//===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the AArch64 implementation of TargetFrameLowering class. // // On AArch64, stack frames are structured as follows: // // The stack grows downward. // // All of the individual frame areas on the frame below are optional, i.e. it's // possible to create a function so that the particular area isn't present // in the frame. // // At function entry, the "frame" looks as follows: // // | | Higher address // |-----------------------------------| // | | // | arguments passed on the stack | // | | // |-----------------------------------| <- sp // | | Lower address // // // After the prologue has run, the frame has the following general structure. // Note that this doesn't depict the case where a red-zone is used. Also, // technically the last frame area (VLAs) doesn't get created until in the // main function body, after the prologue is run. However, it's depicted here // for completeness. // // | | Higher address // |-----------------------------------| // | | // | arguments passed on the stack | // | | // |-----------------------------------| // | | // | prev_fp, prev_lr | // | (a.k.a. "frame record") | // |-----------------------------------| <- fp(=x29) // | | // | other callee-saved registers | // | | // |-----------------------------------| // |.empty.space.to.make.part.below....| // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at // |.the.standard.16-byte.alignment....| compile time; if present) // |-----------------------------------| // | | // | local variables of fixed size | // | including spill slots | // |-----------------------------------| <- bp(not defined by ABI, // |.variable-sized.local.variables....| LLVM chooses X19) // |.(VLAs)............................| (size of this area is unknown at // |...................................| compile time) // |-----------------------------------| <- sp // | | Lower address // // // To access the data in a frame, at-compile time, a constant offset must be // computable from one of the pointers (fp, bp, sp) to access it. The size // of the areas with a dotted background cannot be computed at compile-time // if they are present, making it required to have all three of fp, bp and // sp to be set up to be able to access all contents in the frame areas, // assuming all of the frame areas are non-empty. // // For most functions, some of the frame areas are empty. For those functions, // it may not be necessary to set up fp or bp: // * A base pointer is definitely needed when there are both VLAs and local // variables with more-than-default alignment requirements. // * A frame pointer is definitely needed when there are local variables with // more-than-default alignment requirements. // // In some cases when a base pointer is not strictly needed, it is generated // anyway when offsets from the frame pointer to access local variables become // so large that the offset can't be encoded in the immediate fields of loads // or stores. // // FIXME: also explain the redzone concept. // FIXME: also explain the concept of reserved call frames. // //===----------------------------------------------------------------------===// #include "AArch64FrameLowering.h" #include "AArch64InstrInfo.h" #include "AArch64MachineFunctionInfo.h" #include "AArch64Subtarget.h" #include "AArch64TargetMachine.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "frame-info" static cl::opt<bool> EnableRedZone("aarch64-redzone", cl::desc("enable use of redzone on AArch64"), cl::init(false), cl::Hidden); STATISTIC(NumRedZoneFunctions, "Number of functions using red zone"); bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const { if (!EnableRedZone) return false; // Don't use the red zone if the function explicitly asks us not to. // This is typically used for kernel code. if (MF.getFunction()->hasFnAttribute(Attribute::NoRedZone)) return false; const MachineFrameInfo *MFI = MF.getFrameInfo(); const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); unsigned NumBytes = AFI->getLocalStackSize(); // Note: currently hasFP() is always true for hasCalls(), but that's an // implementation detail of the current code, not a strict requirement, // so stay safe here and check both. if (MFI->hasCalls() || hasFP(MF) || NumBytes > 128) return false; return true; } /// hasFP - Return true if the specified