//===-- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // \file // This file implements a TargetTransformInfo analysis pass specific to the // AMDGPU target machine. It uses the target's detailed information to provide // more precise answers to certain TTI queries, while letting the target // independent and default TTI implementations handle the rest. // //===----------------------------------------------------------------------===// #include "AMDGPUTargetTransformInfo.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/BasicTTIImpl.h" #include "llvm/IR/Module.h" #include "llvm/Support/Debug.h" #include "llvm/Target/CostTable.h" #include "llvm/Target/TargetLowering.h" using namespace llvm; #define DEBUG_TYPE "AMDGPUtti" void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, TTI::UnrollingPreferences &UP) { UP.Threshold = 300; // Twice the default. UP.MaxCount = UINT_MAX; UP.Partial = true; // TODO: Do we want runtime unrolling? for (const BasicBlock *BB : L->getBlocks()) { const DataLayout &DL = BB->getModule()->getDataLayout(); for (const Instruction &I : *BB) { const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); if (!GEP || GEP->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) continue; const Value *Ptr = GEP->getPointerOperand(); const AllocaInst *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL)); if (Alloca) { // We want to do whatever we can to limit the number of alloca // instructions that make it through to the code generator. allocas // require us to use indirect addressing, which is slow and prone to // compiler bugs. If this loop does an address calculation on an // alloca ptr, then we want to use a higher than normal loop unroll // threshold. This will give SROA a better chance to eliminate these // allocas. // // Don't use the maximum allowed value here as it will make some // programs way too big. UP.Threshold = 800; } } } } unsigned AMDGPUTTIImpl::getNumberOfRegisters(bool Vec) { if (Vec) return 0; // Number of VGPRs on SI. if (ST->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) return 256; return 4 * 128; // XXX - 4 channels. Should these count as vector instead? } unsigned AMDGPUTTIImpl::getRegisterBitWidth(bool) { return 32; } unsigned AMDGPUTTIImpl::getMaxInterleaveFactor(unsigned VF) { // Semi-arbitrary large amount. return 64; } unsigned AMDGPUTTIImpl::getCFInstrCost(unsigned Opcode) { // XXX - For some reason this isn't called for switch. switch (Opcode) { case Instruction::Br: case Instruction::Ret: return 10; default: return BaseT::getCFInstrCost(Opcode); } } int AMDGPUTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, unsigned Index) { switch (Opcode) { case Instruction::ExtractElement: // Dynamic indexing isn't free and is best avoided. return Index == ~0u ? 2 : 0; default: return BaseT::getVectorInstrCost(Opcode, ValTy, Index); } } static bool isIntrinsicSourceOfDivergence(const TargetIntrinsicInfo *TII, const IntrinsicInst *I) { switch (I->getIntrinsicID()) { default: return false; case Intrinsic::not_intrinsic: // This means we have an intrinsic that isn't defined in // IntrinsicsAMDGPU.td break; case Intrinsic::amdgcn_interp_p1: case Intrinsic::amdgcn_interp_p2: case Intrinsic::amdgcn_mbcnt_hi: case Intrinsic::amdgcn_mbcnt_lo: case Intrinsic::r600_read_tidig_x: case Intrinsic::r600_read_tidig_y: case Intrinsic::r600_read_tidig_z: return true; } StringRef Name = I->getCalledFunction()->getName(); switch (TII->lookupName((const char *)Name.bytes_begin(), Name.size())) { default: return false; case AMDGPUIntrinsic::SI_tid: case AMDGPUIntrinsic::SI_fs_interp: return true; } } static bool isArgPassedInSGPR(const Argument *A) { const Function *F = A->getParent(); unsigned ShaderType = AMDGPU::getShaderType(*F); // Arguments to compute shaders are never a source of divergence. if (ShaderType == ShaderType::COMPUTE) return true; // For non-compute shaders, SGPR inputs are marked with either inreg or byval. if (F->getAttributes().hasAttribute(A->getArgNo() + 1, Attribute::InReg) || F->getAttributes().hasAttribute(A->getArgNo() + 1, Attribute::ByVal)) return true; // Everything else is in VGPRs. return false; } /// /// \returns true if the result of the value could potentially be /// different across workitems in a wavefront. bool AMDGPUTTIImpl::isSourceOfDivergence(const Value *V) const { if (const Argument *A = dyn_cast<Argument>(V)) return !isArgPassedInSGPR(A); // Loads from the private address space are divergent, because threads // can execute the load instruction with the same inputs and get different // results. // // All other loads are not divergent, because if threads issue loads with the // same arguments, they will always get the same result. if (const LoadInst *Load = dyn_cast<LoadInst>(V)) return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS; if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { const TargetMachine &TM = getTLI()->getTargetMachine(); return isIntrinsicSourceOfDivergence(TM.getIntrinsicInfo(), Intrinsic); } // Assume all function calls are a source of divergence. if (isa<CallInst>(V) || isa<InvokeInst>(V)) return true; return false; }