//===-- SILowerControlFlow.cpp - Use predicates for control flow ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief Insert wait instructions for memory reads and writes. /// /// Memory reads and writes are issued asynchronously, so we need to insert /// S_WAITCNT instructions when we want to access any of their results or /// overwrite any register that's used asynchronously. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPUSubtarget.h" #include "SIDefines.h" #include "SIInstrInfo.h" #include "SIMachineFunctionInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" using namespace llvm; namespace { /// \brief One variable for each of the hardware counters typedef union { struct { unsigned VM; unsigned EXP; unsigned LGKM; } Named; unsigned Array[3]; } Counters; typedef enum { OTHER, SMEM, VMEM } InstType; typedef Counters RegCounters[512]; typedef std::pair<unsigned, unsigned> RegInterval; class SIInsertWaits : public MachineFunctionPass { private: static char ID; const SIInstrInfo *TII; const SIRegisterInfo *TRI; const MachineRegisterInfo *MRI; /// \brief Constant hardware limits static const Counters WaitCounts; /// \brief Constant zero value static const Counters ZeroCounts; /// \brief Counter values we have already waited on. Counters WaitedOn; /// \brief Counter values for last instruction issued. Counters LastIssued; /// \brief Registers used by async instructions. RegCounters UsedRegs; /// \brief Registers defined by async instructions. RegCounters DefinedRegs; /// \brief Different export instruction types seen since last wait. unsigned ExpInstrTypesSeen; /// \brief Type of the last opcode. InstType LastOpcodeType; bool LastInstWritesM0; /// \brief Get increment/decrement amount for this instruction. Counters getHwCounts(MachineInstr &MI); /// \brief Is operand relevant for async execution? bool isOpRelevant(MachineOperand &Op); /// \brief Get register interval an operand affects. RegInterval getRegInterval(const TargetRegisterClass *RC, const MachineOperand &Reg) const; /// \brief Handle instructions async components void pushInstruction(MachineBasicBlock &MBB, MachineBasicBlock::iterator I); /// \brief Insert the actual wait instruction bool insertWait(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const Counters &Counts); /// \brief Do we need def2def checks? bool unorderedDefines(MachineInstr &MI); /// \brief Resolve all operand dependencies to counter requirements Counters handleOperands(MachineInstr &MI); /// \brief Insert S_NOP between an instruction writing M0 and S_SENDMSG. void handleSendMsg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I); public: SIInsertWaits(TargetMachine &tm) : MachineFunctionPass(ID), TII(nullptr), TRI(nullptr), ExpInstrTypesSeen(0) { } bool runOnMachineFunction(MachineFunction &MF) override; const char *getPassName() const override { return "SI insert wait instructions"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } }; } // End anonymous namespace char SIInsertWaits::ID = 0; const Counters SIInsertWaits::WaitCounts = { { 15, 7, 7 } }; const Counters SIInsertWaits::ZeroCounts = { { 0, 0, 0 } }; FunctionPass *llvm::createSIInsertWaits(TargetMachine &tm) { return new SIInsertWaits(tm); } Counters SIInsertWaits::getHwCounts(MachineInstr &MI) { uint64_t TSFlags = MI.getDesc().TSFlags; Counters Result = { { 0, 0, 0 } }; Result.Named.VM = !!(TSFlags & SIInstrFlags::VM_CNT); // Only consider stores or EXP for EXP_CNT Result.Named.EXP = !!(TSFlags & SIInstrFlags::EXP_CNT && (MI.getOpcode() == AMDGPU::EXP || MI.getDesc().mayStore())); // LGKM may uses larger values if (TSFlags & SIInstrFlags::LGKM_CNT) { if (TII->isSMRD(MI)) { if (MI.getNumOperands() != 0) { assert(MI.getOperand(0).isReg() && "First LGKM operand must be a register!"); // XXX - What if this is a write into a super register? const TargetRegisterClass *RC = TII->getOpRegClass(MI, 0); unsigned Size = RC->getSize(); Result.Named.LGKM = Size > 4 ? 