function should have a dedicated frame /// pointer register. bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); return (MFI->hasCalls() || MFI->hasVarSizedObjects() || MFI->isFrameAddressTaken() || MFI->hasStackMap() || MFI->hasPatchPoint() || RegInfo->needsStackRealignment(MF)); } /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is /// not required, we reserve argument space for call sites in the function /// immediately on entry to the current function. This eliminates the need for /// add/sub sp brackets around call sites. Returns true if the call frame is /// included as part of the stack frame. bool AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { return !MF.getFrameInfo()->hasVarSizedObjects(); } void AArch64FrameLowering::eliminateCallFramePseudoInstr( MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { const AArch64InstrInfo *TII = static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo()); DebugLoc DL = I->getDebugLoc(); unsigned Opc = I->getOpcode(); bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode(); uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); if (!TFI->hasReservedCallFrame(MF)) { unsigned Align = getStackAlignment(); int64_t Amount = I->getOperand(0).getImm(); Amount = RoundUpToAlignment(Amount, Align); if (!IsDestroy) Amount = -Amount; // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it // doesn't have to pop anything), then the first operand will be zero too so // this adjustment is a no-op. if (CalleePopAmount == 0) { // FIXME: in-function stack adjustment for calls is limited to 24-bits // because there's no guaranteed temporary register available. // // ADD/SUB (immediate) has only LSL #0 and LSL #12 available. // 1) For offset <= 12-bit, we use LSL #0 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses // LSL #0, and the other uses LSL #12. // // Mostly call frames will be allocated at the start of a function so // this is OK, but it is a limitation that needs dealing with. assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large"); emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, Amount, TII); } } else if (CalleePopAmount != 0) { // If the calling convention demands that the callee pops arguments from the // stack, we want to add it back if we have a reserved call frame. assert(CalleePopAmount < 0xffffff && "call frame too large"); emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, -CalleePopAmount, TII); } MBB.erase(I); } void AArch64FrameLowering::emitCalleeSavedFrameMoves( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned FramePtr) const { MachineFunction &MF = *MBB.getParent(); MachineFrameInfo *MFI = MF.getFrameInfo(); MachineModuleInfo &MMI = MF.getMMI(); const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); DebugLoc DL = MBB.findDebugLoc(MBBI); // Add callee saved registers to move list. const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo(); if (CSI.empty()) return; const DataLayout &TD = MF.getDataLayout(); bool HasFP = hasFP(MF); // Calculate amount of bytes used for return address storing. int stackGrowth = -TD.getPointerSize(0); // Calculate offsets. int64_t saveAreaOffset = (HasFP ? 2 : 1) * stackGrowth; unsigned TotalSkipped = 0; for (const auto &Info : CSI) { unsigned Reg = Info.getReg(); int64_t Offset = MFI->getObjectOffset(Info.getFrameIdx()) - getOffsetOfLocalArea() + saveAreaOffset; // Don't output a new CFI directive if we're re-saving the frame pointer or // link register. This happens when the PrologEpilogInserter has inserted an // extra "STP" of the frame pointer and link register -- the "emitPrologue" // method automatically generates the directives when frame pointers are // used. If we generate CFI directives for the extra "STP"s, the linker will // lose track of the correct values for the frame pointer and link register. if (HasFP && (FramePtr == Reg || Reg == AArch64::LR)) { TotalSkipped += stackGrowth; continue; } unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset( nullptr, DwarfReg, Offset - TotalSkipped)); BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); } } /// Get FPOffset by analyzing the first instruction. static int getFPOffsetInPrologue(MachineInstr *MBBI) { // First instruction must a) allocate the stack and b) have an immediate // that is a multiple of -2. assert(((MBBI->getOpcode() == AArch64::STPXpre || MBBI->getOpcode() == AArch64::STPDpre) && MBBI->getOperand(3).getReg() == AArch64::SP && MBBI->getOperand(4).getImm() < 0 && (MBBI->getOperand(4).getImm() & 1) == 0)); // Frame pointer is fp = sp - 16. Since the STPXpre subtracts the space // required for the callee saved register area we get the frame pointer // by addding that offset - 16 = -getImm()*8 - 2*8 = -(getImm() + 2) * 8. int FPOffset = -(MBBI->getOperand(4).getImm() + 2) * 8; assert(FPOffset >= 0 && "Bad Framepointer Offset"); return FPOffset; } static bool isCSSave(MachineInstr *MBBI) { return MBBI->getOpcode() == AArch64::STPXi || MBBI->getOpcode() == AArch64::STPDi || MBBI->getOpcode() == AArch64::STPXpre || MBBI->getOpcode() == AArch64::STPDpre; } void AArch64FrameLowering::emitPrologue(MachineFunction &MF, MachineBasicBlock &MBB) const { MachineBasicBlock::iterator MBBI = MBB.begin(); const MachineFrameInfo *MFI = MF.getFrameInfo(); const Function *Fn = MF.getFunction(); const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); const TargetInstrInfo *TII = Subtarget.getInstrInfo(); MachineModuleInfo &MMI = MF.getMMI(); AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); bool needsFrameMoves = MMI.hasDebugInfo() || Fn->needsUnwindTableEntry(); bool HasFP = hasFP(MF); // Debug location must be unknown since the first debug location is used // to determine the end of the prologue. DebugLoc DL; // All calls are tail calls in GHC calling conv, and functions have no // prologue/epilogue. if (MF.getFunction()->getCallingConv() == CallingConv::GHC) return; int NumBytes = (int)MFI->getStackSize(); if (!AFI->hasStackFrame()) { assert(!HasFP && "unexpected function without stack frame but with FP"); // All of the stack allocation is for locals. AFI->setLocalStackSize(NumBytes); // Label used to tie together the PROLOG_LABEL and the MachineMoves. MCSymbol *FrameLabel = MMI.getContext().createTempSymbol(); // REDZONE: If the stack size is less than 128 bytes, we don't need // to actually allocate. if (NumBytes && !canUseRedZone(MF)) { emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, -NumBytes, TII, MachineInstr::FrameSetup); // Encode the stack size of the leaf function. unsigned CFIIndex = MMI.addFrameInst( MCCFIInstruction::createDefCfaOffset(FrameLabel, -NumBytes)); BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); } else if (NumBytes) { ++NumRedZoneFunctions; } return; } // Only set up FP if we actually need to. int FPOffset = 0; if (HasFP) FPOffset = getFPOffsetInPrologue(MBBI); // Move past the saves of the callee-saved registers. while (isCSSave(MBBI)) { ++MBBI; NumBytes -= 16; } assert(NumBytes >= 0 && "Negative stack allocation size!?"); if (HasFP) { // Issue sub fp, sp, FPOffset or // mov fp,sp when FPOffset is zero. // Note: All stores of callee-saved registers are marked as "FrameSetup". // This code marks the instruction(s) that set the FP also. emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP, FPOffset, TII, MachineInstr::FrameSetup); } // All of the remaining stack allocations are for locals. AFI->setLocalStackSize(NumBytes); // Allocate space for the rest of the frame. const unsigned Alignment = MFI->getMaxAlignment(); const bool NeedsRealignment = RegInfo->needsStackRealignment(MF); unsigned scratchSPReg = AArch64::SP; if (NumBytes && NeedsRealignment) { // Use the first callee-saved register as a scratch register. scratchSPReg = AArch64::X9; } // If we're a leaf function, try using the red zone. if (NumBytes && !canUseRedZone(MF)) // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have // the correct value here, as NumBytes also includes padding bytes, // which shouldn't be counted here. emitFrameOffset(MBB, MBBI, DL, scratchSPReg, AArch64::SP, -NumBytes, TII, MachineInstr::FrameSetup); if (NumBytes && NeedsRealignment) { const unsigned NrBitsToZero = countTrailingZeros(Alignment); assert(NrBitsToZero > 1); assert(scratchSPReg != AArch64::SP); // SUB X9, SP, NumBytes // -- X9 is temporary register, so shouldn't contain any live data here, // -- free to use. This is already produced by emitFrameOffset above. // AND SP, X9, 0b11111...0000 // The logical immediates have a non-trivial encoding. The following // formula computes the encoded immediate with all ones but // NrBitsToZero zero bits as least significant bits. uint32_t andMaskEncoded = (1 <<12) // = N | ((64-NrBitsToZero) << 6) // immr | ((64-NrBitsToZero-1) << 0) // imms ; BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP) .addReg(scratchSPReg, RegState::Kill) .addImm(andMaskEncoded); } // If we need a base pointer, set it up here. It's whatever the value of the // stack pointer is at this point. Any variable size objects will be allocated // after this, so we can still use the base pointer to reference locals. // // FIXME: Clarify FrameSetup flags here. // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is // needed. if (RegInfo->hasBasePointer(MF)) { TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP, false); } if (needsFrameMoves) { const DataLayout &TD = MF.getDataLayout(); const int StackGrowth = -TD.getPointerSize(0); unsigned FramePtr = RegInfo->getFrameRegister(MF); // An example of the prologue: // // .globl __foo // .align 2 // __foo: // Ltmp0: // .cfi_startproc // .cfi_personality 155, ___gxx_personality_v0 // Leh_func_begin: // .cfi_lsda 16, Lexception33 // // stp xa,bx, [sp, -#offset]! // ... // stp x28, x27, [sp, #offset-32] // stp fp, lr, [sp, #offset-16] // add fp, sp, #offset - 16 // sub sp, sp, #1360 // // The Stack: // +-------------------------------------------+ // 10000 | ........ | ........ | ........ | ........ | // 10004 | ........ | ........ | ........ | ........ | // +-------------------------------------------+ // 10008 | ........ | ........ | ........ | ........ | // 1000c | ........ | ........ | ........ | ........ | // +===========================================+ // 10010 | X28 Register | // 10014 | X28 Register | // +-------------------------------------------+ // 10018 | X27 Register | // 1001c | X27 Register | // +===========================================+ // 10020 | Frame Pointer | // 10024 | Frame Pointer | // +-------------------------------------------+ // 10028 | Link Register | // 1002c | Link Register | // +===========================================+ // 10030 | ........ | ........ | ........ | ........ | // 10034 | ........ | ........ | ........ | ........ | // +-------------------------------------------+ // 10038 | ........ | ........ | ........ | ........ | // 1003c | ........ | ........ | ........ | ........ | // +-------------------------------------------+ // // [sp] = 10030 :: >>initial value<< // sp = 10020 :: stp fp, lr, [sp, #-16]! // fp = sp == 10020 :: mov fp, sp // [sp] == 10020 :: stp x28, x27, [sp, #-16]! // sp == 10010 :: >>final value<< // // The frame pointer (w29) points to address 10020. If we use an offset of // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24 // for w27, and -32 for w28: // // Ltmp1: // .cfi_def_cfa w29, 16 // Ltmp2: // .cfi_offset w30, -8 // Ltmp3: // .cfi_offset w29, -16 // Ltmp4: // .cfi_offset w27, -24 // Ltmp5: // .cfi_offset w28, -32 if (HasFP) { // Define the current CFA rule to use the provided FP. unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true); unsigned CFIIndex = MMI.addFrameInst( MCCFIInstruction::createDefCfa(nullptr, Reg, 2 * StackGrowth)); BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); // Record the location of the stored LR unsigned LR = RegInfo->getDwarfRegNum(AArch64::LR, true); CFIIndex = MMI.addFrameInst( MCCFIInstruction::createOffset(nullptr, LR, StackGrowth)); BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); // Record the location of the stored FP CFIIndex = MMI.addFrameInst( MCCFIInstruction::createOffset(nullptr, Reg, 2 * StackGrowth)); BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); } else { // Encode the stack size of the leaf function. unsigned CFIIndex = MMI.addFrameInst( MCCFIInstruction::createDefCfaOffset(nullptr, -MFI->getStackSize())); BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); } // Now emit the moves for whatever callee saved regs we have. emitCalleeSavedFrameMoves(MBB, MBBI, FramePtr); } } static bool isCalleeSavedRegister(unsigned Reg, const MCPhysReg *CSRegs) { for (unsigned i = 0; CSRegs[i]; ++i) if (Reg == CSRegs[i]) return true; return false; } /// Checks whether the given instruction restores callee save registers /// and if so returns how many. static unsigned getNumCSRestores(MachineInstr &MI, const MCPhysReg *CSRegs) { unsigned RtIdx = 0; switch (MI.getOpcode()) { case AArch64::LDPXpost: case AArch64::LDPDpost: RtIdx = 1; // FALLTHROUGH case AArch64::LDPXi: case