDXEN, BUFFER_LOAD_DWORD_BOTHEN>; defm : MUBUF_Load_Dword <v2i32, BUFFER_LOAD_DWORDX2_OFFSET, BUFFER_LOAD_DWORDX2_OFFEN, BUFFER_LOAD_DWORDX2_IDXEN, BUFFER_LOAD_DWORDX2_BOTHEN>; defm : MUBUF_Load_Dword <v4i32, BUFFER_LOAD_DWORDX4_OFFSET, BUFFER_LOAD_DWORDX4_OFFEN, BUFFER_LOAD_DWORDX4_IDXEN, BUFFER_LOAD_DWORDX4_BOTHEN>; class MUBUFScratchStorePat <MUBUF Instr, ValueType vt, PatFrag st> : Pat < (st vt:$value, (MUBUFScratch v4i32:$srsrc, i32:$vaddr, i32:$soffset, u16imm:$offset)), (Instr $value, $vaddr, $srsrc, $soffset, $offset, 0, 0, 0) >; def : MUBUFScratchStorePat <BUFFER_STORE_BYTE_OFFEN, i32, truncstorei8_private>; def : MUBUFScratchStorePat <BUFFER_STORE_SHORT_OFFEN, i32, truncstorei16_private>; def : MUBUFScratchStorePat <BUFFER_STORE_DWORD_OFFEN, i32, store_private>; def : MUBUFScratchStorePat <BUFFER_STORE_DWORDX2_OFFEN, v2i32, store_private>; def : MUBUFScratchStorePat <BUFFER_STORE_DWORDX4_OFFEN, v4i32, store_private>; /* class MUBUFStore_Pattern <MUBUF Instr, ValueType vt, PatFrag st> : Pat < (st vt:$value, (MUBUFScratch v4i32:$srsrc, i64:$vaddr, u16imm:$offset)), (Instr $value, $srsrc, $vaddr, $offset) >; let Predicates = [isSICI] in { def : MUBUFStore_Pattern <BUFFER_STORE_BYTE_ADDR64, i32, truncstorei8_private>; def : MUBUFStore_Pattern <BUFFER_STORE_SHORT_ADDR64, i32, truncstorei16_private>; def : MUBUFStore_Pattern <BUFFER_STORE_DWORD_ADDR64, i32, store_private>; def : MUBUFStore_Pattern <BUFFER_STORE_DWORDX2_ADDR64, v2i32, store_private>; def : MUBUFStore_Pattern <BUFFER_STORE_DWORDX4_ADDR64, v4i32, store_private>; } // End Predicates = [isSICI] */ //===----------------------------------------------------------------------===// // MTBUF Patterns //===----------------------------------------------------------------------===// // TBUFFER_STORE_FORMAT_*, addr64=0 class MTBUF_StoreResource <ValueType vt, int num_channels, MTBUF opcode> : Pat< (SItbuffer_store v4i32:$rsrc, vt:$vdata, num_channels, i32:$vaddr, i32:$soffset, imm:$inst_offset, imm:$dfmt, imm:$nfmt, imm:$offen, imm:$idxen, imm:$glc, imm:$slc, imm:$tfe), (opcode $vdata, (as_i16imm $inst_offset), (as_i1imm $offen), (as_i1imm $idxen), (as_i1imm $glc), 0, (as_i8imm $dfmt), (as_i8imm $nfmt), $vaddr, $rsrc, (as_i1imm $slc), (as_i1imm $tfe), $soffset) >; def : MTBUF_StoreResource <i32, 1, TBUFFER_STORE_FORMAT_X>; def : MTBUF_StoreResource <v2i32, 2, TBUFFER_STORE_FORMAT_XY>; def : MTBUF_StoreResource <v4i32, 3, TBUFFER_STORE_FORMAT_XYZ>; def : MTBUF_StoreResource <v4i32, 4, TBUFFER_STORE_FORMAT_XYZW>; /********** ====================== **********/ /********** Indirect adressing **********/ /********** ====================== **********/ multiclass SI_INDIRECT_Pattern <ValueType vt, ValueType eltvt, string VecSize> { // 1. Extract with offset def : Pat< (eltvt (extractelt vt:$vec, (add i32:$idx, imm:$off))), (!cast<Instruction>("SI_INDIRECT_SRC_"#VecSize) $vec, $idx, imm:$off) >; // 2. Extract without offset def : Pat< (eltvt (extractelt vt:$vec, i32:$idx)), (!cast<Instruction>("SI_INDIRECT_SRC_"#VecSize) $vec, $idx, 