//===-- R600InstrInfo.cpp - R600 Instruction Information ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief R600 Implementation of TargetInstrInfo. // //===----------------------------------------------------------------------===// #include "R600InstrInfo.h" #include "AMDGPU.h" #include "AMDGPUSubtarget.h" #include "AMDGPUTargetMachine.h" #include "R600Defines.h" #include "R600MachineFunctionInfo.h" #include "R600RegisterInfo.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" using namespace llvm; #define GET_INSTRINFO_CTOR_DTOR #include "AMDGPUGenDFAPacketizer.inc" R600InstrInfo::R600InstrInfo(const AMDGPUSubtarget &st) : AMDGPUInstrInfo(st), RI() {} const R600RegisterInfo &R600InstrInfo::getRegisterInfo() const { return RI; } bool R600InstrInfo::isTrig(const MachineInstr &MI) const { return get(MI.getOpcode()).TSFlags & R600_InstFlag::TRIG; } bool R600InstrInfo::isVector(const MachineInstr &MI) const { return get(MI.getOpcode()).TSFlags & R600_InstFlag::VECTOR; } void R600InstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, DebugLoc DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const { unsigned VectorComponents = 0; if ((AMDGPU::R600_Reg128RegClass.contains(DestReg) || AMDGPU::R600_Reg128VerticalRegClass.contains(DestReg)) && (AMDGPU::R600_Reg128RegClass.contains(SrcReg) || AMDGPU::R600_Reg128VerticalRegClass.contains(SrcReg))) { VectorComponents = 4; } else if((AMDGPU::R600_Reg64RegClass.contains(DestReg) || AMDGPU::R600_Reg64VerticalRegClass.contains(DestReg)) && (AMDGPU::R600_Reg64RegClass.contains(SrcReg) || AMDGPU::R600_Reg64VerticalRegClass.contains(SrcReg))) { VectorComponents = 2; } if (VectorComponents > 0) { for (unsigned I = 0; I < VectorComponents; I++) { unsigned SubRegIndex = RI.getSubRegFromChannel(I); buildDefaultInstruction(MBB, MI, AMDGPU::MOV, RI.getSubReg(DestReg, SubRegIndex), RI.getSubReg(SrcReg, SubRegIndex)) .addReg(DestReg, RegState::Define | RegState::Implicit); } } else { MachineInstr *NewMI = buildDefaultInstruction(MBB, MI, AMDGPU::MOV, DestReg, SrcReg); NewMI->getOperand(getOperandIdx(*NewMI, AMDGPU::OpName::src0)) .setIsKill(KillSrc); } } /// \returns true if \p MBBI can be moved into a new basic. bool R600InstrInfo::isLegalToSplitMBBAt(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { for (MachineInstr::const_mop_iterator I = MBBI->operands_begin(), E = MBBI->operands_end(); I != E; ++I) { if (I->isReg() && !TargetRegisterInfo::isVirtualRegister(I->getReg()) && I->isUse() && RI.isPhysRegLiveAcrossClauses(I->getReg())) return false; } return true; } bool R600InstrInfo::isMov(unsigned Opcode) const { switch(Opcode) { default: return false; case AMDGPU::MOV: case AMDGPU::MOV_IMM_F32: case AMDGPU::MOV_IMM_I32: return true; } } // Some instructions act as place holders to emulate operations that the GPU // hardware does automatically. This function can be used to check if // an opcode falls into this category. bool R600InstrInfo::isPlaceHolderOpcode(unsigned Opcode) const { switch (Opcode) { default: return false; case AMDGPU::RETURN: return true; } } bool R600InstrInfo::isReductionOp(unsigned Opcode) const { return false; } bool R600InstrInfo::isCubeOp(unsigned Opcode) const { switch(Opcode) { default: return false; case AMDGPU::CUBE_r600_pseudo: case AMDGPU::CUBE_r600_real: case AMDGPU::CUBE_eg_pseudo: case AMDGPU::CUBE_eg_real: return true; } } bool R600InstrInfo::isALUInstr(unsigned Opcode) const { unsigned TargetFlags = get(Opcode).TSFlags; return (TargetFlags & R600_InstFlag::ALU_INST); } bool R600InstrInfo::hasInstrModifiers(unsigned Opcode) const { unsigned TargetFlags = get(Opcode).TSFlags; return ((TargetFlags & R600_InstFlag::OP1) | (TargetFlags & R600_InstFlag::OP2) | (TargetFlags & R600_InstFlag::OP3)); } bool R600InstrInfo::isLDSInstr(unsigned Opcode) const { unsigned TargetFlags = get(Opcode).TSFlags; return ((TargetFlags & R600_InstFlag::LDS_1A) | (TargetFlags & R600_InstFlag::LDS_1A1D) | (TargetFlags & R600_InstFlag::LDS_1A2D)); } bool R600InstrInfo::isLDSNoRetInstr(unsigned Opcode) const { return isLDSInstr(Opcode) && getOperandIdx(Opcode, AMDGPU::OpName::dst) == -1; } bool R600InstrInfo::isLDSRetInstr(unsigned Opcode) const { return isLDSInstr(Opcode) && getOperandIdx(Opcode, AMDGPU::OpName::dst) != -1; } bool R600InstrInfo::canBeConsideredALU(const MachineInstr *MI) const { if (isALUInstr(MI->getOpcode())) return true; if (isVector(*MI) || isCubeOp(MI->getOpcode())) return true; switch (MI->getOpcode()) { case AMDGPU::PRED_X: case AMDGPU::INTERP_PAIR_XY: case AMDGPU::INTERP_PAIR_ZW: case AMDGPU::INTERP_VEC_LOAD: case AMDGPU::COPY: case AMDGPU::DOT_4: return true; default: return false; } } bool R600InstrInfo::isTransOnly(unsigned Opcode) const { if (ST.hasCaymanISA()) return false; return (get(Opcode).getSchedClass() == AMDGPU::Sched::TransALU); } bool R600InstrInfo::isTransOnly(const MachineInstr *MI) const { return isTransOnly(MI->getOpcode()); } bool R600InstrInfo::isVectorOnly(unsigned Opcode) const { return (get(Opcode).getSchedClass() == AMDGPU::Sched::VecALU); } bool R600InstrInfo::isVectorOnly(const MachineInstr *MI) const { return isVectorOnly(MI->getOpcode()); } bool R600InstrInfo::isExport(unsigned Opcode) const { return (get(Opcode).TSFlags & R600_InstFlag::IS_EXPORT); } bool R600InstrInfo::usesVertexCache(unsigned Opcode) const { return ST.hasVertexCache() && IS_VTX(get(Opcode)); } bool R600InstrInfo::usesVertexCache(const MachineInstr *MI) const { const MachineFunction *MF = MI->getParent()->getParent(); const R600MachineFunctionInfo *MFI = MF->getInfo<R600MachineFunctionInfo>(); return MFI->getShaderType() != ShaderType::COMPUTE && usesVertexCache(MI->getOpcode()); } bool R600InstrInfo::usesTextureCache(unsigned Opcode) const { return (!ST.hasVertexCache() && IS_VTX(get(Opcode))) || IS_TEX(get(Opcode)); } bool R600InstrInfo::usesTextureCache(const MachineInstr *MI) const { const MachineFunction *MF = MI->getParent()->getParent(); const R600MachineFunctionInfo *MFI = MF->getInfo<R600MachineFunctionInfo>(); return (MFI->getShaderType() == ShaderType::COMPUTE && usesVertexCache(MI->getOpcode())) || usesTextureCache(MI->getOpcode()); } bool R600InstrInfo::mustBeLastInClause(unsigned Opcode) const { switch (Opcode) { case AMDGPU::KILLGT: case AMDGPU::GROUP_BARRIER: return true; default: return false; } } bool R600InstrInfo::usesAddressRegister(MachineInstr *MI) const { return MI->findRegisterUseOperandIdx(AMDGPU::AR_X) != -1; } bool R600InstrInfo::definesAddressRegister(MachineInstr *MI) const { return MI->findRegisterDefOperandIdx(AMDGPU::AR_X) != -1; } bool R600InstrInfo::readsLDSSrcReg(const MachineInstr *MI) const { if (!isALUInstr(MI->getOpcode())) { return false; } for (MachineInstr::const_mop_iterator I = MI->operands_begin(), E = MI->operands_end(); I != E; ++I) { if (!I->isReg() || !I->isUse() || TargetRegisterInfo::isVirtualRegister(I->getReg())) continue; if (AMDGPU::R600_LDS_SRC_REGRegClass.contains(I->getReg())) return true; } return false; } int R600InstrInfo::getSrcIdx(unsigned Opcode, unsigned SrcNum) const { static const unsigned OpTable[] = { AMDGPU::OpName::src0, AMDGPU::OpName::src1, AMDGPU::OpName::src2 }; assert (SrcNum < 3); return getOperandIdx(Opcode, OpTable[SrcNum]); } int R600InstrInfo::getSelIdx(unsigned Opcode, unsigned SrcIdx) const { static const unsigned SrcSelTable[][2] = { {AMDGPU::OpName::src0, AMDGPU::OpName::src0_sel}, {AMDGPU::OpName::src1, AMDGPU::OpName::src1_sel}, {AMDGPU::OpName::src2, AMDGPU::OpName::src2_sel}, {AMDGPU::OpName::src0_X, AMDGPU::OpName::src0_sel_X}, {AMDGPU::OpName::src0_Y, AMDGPU::OpName::src0_sel_Y}, {AMDGPU::OpName::src0_Z, AMDGPU::OpName::src0_sel_Z}, {AMDGPU::OpName::src0_W, AMDGPU::OpName::src0_sel_W}, {AMDGPU::OpName::src1_X, AMDGPU::OpName::src1_sel_X}, {AMDGPU::OpName::src1_Y, AMDGPU::OpName::src1_sel_Y}, {AMDGPU::OpName::src1_Z, AMDGPU::OpName::src1_sel_Z}, {AMDGPU::OpName::src1_W, AMDGPU::OpName::src1_sel_W} }; for (const auto &Row : SrcSelTable) { if (getOperandIdx(Opcode, Row[0]) == (int)SrcIdx) { return getOperandIdx(Opcode, Row[1]); } } return -1; } SmallVector<std::pair<MachineOperand *, int64_t>, 3> R600InstrInfo::getSrcs(MachineInstr *MI) const { SmallVector<std::pair<MachineOperand *, int64_t>, 3> Result; if (MI->getOpcode() == AMDGPU::DOT_4) { static const unsigned OpTable[8][2] = { {AMDGPU::OpName::src0_X, AMDGPU::OpName::src0_sel_X}, {AMDGPU::OpName::src0_Y, AMDGPU::OpName::src0_sel_Y}, {AMDGPU::OpName::src0_Z, AMDGPU::OpName::src0_sel_Z}, {AMDGPU::OpName::src0_W, AMDGPU::OpName::src0_sel_W}, {AMDGPU::OpName::src1_X, AMDGPU::OpName::src1_sel_X}, {AMDGPU::OpName::src1_Y, AMDGPU::OpName::src1_sel_Y}, {AMDGPU::OpName::src1_Z, AMDGPU::OpName::src1_sel_Z}, {AMDGPU::OpName::src1_W, AMDGPU::OpName::src1_sel_W}, }; for (unsigned j = 0; j < 8; j++) { MachineOperand &MO = MI->getOperand(getOperandIdx(MI->getOpcode(), OpTable[j][0])); unsigned Reg = MO.getReg(); if (Reg == AMDGPU::ALU_CONST) { unsigned Sel = MI->getOperand(getOperandIdx(MI->getOpcode(), OpTable[j][1])).getImm(); Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, Sel)); continue; } } return Result; } static const unsigned OpTable[3][2] = { {AMDGPU::OpName::src0, AMDGPU::OpName::src0_sel}, {AMDGPU::OpName::src1, AMDGPU::OpName::src1_sel}, {AMDGPU::OpName::src2, AMDGPU::OpName::src2_sel}, }; for (unsigned j = 0; j < 3; j++) { int SrcIdx = getOperandIdx(MI->getOpcode(), OpTable[j][0]); if (SrcIdx < 0) break; MachineOperand &MO = MI->getOperand(SrcIdx); unsigned Reg = MI->getOperand(SrcIdx).getReg(); if (Reg == AMDGPU::ALU_CONST) { unsigned Sel = MI->getOperand( getOperandIdx(MI->getOpcode(), OpTable[j][1])).getImm(); Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, Sel)); continue; } if (Reg == AMDGPU::ALU_LITERAL_X) { unsigned Imm = MI->getOperand( getOperandIdx(MI->getOpcode(), AMDGPU::OpName::literal)).getImm(); Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, Imm)); continue; } Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, 0)); } return