AArch64::LDPDi: if (!isCalleeSavedRegister(MI.getOperand(RtIdx).getReg(), CSRegs) || !isCalleeSavedRegister(MI.getOperand(RtIdx + 1).getReg(), CSRegs) || MI.getOperand(RtIdx + 2).getReg() != AArch64::SP) return 0; return 2; } return 0; } void AArch64FrameLowering::emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const { MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); MachineFrameInfo *MFI = MF.getFrameInfo(); const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); const TargetInstrInfo *TII = Subtarget.getInstrInfo(); DebugLoc DL; bool IsTailCallReturn = false; if (MBB.end() != MBBI) { DL = MBBI->getDebugLoc(); unsigned RetOpcode = MBBI->getOpcode(); IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi || RetOpcode == AArch64::TCRETURNri; } int NumBytes = MFI->getStackSize(); const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); // All calls are tail calls in GHC calling conv, and functions have no // prologue/epilogue. if (MF.getFunction()->getCallingConv() == CallingConv::GHC) return; // Initial and residual are named for consistency with the prologue. Note that // in the epilogue, the residual adjustment is executed first. uint64_t ArgumentPopSize = 0; if (IsTailCallReturn) { MachineOperand &StackAdjust = MBBI->getOperand(1); // For a tail-call in a callee-pops-arguments environment, some or all of // the stack may actually be in use for the call's arguments, this is // calculated during LowerCall and consumed here... ArgumentPopSize = StackAdjust.getImm(); } else { // ... otherwise the amount to pop is *all* of the argument space, // conveniently stored in the MachineFunctionInfo by // LowerFormalArguments. This will, of course, be zero for the C calling // convention. ArgumentPopSize = AFI->getArgumentStackToRestore(); } // The stack frame should be like below, // // ---------------------- --- // | | | // | BytesInStackArgArea| CalleeArgStackSize // | (NumReusableBytes) | (of tail call) // | | --- // | | | // ---------------------| --- | // | | | | // | CalleeSavedReg | | | // | (NumRestores * 8) | | | // | | | | // ---------------------| | NumBytes // | | StackSize (StackAdjustUp) // | LocalStackSize | | | // | (covering callee | | | // | args) | | | // | | | | // ---------------------- --- --- // // So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize // = StackSize + ArgumentPopSize // // AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps // it as the 2nd argument of AArch64ISD::TC_RETURN. NumBytes += ArgumentPopSize; unsigned NumRestores = 0; // Move past the restores of the callee-saved registers. MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator(); const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); MachineBasicBlock::iterator Begin = MBB.begin(); while (LastPopI != Begin) { --LastPopI; unsigned Restores = getNumCSRestores(*LastPopI, CSRegs); NumRestores += Restores; if (Restores == 0) { ++LastPopI; break; } } NumBytes -= NumRestores * 8; assert(NumBytes >= 0 && "Negative stack allocation size!?"); if (!hasFP(MF)) { // If this was a redzone leaf function, we don't need to restore the // stack pointer. if (!canUseRedZone(MF)) emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, NumBytes, TII); return; } // Restore the original stack pointer. // FIXME: Rather than doing the math here, we should instead just use // non-post-indexed loads for the restores if we aren't actually going to // be able to save any instructions. if (NumBytes || MFI->hasVarSizedObjects()) emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::FP, -(NumRestores - 2) * 8, TII, MachineInstr::NoFlags); } /// getFrameIndexReference - Provide a base+offset reference to an FI slot for /// debug info. It's the same as what we use for resolving the code-gen /// references for now. FIXME: This can go wrong when references are /// SP-relative and simple call frames aren't used. int AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, unsigned &FrameReg) const { return resolveFrameIndexReference(MF, FI, FrameReg); } int AArch64FrameLowering::resolveFrameIndexReference(const MachineFunction &MF, int FI, unsigned &FrameReg, bool PreferFP) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>( MF.getSubtarget().getRegisterInfo()); const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); int FPOffset = MFI->getObjectOffset(FI) + 