0) >; // 3. Insert with offset def : Pat< (insertelt vt:$vec, eltvt:$val, (add i32:$idx, imm:$off)), (!cast<Instruction>("SI_INDIRECT_DST_"#VecSize) $vec, $idx, imm:$off, $val) >; // 4. Insert without offset def : Pat< (insertelt vt:$vec, eltvt:$val, i32:$idx), (!cast<Instruction>("SI_INDIRECT_DST_"#VecSize) $vec, $idx, 0, $val) >; } defm : SI_INDIRECT_Pattern <v2f32, f32, "V2">; defm : SI_INDIRECT_Pattern <v4f32, f32, "V4">; defm : SI_INDIRECT_Pattern <v8f32, f32, "V8">; defm : SI_INDIRECT_Pattern <v16f32, f32, "V16">; defm : SI_INDIRECT_Pattern <v2i32, i32, "V2">; defm : SI_INDIRECT_Pattern <v4i32, i32, "V4">; defm : SI_INDIRECT_Pattern <v8i32, i32, "V8">; defm : SI_INDIRECT_Pattern <v16i32, i32, "V16">; //===----------------------------------------------------------------------===// // Conversion Patterns //===----------------------------------------------------------------------===// def : Pat<(i32 (sext_inreg i32:$src, i1)), (S_BFE_I32 i32:$src, 65536)>; // 0 | 1 << 16 // Handle sext_inreg in i64 def : Pat < (i64 (sext_inreg i64:$src, i1)), (S_BFE_I64 i64:$src, 0x10000) // 0 | 1 << 16 >; def : Pat < (i64 (sext_inreg i64:$src, i8)), (S_BFE_I64 i64:$src, 0x80000) // 0 | 8 << 16 >; def : Pat < (i64 (sext_inreg i64:$src, i16)), (S_BFE_I64 i64:$src, 0x100000) // 0 | 16 << 16 >; def : Pat < (i64 (sext_inreg i64:$src, i32)), (S_BFE_I64 i64:$src, 0x200000) // 0 | 32 << 16 >; class ZExt_i64_i32_Pat <SDNode ext> : Pat < (i64 (ext i32:$src)), (REG_SEQUENCE SReg_64, $src, sub0, (S_MOV_B32 0), sub1) >; class ZExt_i64_i1_Pat <SDNode ext> : Pat < (i64 (ext i1:$src)), (REG_SEQUENCE VReg_64, (V_CNDMASK_B32_e64 (i32 0), (i32 1), $src), sub0, (S_MOV_B32 0), sub1) >; def : ZExt_i64_i32_Pat<zext>; def : ZExt_i64_i32_Pat<anyext>; def : ZExt_i64_i1_Pat<zext>; def : ZExt_i64_i1_Pat<anyext>; def : Pat < (i64 (sext i32:$src)), (REG_SEQUENCE SReg_64, $src, sub0, (S_ASHR_I32 $src, 31), sub1) >; def : Pat < (i64 (sext i1:$src)), (REG_SEQUENCE VReg_64, (V_CNDMASK_B32_e64 0, -1, $src), sub0, (V_CNDMASK_B32_e64 0, -1, $src), sub1) >; // If we need to perform a logical operation on i1 values, we need to // use vector comparisons since there is only one SCC register. Vector // comparisions still write to a pair of SGPRs, so treat these as // 64-bit comparisons. When legalizing SGPR copies, instructions // resulting in the copies from SCC to these instructions will be // moved to the VALU. def : Pat < (i1 (and i1:$src0, i1:$src1)), (S_AND_B64 $src0, $src1) >; def : Pat < (i1 (or i1:$src0, i1:$src1)), (S_OR_B64 $src0, $src1) >; def : Pat < (i1 (xor i1:$src0, i1:$src1)), (S_XOR_B64 $src0, $src1) >; def : Pat < (f32 (sint_to_fp i1:$src)), (V_CNDMASK_B32_e64 (i32 0), CONST.FP32_NEG_ONE, $src) >; def : Pat < (f32 (uint_to_fp i1:$src)), (V_CNDMASK_B32_e64 (i32 0), CONST.FP32_ONE, $src) >; def : Pat < (f64 (sint_to_fp i1:$src)), (V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src)) >; def : Pat < (f64 (uint_to_fp i1:$src)), (V_CVT_F64_U32_e32 (V_CNDMASK_B32_e64 (i32 0), (i32 