Result; } std::vector<std::pair<int, unsigned> > R600InstrInfo::ExtractSrcs(MachineInstr *MI, const DenseMap<unsigned, unsigned> &PV, unsigned &ConstCount) const { ConstCount = 0; ArrayRef<std::pair<MachineOperand *, int64_t>> Srcs = getSrcs(MI); const std::pair<int, unsigned> DummyPair(-1, 0); std::vector<std::pair<int, unsigned> > Result; unsigned i = 0; for (unsigned n = Srcs.size(); i < n; ++i) { unsigned Reg = Srcs[i].first->getReg(); unsigned Index = RI.getEncodingValue(Reg) & 0xff; if (Reg == AMDGPU::OQAP) { Result.push_back(std::pair<int, unsigned>(Index, 0)); } if (PV.find(Reg) != PV.end()) { // 255 is used to tells its a PS/PV reg Result.push_back(std::pair<int, unsigned>(255, 0)); continue; } if (Index > 127) { ConstCount++; Result.push_back(DummyPair); continue; } unsigned Chan = RI.getHWRegChan(Reg); Result.push_back(std::pair<int, unsigned>(Index, Chan)); } for (; i < 3; ++i) Result.push_back(DummyPair); return Result; } static std::vector<std::pair<int, unsigned> > Swizzle(std::vector<std::pair<int, unsigned> > Src, R600InstrInfo::BankSwizzle Swz) { if (Src[0] == Src[1]) Src[1].first = -1; switch (Swz) { case R600InstrInfo::ALU_VEC_012_SCL_210: break; case R600InstrInfo::ALU_VEC_021_SCL_122: std::swap(Src[1], Src[2]); break; case R600InstrInfo::ALU_VEC_102_SCL_221: std::swap(Src[0], Src[1]); break; case R600InstrInfo::ALU_VEC_120_SCL_212: std::swap(Src[0], Src[1]); std::swap(Src[0], Src[2]); break; case R600InstrInfo::ALU_VEC_201: std::swap(Src[0], Src[2]); std::swap(Src[0], Src[1]); break; case R600InstrInfo::ALU_VEC_210: std::swap(Src[0], Src[2]); break; } return Src; } static unsigned getTransSwizzle(R600InstrInfo::BankSwizzle Swz, unsigned Op) { switch (Swz) { case R600InstrInfo::ALU_VEC_012_SCL_210: { unsigned Cycles[3] = { 2, 1, 0}; return Cycles[Op]; } case R600InstrInfo::ALU_VEC_021_SCL_122: { unsigned Cycles[3] = { 1, 2, 2}; return Cycles[Op]; } case R600InstrInfo::ALU_VEC_120_SCL_212: { unsigned Cycles[3] = { 2, 1, 2}; return Cycles[Op]; } case R600InstrInfo::ALU_VEC_102_SCL_221: { unsigned Cycles[3] = { 2, 2, 1}; return Cycles[Op]; } default: llvm_unreachable("Wrong Swizzle for Trans Slot"); return 0; } } /// returns how many MIs (whose inputs are represented by IGSrcs) can be packed /// in the same Instruction Group while meeting read port limitations given a /// Swz swizzle sequence. unsigned R600InstrInfo::isLegalUpTo( const std::vector<std::vector<std::pair<int, unsigned> > > &IGSrcs, const std::vector<R600InstrInfo::BankSwizzle> &Swz, const std::vector<std::pair<int, unsigned> > &TransSrcs, R600InstrInfo::BankSwizzle TransSwz) const { int Vector[4][3]; memset(Vector, -1, sizeof(Vector)); for (unsigned i = 0, e = IGSrcs.size(); i < e; i++) { const std::vector<std::pair<int, unsigned> > &Srcs = Swizzle(IGSrcs[i], Swz[i]); for (unsigned j = 0; j < 3; j++) { const std::pair<int, unsigned> &Src = Srcs[j]; if (Src.first < 0 || Src.first == 255) continue; if (Src.first == GET_REG_INDEX(RI.getEncodingValue(AMDGPU::OQAP))) { if (Swz[i] != R600InstrInfo::ALU_VEC_012_SCL_210 && Swz[i] != R600InstrInfo::ALU_VEC_021_SCL_122) { // The value from output queue A (denoted by register OQAP) can // only be fetched during the first cycle. return false; } // OQAP does not count towards the normal read port restrictions continue; } if (Vector[Src.second][j] < 0) Vector[Src.second][j] = Src.first; if (Vector[Src.second][j] != Src.first) return i; } } // Now check Trans Alu for (unsigned i = 0, e = TransSrcs.size(); i < e; ++i) { const std::pair<int, unsigned> &Src = TransSrcs[i]; unsigned Cycle = getTransSwizzle(TransSwz, i); if (Src.first < 0) continue; if (Src.first == 255) continue; if (Vector[Src.second][Cycle] < 0) Vector[Src.second][Cycle] = Src.first; if (Vector[Src.second][Cycle] != Src.first) return IGSrcs.size() - 1; } return IGSrcs.size(); } /// Given a swizzle sequence SwzCandidate and an index Idx, returns the next /// (in lexicographic term) swizzle sequence assuming that all swizzles after /// Idx can be skipped static bool NextPossibleSolution( std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate, unsigned Idx) { assert(Idx < SwzCandidate.size()); int ResetIdx = Idx; while (ResetIdx > -1 && SwzCandidate[ResetIdx] == R600InstrInfo::ALU_VEC_210) ResetIdx --; for (unsigned i = ResetIdx + 1, e = SwzCandidate.size(); i < e; i++) { SwzCandidate[i] = R600InstrInfo::ALU_VEC_012_SCL_210; } if (ResetIdx == -1) return false; int NextSwizzle = SwzCandidate[ResetIdx] + 1; SwzCandidate[ResetIdx] = (R600InstrInfo::BankSwizzle)NextSwizzle; return true; } /// Enumerate all possible Swizzle sequence to find one that can meet all /// read port requirements. bool R600InstrInfo::FindSwizzleForVectorSlot( const std::vector<std::vector<std::pair<int, unsigned> > > &IGSrcs, std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate, const std::vector<std::pair<int, unsigned> > &TransSrcs, R600InstrInfo::BankSwizzle TransSwz) const { unsigned ValidUpTo = 0; do { ValidUpTo = isLegalUpTo(IGSrcs, SwzCandidate, TransSrcs, TransSwz); if (ValidUpTo == IGSrcs.size()) return true; } while (NextPossibleSolution(SwzCandidate, ValidUpTo)); return false; } /// Instructions in Trans slot can't read gpr at cycle 0 if they also read /// a const, and can't read a gpr at cycle 1 if they read 2 const. static bool isConstCompatible(R600InstrInfo::BankSwizzle TransSwz, const std::vector<std::pair<int, unsigned> > &TransOps, unsigned ConstCount) { // TransALU can't read 3 constants if (ConstCount > 2) return false; for (unsigned i = 0, e = TransOps.size(); i < e; ++i) { const std::pair<int, unsigned> &Src = TransOps[i]; unsigned Cycle = getTransSwizzle(TransSwz, i); if (Src.first < 0) continue; if (ConstCount > 0 && Cycle == 0) return false; if (ConstCount > 1 && Cycle == 1) return false; } return true; } bool R600InstrInfo::fitsReadPortLimitations(const std::vector<MachineInstr *> &IG, const DenseMap<unsigned, unsigned> &PV, std::vector<BankSwizzle> &ValidSwizzle, bool isLastAluTrans) const { //Todo : support shared src0 - src1 operand std::vector<std::vector<std::pair<int, unsigned> > > IGSrcs; ValidSwizzle.clear(); unsigned ConstCount; BankSwizzle TransBS = ALU_VEC_012_SCL_210; for (unsigned i = 0, e = IG.size(); i < e; ++i) { IGSrcs.push_back(ExtractSrcs(IG[i], PV, ConstCount)); unsigned Op = getOperandIdx(IG[i]->getOpcode(), AMDGPU::OpName::bank_swizzle); ValidSwizzle.push_back( (R600InstrInfo::BankSwizzle) IG[i]->getOperand(Op).getImm()); } std::vector<std::pair<int, unsigned> > TransOps; if (!isLastAluTrans) return FindSwizzleForVectorSlot(IGSrcs, ValidSwizzle, TransOps, TransBS); TransOps = std::move(IGSrcs.back()); IGSrcs.pop_back(); ValidSwizzle.pop_back(); static const R600InstrInfo::BankSwizzle TransSwz[] = { ALU_VEC_012_SCL_210, ALU_VEC_021_SCL_122, ALU_VEC_120_SCL_212, ALU_VEC_102_SCL_221 }; for (unsigned i = 0; i < 4; i++) { TransBS = TransSwz[i]; if (!isConstCompatible(TransBS, TransOps, ConstCount)) continue; bool Result = FindSwizzleForVectorSlot(IGSrcs, ValidSwizzle, TransOps, TransBS); if (Result) { ValidSwizzle.push_back(TransBS); return true; } } return false; } bool R600InstrInfo::fitsConstReadLimitations(const std::vector<unsigned> &Consts) const { assert (Consts.size() <= 12 && "Too many operands in instructions group"); unsigned Pair1 = 0, Pair2 = 0; for (unsigned i = 0, n = Consts.size(); i < n; ++i) { unsigned ReadConstHalf = Consts[i] & 2; unsigned ReadConstIndex = Consts[i] & (~3); unsigned ReadHalfConst = ReadConstIndex | ReadConstHalf; if (!Pair1) { Pair1 = ReadHalfConst; continue; } if (Pair1 == ReadHalfConst) continue; if (!Pair2) { Pair2 = ReadHalfConst; continue; } if (Pair2 != ReadHalfConst) return false; } return true; } bool R600InstrInfo::fitsConstReadLimitations(const std::vector<MachineInstr *> &MIs) const { std::vector<unsigned> Consts; SmallSet<int64_t, 4> Literals; for (unsigned i = 0, n = MIs.size(); i < n; i++) { MachineInstr *MI = MIs[i]; if (!isALUInstr(MI->getOpcode())) continue; ArrayRef<std::pair<MachineOperand *, int64_t>> Srcs = getSrcs(MI); for (unsigned j = 0, e = Srcs.size(); j < e; j++) { std::pair<MachineOperand *, unsigned> Src = Srcs[j]; if (Src.first->getReg() == AMDGPU::ALU_LITERAL_X) Literals.insert(Src.second); if (Literals.size() > 4) return false; if (Src.first->getReg() == AMDGPU::ALU_CONST) Consts.push_back(Src.second); if (AMDGPU::R600_KC0RegClass.contains(Src.first->getReg()) || AMDGPU::R600_KC1RegClass.contains(Src.first->getReg())) { unsigned Index = RI.getEncodingValue(Src.first->getReg()) & 0xff; unsigned Chan = RI.getHWRegChan(Src.first->getReg()); Consts.push_back((Index << 2) | Chan); } } } return fitsConstReadLimitations(Consts); } DFAPacketizer * R600InstrInfo::CreateTargetScheduleState(const TargetSubtargetInfo &STI) const { const InstrItineraryData *II = STI.getInstrItineraryData(); return static_cast<const AMDGPUSubtarget &>(STI).createDFAPacketizer(II); } static bool isPredicateSetter(unsigned Opcode) { switch (Opcode) { case AMDGPU::PRED_X: return true; default: return false; } } static MachineInstr * findFirstPredicateSetterFrom(MachineBasicBlock &MBB, MachineBasicBlock::iterator I) { while (I != MBB.begin()) { --I; MachineInstr *MI = I; if (isPredicateSetter(MI->getOpcode())) return MI; } return nullptr; } static bool isJump(unsigned Opcode) { return Opcode == AMDGPU::JUMP || Opcode == AMDGPU::JUMP_COND; } static bool isBranch(unsigned Opcode) { return Opcode == AMDGPU::BRANCH || Opcode == AMDGPU::BRANCH_COND_i32 || Opcode == AMDGPU::BRANCH_COND_f32; } bool R600InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl<MachineOperand> &Cond, bool AllowModify) const { // Most of the following comes from the ARM implementation of AnalyzeBranch // If the block has no terminators, it just falls into the block after it. MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); if (I == MBB.end()) return false; // AMDGPU::BRANCH* instructions are only available after isel and are not // handled if (isBranch(I->getOpcode())) return true; if (!isJump(static_cast<MachineInstr *>(I)->getOpcode())) { return false; } // Remove successive JUMP while (I != MBB.begin() && std::prev(I)->getOpcode() == AMDGPU::JUMP) { MachineBasicBlock::iterator PriorI = std::prev(I); if (AllowModify) I->removeFromParent(); I = PriorI; } MachineInstr *LastInst = I; // If there is only one terminator instruction, process it. unsigned LastOpc = LastInst->getOpcode(); if (I == MBB.begin() || !isJump(static_cast<MachineInstr *>(--I)->getOpcode())) { if (LastOpc == AMDGPU::JUMP) { TBB = LastInst->getOperand(0).getMBB(); return false; } else if (LastOpc == AMDGPU::JUMP_COND) { MachineInstr *predSet = I; while (!isPredicateSetter(predSet->getOpcode())) { predSet = --I; } TBB = LastInst->getOperand(0).getMBB(); Cond.push_back(predSet->getOperand(1)); Cond.push_back(predSet->getOperand(2)); Cond.push_back(MachineOperand::CreateReg(AMDGPU::PRED_SEL_ONE, false)); return false; } return true; // Can't handle indirect branch. } // Get the instruction before it if it is a terminator. MachineInstr *SecondLastInst = I; unsigned SecondLastOpc = SecondLastInst->getOpcode(); // If the block ends with a B and a Bcc, handle it. if (SecondLastOpc == AMDGPU::JUMP_COND && LastOpc == AMDGPU::JUMP) { MachineInstr *predSet = --I; while (!isPredicateSetter(predSet->getOpcode())) { predSet = --I; } TBB = SecondLastInst->getOperand(0).getMBB(); FBB = LastInst->getOperand(0).getMBB(); Cond.push_back(predSet->getOperand(1)); Cond.push_back(predSet->getOperand(2)); Cond.push_back(MachineOperand::CreateReg(AMDGPU::PRED_SEL_ONE, false)); return false; } // Otherwise, can't handle this. return true; } static MachineBasicBlock::iterator FindLastAluClause(MachineBasicBlock &MBB) { for (MachineBasicBlock::reverse_iterator It = MBB.rbegin(), E = MBB.rend(); It != E; ++It) { if (It->getOpcode() == AMDGPU::CF_ALU || It->getOpcode() == AMDGPU::CF_ALU_PUSH_BEFORE) return std::prev(It.base()); } return MBB.end(); } unsigned R600InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond, DebugLoc DL) const { assert(TBB && "InsertBranch must not be told to insert a fallthrough"); if (!FBB) { if (Cond.empty()) { BuildMI(&MBB, DL, get(AMDGPU::JUMP)).addMBB(TBB); return 1; } else { MachineInstr *PredSet = findFirstPredicateSetterFrom(MBB, MBB.end()); assert(PredSet && "No previous predicate !"); addFlag(PredSet, 0, MO_FLAG_PUSH); PredSet->getOperand(2).setImm(Cond[1].getImm()); BuildMI(&MBB, DL, get(AMDGPU::JUMP_COND)) .addMBB(TBB) .addReg(AMDGPU::PREDICATE_BIT, RegState::Kill); MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB); if (CfAlu == MBB.end()) return 1; assert (CfAlu->getOpcode() == AMDGPU::CF_ALU); CfAlu->setDesc(get(AMDGPU::CF_ALU_PUSH_BEFORE)); return 1; } } else { MachineInstr *PredSet = findFirstPredicateSetterFrom(MBB, MBB.end()); assert(PredSet && "No previous predicate !"); addFlag(PredSet, 0, MO_FLAG_PUSH); PredSet->getOperand(2).setImm(Cond[1].getImm()); BuildMI(&MBB, DL, get(AMDGPU::JUMP_COND)) .addMBB(TBB) .addReg(AMDGPU::PREDICATE_BIT, RegState::Kill); BuildMI(&MBB, DL, get(AMDGPU::JUMP)).addMBB(FBB); MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB); if (CfAlu == MBB.end()) return 2; assert (CfAlu->getOpcode() == AMDGPU::CF_ALU); CfAlu->setDesc(get(AMDGPU::CF_ALU_PUSH_BEFORE)); return 2; } } unsigned R600InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { // Note : we leave PRED* instructions there. // They may be needed when predicating instructions. MachineBasicBlock::iterator I = MBB.end(); if (I == MBB.begin()) { return 0; } --I; switch (I->getOpcode()) { default: return 0; case AMDGPU::JUMP_COND: { MachineInstr *predSet = findFirstPredicateSetterFrom(MBB, I); clearFlag(predSet, 0, MO_FLAG_PUSH); I->eraseFromParent(); MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB); if (CfAlu == MBB.end()) break; assert (CfAlu->getOpcode() == AMDGPU::CF_ALU_PUSH_BEFORE); CfAlu->setDesc(get(AMDGPU::CF_ALU)); break; } case AMDGPU::JUMP: I->eraseFromParent(); break; } I = MBB.end(); if (I == MBB.begin()) { return 1; } --I; switch (I->getOpcode()) { // FIXME: only one case?? default: return 1; case AMDGPU::JUMP_COND: { MachineInstr *predSet = findFirstPredicateSetterFrom(MBB, I); clearFlag(predSet, 0, MO_FLAG_PUSH); I->eraseFromParent(); MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB); if (CfAlu == MBB.end()) break; assert (CfAlu->getOpcode() == AMDGPU::CF_ALU_PUSH_BEFORE); CfAlu->setDesc(get(AMDGPU::CF_ALU)); break; } case AMDGPU::JUMP: I->eraseFromParent(); break; } return 2; } bool R600InstrInfo::isPredicated(const MachineInstr *MI) const { int idx = MI->findFirstPredOperandIdx(); if (idx < 0) return false; unsigned Reg = MI->getOperand(idx).getReg(); switch (Reg) { default: return false; case AMDGPU::PRED_SEL_ONE: case AMDGPU::PRED_SEL_ZERO: case AMDGPU::PREDICATE_BIT: return true; } } bool R600InstrInfo::isPredicable(MachineInstr *MI) const { // XXX: KILL* instructions can be predicated, but they must be the last // instruction in a clause, so this means any instructions after them cannot // be predicated. Until