2 : 1; } else { // s_dcache_inv etc. do not have a a destination register. Assume we // want a wait on these. // XXX - What is the right value? Result.Named.LGKM = 1; } } else { // DS Result.Named.LGKM = 1; } } else { Result.Named.LGKM = 0; } return Result; } bool SIInsertWaits::isOpRelevant(MachineOperand &Op) { // Constants are always irrelevant if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg())) return false; // Defines are always relevant if (Op.isDef()) return true; // For exports all registers are relevant MachineInstr &MI = *Op.getParent(); if (MI.getOpcode() == AMDGPU::EXP) return true; // For stores the stored value is also relevant if (!MI.getDesc().mayStore()) return false; // Check if this operand is the value being stored. // Special case for DS instructions, since the address // operand comes before the value operand and it may have // multiple data operands. if (TII->isDS(MI)) { MachineOperand *Data = TII->getNamedOperand(MI, AMDGPU::OpName::data); if (Data && Op.isIdenticalTo(*Data)) return true; MachineOperand *Data0 = TII->getNamedOperand(MI, AMDGPU::OpName::data0); if (Data0 && Op.isIdenticalTo(*Data0)) return true; MachineOperand *Data1 = TII->getNamedOperand(MI, AMDGPU::OpName::data1); if (Data1 && Op.isIdenticalTo(*Data1)) return true; return false; } // NOTE: This assumes that the value operand is before the // address operand, and that there is only one value operand. for (MachineInstr::mop_iterator I = MI.operands_begin(), E = MI.operands_end(); I != E; ++I) { if (I->isReg() && I->isUse()) return Op.isIdenticalTo(*I); } return false; } RegInterval SIInsertWaits::getRegInterval(const TargetRegisterClass *RC, const MachineOperand &Reg) const { unsigned Size = RC->getSize(); assert(Size >= 4); RegInterval Result; Result.first = TRI->getEncodingValue(Reg.getReg()); Result.second = Result.first + Size / 4; return Result; } void SIInsertWaits::pushInstruction(MachineBasicBlock &MBB, MachineBasicBlock::iterator I) { // Get the hardware counter increments and sum them up Counters Increment = getHwCounts(*I); Counters Limit = ZeroCounts; unsigned Sum = 0; for (unsigned i = 0; i < 3; ++i) { LastIssued.Array[i] += Increment.Array[i]; if (Increment.Array[i]) Limit.Array[i] = LastIssued.Array[i]; Sum += Increment.Array[i]; } // If we don't increase anything then that's it if (Sum == 0) { LastOpcodeType = OTHER; return; } if (MBB.getParent()->getSubtarget<AMDGPUSubtarget>().getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { // Any occurrence of consecutive VMEM or SMEM instructions forms a VMEM // or SMEM clause, respectively. // // The temporary workaround is to break the clauses with S_NOP. // // The proper solution would be to allocate registers such that all source // and destination registers don't overlap, e.g. this is illegal: // r0 = load r2 // r2 = load r0 if ((LastOpcodeType == SMEM && TII->isSMRD(*I)) || (LastOpcodeType == VMEM && Increment.Named.VM)) { // Insert a NOP to break the clause. BuildMI(MBB, I, DebugLoc(), TII->get(AMDGPU::S_NOP)) .addImm(0); LastInstWritesM0 = false; } if (TII->isSMRD(*I)) LastOpcodeType = SMEM; else if (Increment.Named.VM) LastOpcodeType = VMEM; } // Remember which export instructions we have seen if (Increment.Named.EXP) { ExpInstrTypesSeen |= I->getOpcode() == AMDGPU::EXP ? 1 : 2; } for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { MachineOperand &Op = I->getOperand(i); if (!isOpRelevant(Op)) continue; const TargetRegisterClass *RC = TII->getOpRegClass(*I, i); RegInterval Interval = getRegInterval(RC, Op); for (unsigned j = Interval.first; j < Interval.second; ++j) { // Remember which registers we define if (Op.isDef()) DefinedRegs[j] = Limit; // and which one we are using if (Op.isUse()) UsedRegs[j] = Limit; } } } bool SIInsertWaits::insertWait(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const Counters &Required) { // End of program? No need to wait on anything if (I != MBB.end() && I->getOpcode() == AMDGPU::S_ENDPGM) return false; // Figure out if the async instructions execute in order bool Ordered[3]; // VM_CNT is always ordered Ordered[0] = true; // EXP_CNT is unordered if we have both EXP & VM-writes Ordered[1] = ExpInstrTypesSeen == 3; // LGKM_CNT is