1), $src)) >; //===----------------------------------------------------------------------===// // Miscellaneous Patterns //===----------------------------------------------------------------------===// def : Pat < (i32 (trunc i64:$a)), (EXTRACT_SUBREG $a, sub0) >; def : Pat < (i1 (trunc i32:$a)), (V_CMP_EQ_I32_e64 (S_AND_B32 (i32 1), $a), 1) >; def : Pat < (i1 (trunc i64:$a)), (V_CMP_EQ_I32_e64 (S_AND_B32 (i32 1), (EXTRACT_SUBREG $a, sub0)), 1) >; def : Pat < (i32 (bswap i32:$a)), (V_BFI_B32 (S_MOV_B32 0x00ff00ff), (V_ALIGNBIT_B32 $a, $a, 24), (V_ALIGNBIT_B32 $a, $a, 8)) >; def : Pat < (f32 (select i1:$src2, f32:$src1, f32:$src0)), (V_CNDMASK_B32_e64 $src0, $src1, $src2) >; multiclass BFMPatterns <ValueType vt, InstSI BFM, InstSI MOV> { def : Pat < (vt (shl (vt (add (vt (shl 1, vt:$a)), -1)), vt:$b)), (BFM $a, $b) >; def : Pat < (vt (add (vt (shl 1, vt:$a)), -1)), (BFM $a, (MOV 0)) >; } defm : BFMPatterns <i32, S_BFM_B32, S_MOV_B32>; // FIXME: defm : BFMPatterns <i64, S_BFM_B64, S_MOV_B64>; def : BFEPattern <V_BFE_U32, S_MOV_B32>; //===----------------------------------------------------------------------===// // Fract Patterns //===----------------------------------------------------------------------===// let Predicates = [isSI] in { // V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) is // used instead. However, SI doesn't have V_FLOOR_F64, so the most efficient // way to implement it is using V_FRACT_F64. // The workaround for the V_FRACT bug is: // fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999) // Convert (x + (-floor(x)) to fract(x) def : Pat < (f64 (fadd (f64 (VOP3Mods f64:$x, i32:$mods)), (f64 (fneg (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))))))), (V_CNDMASK_B64_PSEUDO (V_MIN_F64 SRCMODS.NONE, (V_FRACT_F64_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE), SRCMODS.NONE, (V_MOV_B64_PSEUDO 0x3fefffffffffffff), DSTCLAMP.NONE, DSTOMOD.NONE), $x, (V_CMP_CLASS_F64_e64 SRCMODS.NONE, $x, 3/*NaN*/)) >; // Convert floor(x) to (x - fract(x)) def : Pat < (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))), (V_ADD_F64 $mods, $x, SRCMODS.NEG, (V_CNDMASK_B64_PSEUDO (V_MIN_F64 SRCMODS.NONE, (V_FRACT_F64_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE), SRCMODS.NONE, (V_MOV_B64_PSEUDO 0x3fefffffffffffff), DSTCLAMP.NONE, DSTOMOD.NONE), $x, (V_CMP_CLASS_F64_e64 SRCMODS.NONE, $x, 3/*NaN*/)), DSTCLAMP.NONE, DSTOMOD.NONE) >; } // End Predicates = [isSI] //============================================================================// // Miscellaneous Optimization Patterns //============================================================================// def : SHA256MaPattern <V_BFI_B32, V_XOR_B32_e64>; //============================================================================// // Assembler aliases //============================================================================// def : MnemonicAlias<"v_add_u32", "v_add_i32">; def : MnemonicAlias<"v_sub_u32", "v_sub_i32">; def : MnemonicAlias<"v_subrev_u32", "v_subrev_i32">; } // End isGCN predicate