16; int Offset = MFI->getObjectOffset(FI) + MFI->getStackSize(); bool isFixed = MFI->isFixedObjectIndex(FI); // Use frame pointer to reference fixed objects. Use it for locals if // there are VLAs or a dynamically realigned SP (and thus the SP isn't // reliable as a base). Make sure useFPForScavengingIndex() does the // right thing for the emergency spill slot. bool UseFP = false; if (AFI->hasStackFrame()) { // Note: Keeping the following as multiple 'if' statements rather than // merging to a single expression for readability. // // Argument access should always use the FP. if (isFixed) { UseFP = hasFP(MF); } else if (hasFP(MF) && !RegInfo->hasBasePointer(MF) && !RegInfo->needsStackRealignment(MF)) { // Use SP or FP, whichever gives us the best chance of the offset // being in range for direct access. If the FPOffset is positive, // that'll always be best, as the SP will be even further away. // If the FPOffset is negative, we have to keep in mind that the // available offset range for negative offsets is smaller than for // positive ones. If we have variable sized objects, we're stuck with // using the FP regardless, though, as the SP offset is unknown // and we don't have a base pointer available. If an offset is // available via the FP and the SP, use whichever is closest. if (PreferFP || MFI->hasVarSizedObjects() || FPOffset >= 0 || (FPOffset >= -256 && Offset > -FPOffset)) UseFP = true; } } assert((isFixed || !RegInfo->needsStackRealignment(MF) || !UseFP) && "In the presence of dynamic stack pointer realignment, " "non-argument objects cannot be accessed through the frame pointer"); if (UseFP) { FrameReg = RegInfo->getFrameRegister(MF); return FPOffset; } // Use the base pointer if we have one. if (RegInfo->hasBasePointer(MF)) FrameReg = RegInfo->getBaseRegister(); else { FrameReg = AArch64::SP; // If we're using the red zone for this function, the SP won't actually // be adjusted, so the offsets will be negative. They're also all // within range of the signed 9-bit immediate instructions. if (canUseRedZone(MF)) Offset -= AFI->getLocalStackSize(); } return Offset; } static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) { if (Reg != AArch64::LR) return getKillRegState(true); // LR maybe referred to later by an @llvm.returnaddress intrinsic. bool LRLiveIn = MF.getRegInfo().isLiveIn(AArch64::LR); bool LRKill = !(LRLiveIn && MF.getFrameInfo()->isReturnAddressTaken()); return getKillRegState(LRKill); } bool AArch64FrameLowering::spillCalleeSavedRegisters( MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector<CalleeSavedInfo> &CSI, const TargetRegisterInfo *TRI) const { MachineFunction &MF = *MBB.getParent(); const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); unsigned Count = CSI.size(); DebugLoc DL; assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!"); for (unsigned i = 0; i < Count; i += 2) { unsigned idx = Count - i - 2; unsigned Reg1 = CSI[idx].getReg(); unsigned Reg2 = CSI[idx + 1].getReg(); // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI // list to come in sorted by frame index so that we can issue the store // pair instructions directly. Assert if we see anything otherwise. // // The order of the registers in the list is controlled by // getCalleeSavedRegs(), so they will always be in-order, as well. assert(CSI[idx].getFrameIdx() + 1 == CSI[idx + 1].getFrameIdx() && "Out of order callee saved regs!"); unsigned StrOpc; assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!"); assert((i & 1) == 0 && "Odd index for callee-saved reg spill!"); // Issue sequence of non-sp increment and pi sp spills for cs regs. The // first spill is a pre-increment that allocates the stack. // For example: // stp x22, x21, [sp, #-48]! // addImm(-6) // stp x20, x19, [sp, #16] // addImm(+2) // stp fp, lr, [sp, #32] // addImm(+4) // Rationale: This sequence saves uop updates compared to a sequence of // pre-increment spills like stp xi,xj,[sp,#-16]! // Note: Similar rational and sequence for restores in epilog. if (AArch64::GPR64RegClass.contains(Reg1)) { assert(AArch64::GPR64RegClass.contains(Reg2) && "Expected GPR64 callee-saved register pair!"); // For first spill use pre-increment store. if (i == 0) StrOpc = AArch64::STPXpre; else StrOpc = AArch64::STPXi; } else if (AArch64::FPR64RegClass.contains(Reg1)) { assert(AArch64::FPR64RegClass.contains(Reg2) && "Expected