handled as always unordered. TODO: Handle LDS and GDS Ordered[2] = false; // The values we are going to put into the S_WAITCNT instruction Counters Counts = WaitCounts; // Do we really need to wait? bool NeedWait = false; for (unsigned i = 0; i < 3; ++i) { if (Required.Array[i] <= WaitedOn.Array[i]) continue; NeedWait = true; if (Ordered[i]) { unsigned Value = LastIssued.Array[i] - Required.Array[i]; // Adjust the value to the real hardware possibilities. Counts.Array[i] = std::min(Value, WaitCounts.Array[i]); } else Counts.Array[i] = 0; // Remember on what we have waited on. WaitedOn.Array[i] = LastIssued.Array[i] - Counts.Array[i]; } if (!NeedWait) return false; // Reset EXP_CNT instruction types if (Counts.Named.EXP == 0) ExpInstrTypesSeen = 0; // Build the wait instruction BuildMI(MBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT)) .addImm((Counts.Named.VM & 0xF) | ((Counts.Named.EXP & 0x7) << 4) | ((Counts.Named.LGKM & 0x7) << 8)); LastOpcodeType = OTHER; LastInstWritesM0 = false; return true; } /// \brief helper function for handleOperands static void increaseCounters(Counters &Dst, const Counters &Src) { for (unsigned i = 0; i < 3; ++i) Dst.Array[i] = std::max(Dst.Array[i], Src.Array[i]); } Counters SIInsertWaits::handleOperands(MachineInstr &MI) { Counters Result = ZeroCounts; // S_SENDMSG implicitly waits for all outstanding LGKM transfers to finish, // but we also want to wait for any other outstanding transfers before // signalling other hardware blocks if (MI.getOpcode() == AMDGPU::S_SENDMSG) return LastIssued; // For each register affected by this instruction increase the result // sequence. // // TODO: We could probably just look at explicit operands if we removed VCC / // EXEC from SMRD dest reg classes. for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &Op = MI.getOperand(i); if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg())) continue; const TargetRegisterClass *RC = TII->getOpRegClass(MI, i); RegInterval Interval = getRegInterval(RC, Op); for (unsigned j = Interval.first; j < Interval.second; ++j) { if (Op.isDef()) { increaseCounters(Result, UsedRegs[j]); increaseCounters(Result, DefinedRegs[j]); } if (Op.isUse()) increaseCounters(Result, DefinedRegs[j]); } } return Result; } void SIInsertWaits::handleSendMsg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I) { if (MBB.getParent()->getSubtarget<AMDGPUSubtarget>().getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) return; // There must be "S_NOP 0" between an instruction writing M0 and S_SENDMSG. if (LastInstWritesM0 && I->getOpcode() == AMDGPU::S_SENDMSG) { BuildMI(MBB, I, DebugLoc(), TII->get(AMDGPU::S_NOP)).addImm(0); LastInstWritesM0 = false; return; } // Set whether this instruction sets M0 LastInstWritesM0 = false; unsigned NumOperands = I->getNumOperands(); for (unsigned i = 0; i < NumOperands; i++) { const MachineOperand &Op = I->getOperand(i); if (Op.isReg() && Op.isDef() && Op.getReg() == AMDGPU::M0) LastInstWritesM0 = true; } } // FIXME: Insert waits listed in Table 4.2 "Required User-Inserted Wait States" // around other non-memory instructions. bool SIInsertWaits::runOnMachineFunction(MachineFunction &MF) { bool Changes = false; TII = static_cast<const SIInstrInfo *>(MF.getSubtarget().getInstrInfo()); TRI = static_cast<const SIRegisterInfo *>(MF.getSubtarget().getRegisterInfo()); MRI = &MF.getRegInfo(); WaitedOn = ZeroCounts; LastIssued = ZeroCounts; LastOpcodeType = OTHER; LastInstWritesM0 = false; memset(&UsedRegs, 0, sizeof(UsedRegs)); memset(&DefinedRegs, 0, sizeof(DefinedRegs)); for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; ++BI) { MachineBasicBlock &MBB = *BI; for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I) { // Wait for everything before a barrier. if (I->getOpcode() == AMDGPU::S_BARRIER) Changes |= insertWait(MBB, I, LastIssued); else Changes |= insertWait(MBB, I, handleOperands(*I)); pushInstruction(MBB, I); handleSendMsg(MBB, I); } // Wait for everything at the end of the MBB Changes |= insertWait(MBB, MBB.getFirstTerminator(), LastIssued); } return Changes; }