//===----- R600Packetizer.cpp - VLIW packetizer ---------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// This pass implements instructions packetization for R600. It unsets isLast /// bit of instructions inside a bundle and substitutes src register with /// PreviousVector when applicable. // //===----------------------------------------------------------------------===// #include "llvm/Support/Debug.h" #include "AMDGPU.h" #include "AMDGPUSubtarget.h" #include "R600InstrInfo.h" #include "llvm/CodeGen/DFAPacketizer.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "packets" namespace { class R600Packetizer : public MachineFunctionPass { public: static char ID; R600Packetizer(const TargetMachine &TM) : MachineFunctionPass(ID) {} void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired<MachineDominatorTree>(); AU.addPreserved<MachineDominatorTree>(); AU.addRequired<MachineLoopInfo>(); AU.addPreserved<MachineLoopInfo>(); MachineFunctionPass::getAnalysisUsage(AU); } const char *getPassName() const override { return "R600 Packetizer"; } bool runOnMachineFunction(MachineFunction &Fn) override; }; char R600Packetizer::ID = 0; class R600PacketizerList : public VLIWPacketizerList { private: const R600InstrInfo *TII; const R600RegisterInfo &TRI; bool VLIW5; bool ConsideredInstUsesAlreadyWrittenVectorElement; unsigned getSlot(const MachineInstr *MI) const { return TRI.getHWRegChan(MI->getOperand(0).getReg()); } /// \returns register to PV chan mapping for bundle/single instructions that /// immediately precedes I. DenseMap<unsigned, unsigned> getPreviousVector(MachineBasicBlock::iterator I) const { DenseMap<unsigned, unsigned> Result; I--; if (!TII->isALUInstr(I->getOpcode()) && !I->isBundle()) return Result; MachineBasicBlock::instr_iterator BI = I.getInstrIterator(); if (I->isBundle()) BI++; int LastDstChan = -1; do { bool isTrans = false; int BISlot = getSlot(&*BI); if (LastDstChan >= BISlot) isTrans = true; LastDstChan = BISlot; if (TII->isPredicated(&*BI)) continue; int OperandIdx = TII->getOperandIdx(BI->getOpcode(), AMDGPU::OpName::write); if (OperandIdx > -1 && BI->getOperand(OperandIdx).getImm() == 0) continue; int DstIdx = TII->getOperandIdx(BI->getOpcode(), AMDGPU::OpName::dst); if (DstIdx == -1) { continue; } unsigned Dst = BI->getOperand(DstIdx).getReg(); if (isTrans || TII->isTransOnly(&*BI)) { Result[Dst] = AMDGPU::PS; continue; } if (BI->getOpcode() == AMDGPU::DOT4_r600 || BI->getOpcode() == AMDGPU::DOT4_eg) { Result[Dst] = AMDGPU::PV_X; continue; } if (Dst == AMDGPU::OQAP) { continue; } unsigned PVReg = 0; switch (TRI.getHWRegChan(Dst)) { case 0: PVReg = AMDGPU::PV_X; break; case 1: PVReg = AMDGPU::PV_Y; break; case 2: PVReg = AMDGPU::PV_Z; break; case 3: PVReg = AMDGPU::PV_W; break; default: llvm_unreachable("Invalid Chan"); } Result[Dst] = PVReg; } while ((++BI)->isBundledWithPred()); return Result; } void substitutePV(MachineInstr *MI, const DenseMap<unsigned, unsigned> &PVs) const { unsigned Ops[] = { AMDGPU::OpName::src0, AMDGPU::OpName::src1, AMDGPU::OpName::src2 }; for (unsigned i = 0; i < 3; i++) { int OperandIdx = TII->getOperandIdx(MI->getOpcode(), Ops[i]); if (OperandIdx < 0) continue; unsigned Src = MI->getOperand(OperandIdx).getReg(); const DenseMap<unsigned, unsigned>::const_iterator It = PVs.find(Src); if (It != PVs.end()) MI->getOperand(OperandIdx).setReg(It->second); } } public: // Ctor. R600PacketizerList(MachineFunction &MF, MachineLoopInfo &MLI) : VLIWPacketizerList(MF, MLI, nullptr), TII(static_cast<const R600InstrInfo *>( MF.getSubtarget().getInstrInfo())), TRI(TII->getRegisterInfo()) { VLIW5 = !MF.getSubtarget<AMDGPUSubtarget>().hasCaymanISA(); } // initPacketizerState - initialize some internal flags. void initPacketizerState() override { ConsideredInstUsesAlreadyWrittenVectorElement = false; } // ignorePseudoInstruction - Ignore bundling of pseudo instructions. bool ignorePseudoInstruction(const MachineInstr *MI, const MachineBasicBlock *MBB) override { return false; } // isSoloInstruction - return true if instruction MI can not be packetized // with any other instruction, which means that MI itself is a packet. bool isSoloInstruction(const MachineInstr *MI) override { if (TII->isVector(*MI)) return true; if (!TII->isALUInstr(MI->getOpcode())) return true; if (MI->getOpcode() == AMDGPU::GROUP_BARRIER) return true; // XXX: This can be removed once the packetizer properly handles all the // LDS instruction group restrictions. if (TII->isLDSInstr(MI->getOpcode())) return true; return false; } // isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ // together. bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) override { MachineInstr *MII = SUI->getInstr(), *MIJ = SUJ->getInstr(); if (getSlot(MII) == getSlot(MIJ)) ConsideredInstUsesAlreadyWrittenVectorElement = true; // Does MII and MIJ share the same pred_sel ? int OpI = TII->getOperandIdx(MII->getOpcode(), AMDGPU::OpName::pred_sel), OpJ = TII->getOperandIdx(MIJ->getOpcode(), AMDGPU::OpName::pred_sel); unsigned PredI = (OpI > -1)?MII->getOperand(OpI).getReg():0, PredJ = (OpJ > -1)?MIJ->getOperand(OpJ).getReg():0; if (PredI != PredJ) return false; if (SUJ->isSucc(SUI)) { for (unsigned i = 0, e = SUJ->Succs.size(); i < e; ++i) { const SDep &Dep = SUJ->Succs[i]; if (Dep.getSUnit() != SUI) continue; if (Dep.getKind() == SDep::Anti) continue; if (Dep.getKind() == SDep::Output) if (MII->getOperand(0).getReg() != MIJ->getOperand(0).getReg()) continue; return false; } } bool ARDef = TII->definesAddressRegister(MII) || TII->definesAddressRegister(MIJ); bool ARUse = TII->usesAddressRegister(MII) || TII->usesAddressRegister(MIJ); if (ARDef && ARUse) return false; return true; } // isLegalToPruneDependencies - Is it legal to prune dependece between SUI // and SUJ. bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) override { return false; } void setIsLastBit(MachineInstr *MI, unsigned Bit) const { unsigned LastOp = TII->getOperandIdx(MI->getOpcode(), AMDGPU::OpName::last); MI->getOperand(LastOp).setImm(Bit); } bool isBundlableWithCurrentPMI(MachineInstr *MI, const DenseMap<unsigned, unsigned> &PV, std::vector<R600InstrInfo::BankSwizzle> &BS, bool &isTransSlot) { isTransSlot = TII->isTransOnly(MI); assert (!isTransSlot || VLIW5); // Is the dst reg sequence legal ? if (!isTransSlot && !CurrentPacketMIs.empty()) { if (getSlot(MI) <= getSlot(CurrentPacketMIs.back())) { if (ConsideredInstUsesAlreadyWrittenVectorElement && !TII->isVectorOnly(MI) && VLIW5) { isTransSlot = true; DEBUG(dbgs() << "Considering as Trans Inst :"; MI->dump();); } else return false; } } // Are the Constants limitations met ? CurrentPacketMIs.push_back(MI); if (!TII->fitsConstReadLimitations(CurrentPacketMIs)) { DEBUG( dbgs() << "Couldn't pack :\n"; MI->dump(); dbgs() << "with the following packets :\n"; for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) { CurrentPacketMIs[i]->dump(); dbgs() << "\n"; } dbgs() << "because of Consts read limitations\n"; ); CurrentPacketMIs.pop_back(); return false; } // Is there a BankSwizzle set that meet Read Port limitations ? if (!TII->fitsReadPortLimitations(CurrentPacketMIs, PV, BS, isTransSlot)) { DEBUG( dbgs() << "Couldn't pack :\n"; MI->dump(); dbgs() << "with the following packets :\n"; for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) { CurrentPacketMIs[i]->dump(); dbgs() << "\n"; } dbgs() << "because of Read port limitations\n"; ); CurrentPacketMIs.pop_back(); return false; } // We cannot read LDS source registrs from the Trans slot. if (isTransSlot && TII->readsLDSSrcReg(MI)) return false; CurrentPacketMIs.pop_back(); return true; } MachineBasicBlock::iterator addToPacket(MachineInstr *MI) override { MachineBasicBlock::iterator FirstInBundle = CurrentPacketMIs.empty() ? MI : CurrentPacketMIs.front(); const DenseMap<unsigned, unsigned> &PV = getPreviousVector(FirstInBundle); std::vector<R600InstrInfo::BankSwizzle> BS; bool isTransSlot; if (isBundlableWithCurrentPMI(MI, PV, BS, isTransSlot)) { for (unsigned i = 0, e = CurrentPacketMIs.size(); i < e; i++) { MachineInstr *MI = CurrentPacketMIs[i]; unsigned Op = TII->getOperandIdx(MI->getOpcode(), AMDGPU::OpName::bank_swizzle); MI->getOperand(Op).setImm(BS[i]); } unsigned Op = TII->getOperandIdx(MI->getOpcode(), AMDGPU::OpName::bank_swizzle); MI->getOperand(Op).setImm(BS.back()); if (!CurrentPacketMIs.empty()) setIsLastBit(CurrentPacketMIs.back(), 0); substitutePV(MI, PV); MachineBasicBlock::iterator It = VLIWPacketizerList::addToPacket(MI); if (isTransSlot) { endPacket(std::next(It)->getParent(), std::next(It)); } return It; } endPacket(MI->getParent(), MI); if (TII->isTransOnly(MI)) return MI; return VLIWPacketizerList::addToPacket(MI); } }; bool R600Packetizer::runOnMachineFunction(MachineFunction &Fn) { const TargetInstrInfo *TII = Fn.getSubtarget().getInstrInfo(); MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); // Instantiate the packetizer. R600PacketizerList Packetizer(Fn, MLI); // DFA state table should not be empty. assert(Packetizer.getResourceTracker() && "Empty DFA table!"); // // Loop over all basic blocks and remove KILL pseudo-instructions // These instructions confuse the dependence analysis. Consider: // D0 = ... (Insn 0) // R0 = KILL R0, D0 (Insn 1) // R0 = ... (Insn 2) // Here, Insn 1 will result in the dependence graph not emitting an output // dependence between Insn 0 and Insn 2. This can lead to incorrect // packetization // for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); MBB != MBBe; ++MBB) { MachineBasicBlock::iterator End = MBB->end(); MachineBasicBlock::iterator MI = MBB->begin(); while (MI != End) { if (MI->isKill() || MI->getOpcode() == AMDGPU::IMPLICIT_DEF || (MI->getOpcode() == AMDGPU::CF_ALU && !MI->getOperand(8).getImm())) { MachineBasicBlock::iterator DeleteMI = MI; ++MI; MBB->erase(DeleteMI); End = MBB->end(); continue; } ++MI; } } // Loop over all of the basic blocks. for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); MBB != MBBe; ++MBB) { // Find scheduling regions and schedule / packetize each region. unsigned RemainingCount = MBB->size(); for(MachineBasicBlock::iterator RegionEnd = MBB->end(); RegionEnd != MBB->begin();) { // The next region starts above the previous region. Look backward in the // instruction stream until we find the nearest boundary. MachineBasicBlock::iterator I = RegionEnd; for(;I != MBB->begin(); --I, --RemainingCount) { if (TII->isSchedulingBoundary(&*std::prev(I), &*MBB, Fn)) break; } I = MBB->begin(); // Skip empty scheduling regions. if (I == RegionEnd) { RegionEnd = std::prev(RegionEnd); --RemainingCount; continue; } // Skip regions with one instruction. if (I == std::prev(RegionEnd)) { RegionEnd = std::prev(RegionEnd); continue; } Packetizer.PacketizeMIs(&*MBB, &*I, RegionEnd); RegionEnd = I; } } return true; } } // end anonymous namespace llvm::FunctionPass *llvm::createR600Packetizer(TargetMachine &tm) { return new R600Packetizer(tm); }