we have proper support for instruction clauses in the // backend, we will mark KILL* instructions as unpredicable. if (MI->getOpcode() == AMDGPU::KILLGT) { return false; } else if (MI->getOpcode() == AMDGPU::CF_ALU) { // If the clause start in the middle of MBB then the MBB has more // than a single clause, unable to predicate several clauses. if (MI->getParent()->begin() != MachineBasicBlock::iterator(MI)) return false; // TODO: We don't support KC merging atm if (MI->getOperand(3).getImm() != 0 || MI->getOperand(4).getImm() != 0) return false; return true; } else if (isVector(*MI)) { return false; } else { return AMDGPUInstrInfo::isPredicable(MI); } } bool R600InstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCyles, unsigned ExtraPredCycles, BranchProbability Probability) const{ return true; } bool R600InstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB, unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability) const { return true; } bool R600InstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCyles, BranchProbability Probability) const { return true; } bool R600InstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, MachineBasicBlock &FMBB) const { return false; } bool R600InstrInfo::ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { MachineOperand &MO = Cond[1]; switch (MO.getImm()) { case OPCODE_IS_ZERO_INT: MO.setImm(OPCODE_IS_NOT_ZERO_INT); break; case OPCODE_IS_NOT_ZERO_INT: MO.setImm(OPCODE_IS_ZERO_INT); break; case OPCODE_IS_ZERO: MO.setImm(OPCODE_IS_NOT_ZERO); break; case OPCODE_IS_NOT_ZERO: MO.setImm(OPCODE_IS_ZERO); break; default: return true; } MachineOperand &MO2 = Cond[2]; switch (MO2.getReg()) { case AMDGPU::PRED_SEL_ZERO: MO2.setReg(AMDGPU::PRED_SEL_ONE); break; case AMDGPU::PRED_SEL_ONE: MO2.setReg(AMDGPU::PRED_SEL_ZERO); break; default: return true; } return false; } bool R600InstrInfo::DefinesPredicate(MachineInstr *MI, std::vector<MachineOperand> &Pred) const { return isPredicateSetter(MI->getOpcode()); } bool R600InstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, ArrayRef<MachineOperand> Pred2) const { return false; } bool R600InstrInfo::PredicateInstruction(MachineInstr *MI, ArrayRef<MachineOperand> Pred) const { int PIdx = MI->findFirstPredOperandIdx(); if (MI->getOpcode() == AMDGPU::CF_ALU) { MI->getOperand(8).setImm(0); return true; } if (MI->getOpcode() == AMDGPU::DOT_4) { MI->getOperand(getOperandIdx(*MI, AMDGPU::OpName::pred_sel_X)) .setReg(Pred[2].getReg()); MI->getOperand(getOperandIdx(*MI, AMDGPU::OpName::pred_sel_Y)) .setReg(Pred[2].getReg()); MI->getOperand(getOperandIdx(*MI, AMDGPU::OpName::pred_sel_Z)) .setReg(Pred[2].getReg()); MI->getOperand(getOperandIdx(*MI, AMDGPU::OpName::pred_sel_W)) .setReg(Pred[2].getReg()); MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI); MIB.addReg(AMDGPU::PREDICATE_BIT, RegState::Implicit); return true; } if (PIdx != -1) { MachineOperand &PMO = MI->getOperand(PIdx); PMO.setReg(Pred[2].getReg()); MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI); MIB.addReg(AMDGPU::PREDICATE_BIT, RegState::Implicit); return true; } return false; } unsigned int R600InstrInfo::getPredicationCost(const MachineInstr *) const { return 2; } unsigned int R600InstrInfo::getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr *MI, unsigned *PredCost) const { if (PredCost) *PredCost = 2; return 2; } bool R600InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { switch(MI->getOpcode()) { default: return AMDGPUInstrInfo::expandPostRAPseudo(MI); case AMDGPU::R600_EXTRACT_ELT_V2: case AMDGPU::R600_EXTRACT_ELT_V4: buildIndirectRead(MI->getParent(), MI, MI->getOperand(0).getReg(), RI.getHWRegIndex(MI->getOperand(1).getReg()), // Address MI->getOperand(2).getReg(), RI.getHWRegChan(MI->getOperand(1).getReg())); break; case AMDGPU::R600_INSERT_ELT_V2: case AMDGPU::R600_INSERT_ELT_V4: buildIndirectWrite(MI->getParent(), MI, MI->getOperand(2).getReg(), // Value RI.getHWRegIndex(MI->getOperand(1).getReg()), // Address MI->getOperand(3).getReg(), // Offset RI.getHWRegChan(MI->getOperand(1).getReg())); // Channel break; } MI->eraseFromParent(); return true; } void R600InstrInfo::reserveIndirectRegisters(BitVector &Reserved, const MachineFunction &MF) const { const AMDGPUFrameLowering *TFL = static_cast<const AMDGPUFrameLowering *>( MF.getSubtarget().getFrameLowering()); unsigned StackWidth = TFL->getStackWidth(MF); int End = getIndirectIndexEnd(MF); if (End == -1) return; for (int Index = getIndirectIndexBegin(MF); Index <= End; ++Index) { unsigned SuperReg = AMDGPU::R600_Reg128RegClass.getRegister(Index); Reserved.set(SuperReg); for (unsigned Chan = 0; Chan < StackWidth; ++Chan) { unsigned Reg = AMDGPU::R600_TReg32RegClass.getRegister((4 * Index) + Chan); Reserved.set(Reg); } } } unsigned R600InstrInfo::calculateIndirectAddress(unsigned RegIndex, unsigned Channel) const { // XXX: Remove when we support a stack width > 2 assert(Channel == 0); return RegIndex; } const TargetRegisterClass *R600InstrInfo::getIndirectAddrRegClass() const { return &AMDGPU::R600_TReg32_XRegClass; } MachineInstrBuilder R600InstrInfo::buildIndirectWrite(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, unsigned ValueReg, unsigned Address, unsigned OffsetReg) const { return buildIndirectWrite(MBB, I, ValueReg, Address, OffsetReg, 0); } MachineInstrBuilder R600InstrInfo::buildIndirectWrite(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, unsigned ValueReg, unsigned Address, unsigned OffsetReg, unsigned AddrChan) const { unsigned AddrReg; switch (AddrChan) { default: llvm_unreachable("Invalid Channel"); case 0: AddrReg = AMDGPU::R600_AddrRegClass.getRegister(Address); break; case 1: AddrReg = AMDGPU::R600_Addr_YRegClass.getRegister(Address); break; case 2: AddrReg = AMDGPU::R600_Addr_ZRegClass.getRegister(Address); break; case 3: AddrReg = AMDGPU::R600_Addr_WRegClass.getRegister(Address); break; } MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, AMDGPU::MOVA_INT_eg, AMDGPU::AR_X, OffsetReg); setImmOperand(MOVA, AMDGPU::OpName::write, 0); MachineInstrBuilder Mov = buildDefaultInstruction(*MBB, I, AMDGPU::MOV, AddrReg, ValueReg) .addReg(AMDGPU::AR_X, RegState::Implicit | RegState::Kill); setImmOperand(Mov, AMDGPU::OpName::dst_rel, 1); return Mov; } MachineInstrBuilder R600InstrInfo::buildIndirectRead(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, unsigned ValueReg, unsigned Address, unsigned OffsetReg) const { return buildIndirectRead(MBB, I, ValueReg, Address, OffsetReg, 0); } MachineInstrBuilder R600InstrInfo::buildIndirectRead(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, unsigned ValueReg, unsigned Address, unsigned OffsetReg, unsigned AddrChan) const { unsigned AddrReg; switch (AddrChan) { default: llvm_unreachable("Invalid Channel"); case 0: AddrReg = AMDGPU::R600_AddrRegClass.getRegister(Address); break; case 1: AddrReg = AMDGPU::R600_Addr_YRegClass.getRegister(Address); break; case 2: AddrReg = AMDGPU::R600_Addr_ZRegClass.getRegister(Address); break; case 3: AddrReg = AMDGPU::R600_Addr_WRegClass.getRegister(Address); break; } MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, AMDGPU::MOVA_INT_eg, AMDGPU::AR_X, OffsetReg); setImmOperand(MOVA, AMDGPU::OpName::write, 0); MachineInstrBuilder Mov = buildDefaultInstruction(*MBB, I, AMDGPU::MOV, ValueReg, AddrReg) .addReg(AMDGPU::AR_X, RegState::Implicit | RegState::Kill); setImmOperand(Mov, AMDGPU::OpName::src0_rel, 1); return Mov; } unsigned R600InstrInfo::getMaxAlusPerClause() const { return 115; } MachineInstrBuilder R600InstrInfo::buildDefaultInstruction(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned Opcode, unsigned DstReg, unsigned Src0Reg, unsigned Src1Reg) const { MachineInstrBuilder MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opcode), DstReg); // $dst if (Src1Reg) { MIB.addImm(0) // $update_exec_mask .addImm(0); // $update_predicate } MIB.addImm(1) // $write .addImm(0) // $omod .addImm(0) // $dst_rel .addImm(0) // $dst_clamp .addReg(Src0Reg) // $src0 .addImm(0) // $src0_neg .addImm(0) // $src0_rel .addImm(0) // $src0_abs .addImm(-1); // $src0_sel if (Src1Reg) { MIB.addReg(Src1Reg) // $src1 .addImm(0) // $src1_neg .addImm(0) // $src1_rel .addImm(0) // $src1_abs .addImm(-1); // $src1_sel } //XXX: The r600g finalizer expects this to be 1, once we've moved the //scheduling to the backend, we can change the default to 0. MIB.addImm(1) // $last .addReg(AMDGPU::PRED_SEL_OFF) // $pred_sel .addImm(0) // $literal .addImm(0); // $bank_swizzle return MIB; } #define OPERAND_CASE(Label) \ case Label: { \ static const unsigned Ops[] = \ { \ Label##_X, \ Label##_Y, \ Label##_Z, \ Label##_W \ }; \ return Ops[Slot]; \ } static unsigned getSlotedOps(unsigned Op, unsigned Slot) { switch (Op) { OPERAND_CASE(AMDGPU::OpName::update_exec_mask) OPERAND_CASE(AMDGPU::OpName::update_pred) OPERAND_CASE(AMDGPU::OpName::write) OPERAND_CASE(AMDGPU::OpName::omod) OPERAND_CASE(AMDGPU::OpName::dst_rel) OPERAND_CASE(AMDGPU::OpName::clamp) OPERAND_CASE(AMDGPU::OpName::src0) OPERAND_CASE(AMDGPU::OpName::src0_neg) OPERAND_CASE(AMDGPU::OpName::src0_rel) OPERAND_CASE(AMDGPU::OpName::src0_abs) OPERAND_CASE(AMDGPU::OpName::src0_sel) OPERAND_CASE(AMDGPU::OpName::src1) OPERAND_CASE(AMDGPU::OpName::src1_neg) OPERAND_CASE(AMDGPU::OpName::src1_rel) OPERAND_CASE(AMDGPU::OpName::src1_abs) OPERAND_CASE(AMDGPU::OpName::src1_sel) OPERAND_CASE(AMDGPU::OpName::pred_sel) default: llvm_unreachable("Wrong Operand"); } } #undef OPERAND_CASE MachineInstr *R600InstrInfo::buildSlotOfVectorInstruction( MachineBasicBlock &MBB, MachineInstr *MI, unsigned Slot, unsigned DstReg) const { assert (MI->getOpcode() == AMDGPU::DOT_4 && "Not Implemented"); unsigned Opcode; if (ST.getGeneration() <= AMDGPUSubtarget::R700) Opcode = AMDGPU::DOT4_r600; else Opcode = AMDGPU::DOT4_eg; MachineBasicBlock::iterator I = MI; MachineOperand &Src0 = MI->getOperand( getOperandIdx(MI->getOpcode(), getSlotedOps(AMDGPU::OpName::src0, Slot))); MachineOperand &Src1 = MI->getOperand( getOperandIdx(MI->getOpcode(), getSlotedOps(AMDGPU::OpName::src1, Slot))); MachineInstr *MIB = buildDefaultInstruction( MBB, I, Opcode, DstReg, Src0.getReg(), Src1.getReg()); static const unsigned Operands[14] = { AMDGPU::OpName::update_exec_mask, AMDGPU::OpName::update_pred, AMDGPU::OpName::write, AMDGPU::OpName::omod, AMDGPU::OpName::dst_rel, AMDGPU::OpName::clamp, AMDGPU::OpName::src0_neg, AMDGPU::OpName::src0_rel, AMDGPU::OpName::src0_abs, AMDGPU::OpName::src0_sel, AMDGPU::OpName::src1_neg, AMDGPU::OpName::src1_rel, AMDGPU::OpName::src1_abs, AMDGPU::OpName::src1_sel, }; MachineOperand &MO = MI->getOperand(getOperandIdx(MI->getOpcode(), getSlotedOps(AMDGPU::OpName::pred_sel, Slot))); MIB->getOperand(getOperandIdx(Opcode, AMDGPU::OpName::pred_sel)) .setReg(MO.getReg()); for (unsigned i = 0; i < 14; i++) { MachineOperand &MO = MI->getOperand( getOperandIdx(MI->getOpcode(), getSlotedOps(Operands[i], Slot))); assert (MO.isImm()); setImmOperand(MIB, Operands[i], MO.getImm()); } MIB->getOperand(20).setImm(0); return MIB; } MachineInstr *R600InstrInfo::buildMovImm(MachineBasicBlock &BB, MachineBasicBlock::iterator I, unsigned DstReg, uint64_t Imm) const { MachineInstr *MovImm = buildDefaultInstruction(BB, I, AMDGPU::MOV, DstReg, AMDGPU::ALU_LITERAL_X); setImmOperand(MovImm, AMDGPU::OpName::literal, Imm); return MovImm; } MachineInstr *R600InstrInfo::buildMovInstr(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, unsigned DstReg, unsigned SrcReg) const { return buildDefaultInstruction(*MBB, I, AMDGPU::MOV, DstReg, SrcReg); } int R600InstrInfo::getOperandIdx(const MachineInstr &MI, unsigned Op) const { return getOperandIdx(MI.getOpcode(), Op); } int R600InstrInfo::getOperandIdx(unsigned Opcode, unsigned Op) const { return AMDGPU::getNamedOperandIdx(Opcode, Op); } void R600InstrInfo::setImmOperand(MachineInstr *MI, unsigned Op, int64_t Imm) const { int Idx = getOperandIdx(*MI, Op); assert(Idx != -1 && "Operand not supported for this instruction."); assert(MI->getOperand(Idx).isImm()); MI->getOperand(Idx).setImm(Imm); } //===----------------------------------------------------------------------===// // Instruction flag getters/setters //===----------------------------------------------------------------------===// bool R600InstrInfo::hasFlagOperand(const MachineInstr &MI) const { return GET_FLAG_OPERAND_IDX(get(MI.getOpcode()).TSFlags) != 0; } MachineOperand &R600InstrInfo::getFlagOp(MachineInstr *MI, unsigned SrcIdx, unsigned Flag) const { unsigned TargetFlags = get(MI->getOpcode()).TSFlags; int FlagIndex = 0; if (Flag != 0) { // If we pass something other than the default value of Flag to this // function, it means we are want to set a flag on an instruction // that uses native encoding. assert(HAS_NATIVE_OPERANDS(TargetFlags)); bool IsOP3 = (TargetFlags & R600_InstFlag::OP3) == R600_InstFlag::OP3; switch (Flag) { case MO_FLAG_CLAMP: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::clamp); break; case MO_FLAG_MASK: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::write); break; case MO_FLAG_NOT_LAST: case MO_FLAG_LAST: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::last); break; case MO_FLAG_NEG: switch (SrcIdx) { case 0: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src0_neg); break; case 1: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src1_neg); break; case 2: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src2_neg); break; } break; case MO_FLAG_ABS: assert(!IsOP3 && "Cannot set absolute value modifier for OP3 " "instructions."); (void)IsOP3; switch (SrcIdx) { case 0: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src0_abs); break; case 1: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src1_abs); break; } break; default: FlagIndex = -1; break; } assert(FlagIndex != -1 && "Flag not supported for this instruction"); } else { FlagIndex = GET_FLAG_OPERAND_IDX(TargetFlags); assert(FlagIndex != 0 && "Instruction flags not supported for this instruction"); } MachineOperand &FlagOp = MI->getOperand(FlagIndex); assert(FlagOp.isImm()); return FlagOp; } void R600InstrInfo::addFlag(MachineInstr *MI, unsigned Operand, unsigned Flag) const { unsigned TargetFlags = get(MI->getOpcode()).TSFlags; if (Flag == 0) { return; } if (HAS_NATIVE_OPERANDS(TargetFlags)) { MachineOperand &FlagOp = getFlagOp(MI, Operand, Flag); if (Flag == MO_FLAG_NOT_LAST) { clearFlag(MI, Operand, MO_FLAG_LAST); } else if (Flag == MO_FLAG_MASK) { clearFlag(MI, Operand, Flag); } else { FlagOp.setImm(1); } } else { MachineOperand &FlagOp = getFlagOp(MI, Operand); FlagOp.setImm(FlagOp.getImm() | (Flag << (NUM_MO_FLAGS * Operand))); } } void R600InstrInfo::clearFlag(MachineInstr *MI, unsigned Operand, unsigned Flag) const { unsigned TargetFlags = get(MI->getOpcode()).TSFlags; if (HAS_NATIVE_OPERANDS(TargetFlags)) { MachineOperand &FlagOp = getFlagOp(MI, Operand, Flag); FlagOp.setImm(0); } else { MachineOperand &FlagOp = getFlagOp(MI); unsigned InstFlags = FlagOp.getImm(); InstFlags &= ~(Flag << (NUM_MO_FLAGS * Operand)); FlagOp.setImm(InstFlags); } }