//===-- AArch64Subtarget.cpp - AArch64 Subtarget Information ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the AArch64 specific subclass of TargetSubtarget. // //===----------------------------------------------------------------------===// #include "AArch64InstrInfo.h" #include "AArch64PBQPRegAlloc.h" #include "AArch64Subtarget.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/MachineScheduler.h" #include "llvm/IR/GlobalValue.h" #include "llvm/Support/TargetRegistry.h" using namespace llvm; #define DEBUG_TYPE "aarch64-subtarget" #define GET_SUBTARGETINFO_CTOR #define GET_SUBTARGETINFO_TARGET_DESC #include "AArch64GenSubtargetInfo.inc" static cl::opt<bool> EnableEarlyIfConvert("aarch64-early-ifcvt", cl::desc("Enable the early if " "converter pass"), cl::init(true), cl::Hidden); // If OS supports TBI, use this flag to enable it. static cl::opt<bool> UseAddressTopByteIgnored("aarch64-use-tbi", cl::desc("Assume that top byte of " "an address is ignored"), cl::init(false), cl::Hidden); AArch64Subtarget & AArch64Subtarget::initializeSubtargetDependencies(StringRef FS) { // Determine default and user-specified characteristics if (CPUString.empty()) CPUString = "generic"; ParseSubtargetFeatures(CPUString, FS); return *this; } AArch64Subtarget::AArch64Subtarget(const Triple &TT, const std::string &CPU, const std::string &FS, const TargetMachine &TM, bool LittleEndian) : AArch64GenSubtargetInfo(TT, CPU, FS), ARMProcFamily(Others), HasV8_1aOps(false), HasV8_2aOps(false), HasFPARMv8(false), HasNEON(false), HasCrypto(false), HasCRC(false), HasPerfMon(false), HasFullFP16(false), HasZeroCycleRegMove(false), HasZeroCycleZeroing(false), StrictAlign(false), ReserveX18(TT.isOSDarwin()), IsLittle(LittleEndian), CPUString(CPU), TargetTriple(TT), FrameLowering(), InstrInfo(initializeSubtargetDependencies(FS)), TSInfo(), TLInfo(TM, *this) {} /// ClassifyGlobalReference - Find the target operand flags that describe /// how a global value should be referenced for the current subtarget. unsigned char AArch64Subtarget::ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const { bool isDef = GV->isStrongDefinitionForLinker(); // MachO large model always goes via a GOT, simply to get a single 8-byte // absolute relocation on all global addresses. if (TM.getCodeModel() == CodeModel::Large && isTargetMachO()) return AArch64II::MO_GOT; // The small code mode's direct accesses use ADRP, which cannot necessarily // produce the value 0 (if the code is above 4GB). if (TM.getCodeModel() == CodeModel::Small && GV->hasExternalWeakLinkage()) { // In PIC mode use the GOT, but in absolute mode use a constant pool load. if (TM.getRelocationModel() == Reloc::Static) return AArch64II::MO_CONSTPOOL; else return AArch64II::MO_GOT; } // If symbol visibility is hidden, the extra load is not needed if // the symbol is definitely defined in the current translation unit. // The handling of non-hidden symbols in PIC mode is rather target-dependent: // + On MachO, if the symbol is defined in this module the GOT can be // skipped. // + On ELF, the R_AARCH64_COPY relocation means that even symbols actually // defined could end up in unexpected places. Use a GOT. if (TM.getRelocationModel() != Reloc::Static && GV->hasDefaultVisibility()) { if (isTargetMachO()) return isDef ? AArch64II::MO_NO_FLAG : AArch64II::MO_GOT; else // No need to go through the GOT for local symbols on ELF. return GV->hasLocalLinkage() ? AArch64II::MO_NO_FLAG : AArch64II::MO_GOT; } return AArch64II::MO_NO_FLAG; } /// This function returns the name of a function which has an interface /// like the non-standard bzero function, if such a function exists on /// the current subtarget and it is considered prefereable over /// memset with zero passed as the second argument. Otherwise it /// returns null. const char *AArch64Subtarget::getBZeroEntry() const { // Prefer bzero on Darwin only. if(isTargetDarwin()) return "bzero"; return nullptr; } void AArch64Subtarget::overrideSchedPolicy(MachineSchedPolicy &Policy, MachineInstr *begin, MachineInstr *end, unsigned NumRegionInstrs) const { // LNT run (at least on Cyclone) showed reasonably significant gains for // bi-directional scheduling. 253.perlbmk. Policy.OnlyTopDown = false; Policy.OnlyBottomUp = false; // Enabling or Disabling the latency heuristic is a close call: It seems to // help nearly no benchmark on out-of-order architectures, on the other hand // it regresses register pressure on a few benchmarking. if (isCyclone()) Policy.DisableLatencyHeuristic = true; } bool AArch64Subtarget::enableEarlyIfConversion() const { return EnableEarlyIfConvert; } bool AArch64Subtarget::supportsAddressTopByteIgnored() const { if (!UseAddressTopByteIgnored) return false; if (TargetTriple.isiOS()) { unsigned Major, Minor, Micro; TargetTriple.getiOSVersion(Major, Minor, Micro); return Major >= 8; } return false; } std::unique_ptr<PBQPRAConstraint> AArch64Subtarget::getCustomPBQPConstraints() const { if (!isCortexA57()) return nullptr; return llvm::make_unique<A57ChainingConstraint>(); }