FPR64 callee-saved register pair!"); // For first spill use pre-increment store. if (i == 0) StrOpc = AArch64::STPDpre; else StrOpc = AArch64::STPDi; } else llvm_unreachable("Unexpected callee saved register!"); DEBUG(dbgs() << "CSR spill: (" << TRI->getName(Reg1) << ", " << TRI->getName(Reg2) << ") -> fi#(" << CSI[idx].getFrameIdx() << ", " << CSI[idx + 1].getFrameIdx() << ")\n"); // Compute offset: i = 0 => offset = -Count; // i = 2 => offset = -(Count - 2) + Count = 2 = i; etc. const int Offset = (i == 0) ? -Count : i; assert((Offset >= -64 && Offset <= 63) && "Offset out of bounds for STP immediate"); MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc)); if (StrOpc == AArch64::STPDpre || StrOpc == AArch64::STPXpre) MIB.addReg(AArch64::SP, RegState::Define); MBB.addLiveIn(Reg1); MBB.addLiveIn(Reg2); MIB.addReg(Reg2, getPrologueDeath(MF, Reg2)) .addReg(Reg1, getPrologueDeath(MF, Reg1)) .addReg(AArch64::SP) .addImm(Offset) // [sp, #offset * 8], where factor * 8 is implicit .setMIFlag(MachineInstr::FrameSetup); } return true; } bool AArch64FrameLowering::restoreCalleeSavedRegisters( MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector<CalleeSavedInfo> &CSI, const TargetRegisterInfo *TRI) const { MachineFunction &MF = *MBB.getParent(); const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); unsigned Count = CSI.size(); DebugLoc DL; assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!"); if (MI != MBB.end()) DL = MI->getDebugLoc(); for (unsigned i = 0; i < Count; i += 2) { unsigned Reg1 = CSI[i].getReg(); unsigned Reg2 = CSI[i + 1].getReg(); // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI // list to come in sorted by frame index so that we can issue the store // pair instructions directly. Assert if we see anything otherwise. assert(CSI[i].getFrameIdx() + 1 == CSI[i + 1].getFrameIdx() && "Out of order callee saved regs!"); // Issue sequence of non-sp increment and sp-pi restores for cs regs. Only // the last load is sp-pi post-increment and de-allocates the stack: // For example: // ldp fp, lr, [sp, #32] // addImm(+4) // ldp x20, x19, [sp, #16] // addImm(+2) // ldp x22, x21, [sp], #48 // addImm(+6) // Note: see comment in spillCalleeSavedRegisters() unsigned LdrOpc; assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!"); assert((i & 1) == 0 && "Odd index for callee-saved reg spill!"); if (AArch64::GPR64RegClass.contains(Reg1)) { assert(AArch64::GPR64RegClass.contains(Reg2) && "Expected GPR64 callee-saved register pair!"); if (i == Count - 2) LdrOpc = AArch64::LDPXpost; else LdrOpc = AArch64::LDPXi; } else if (AArch64::FPR64RegClass.contains(Reg1)) { assert(AArch64::FPR64RegClass.contains(Reg2) && "Expected FPR64 callee-saved register pair!"); if (i == Count - 2) LdrOpc = AArch64::LDPDpost; else LdrOpc = AArch64::LDPDi; } else llvm_unreachable("Unexpected callee saved register!"); DEBUG(dbgs() << "CSR restore: (" << TRI->getName(Reg1) << ", " << TRI->getName(Reg2) << ") -> fi#(" << CSI[i].getFrameIdx() << ", " << CSI[i + 1].getFrameIdx() << ")\n"); // Compute offset: i = 0 => offset = Count - 2; i = 2 => offset = Count - 4; // etc. const int Offset = (i == Count - 2) ? Count : Count - i - 2; assert((Offset >= -64 && Offset <= 63) && "Offset out of bounds for LDP immediate"); MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdrOpc)); if (LdrOpc == AArch64::LDPXpost || LdrOpc == AArch64::LDPDpost) MIB.addReg(AArch64::SP, RegState::Define); MIB.addReg(Reg2, getDefRegState(true)) .addReg(Reg1, getDefRegState(true)) .addReg(AArch64::SP) .addImm(Offset); // [sp], #offset * 8 or [sp, #offset * 8] // where the factor * 8 is implicit } return true; } void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF, BitVector &SavedRegs, RegScavenger *RS) const { // All calls are tail calls in GHC calling conv, and functions have no // prologue/epilogue. if (MF.getFunction()->getCallingConv() == CallingConv::GHC) return; TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>( MF.getSubtarget().getRegisterInfo()); AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); SmallVector<unsigned, 4> UnspilledCSGPRs; SmallVector<unsigned, 4> UnspilledCSFPRs; // The frame record needs to be created by saving the appropriate registers if (hasFP(MF)) { SavedRegs.set(AArch64::FP); SavedRegs.set(AArch64::LR); } // Spill the BasePtr if it's used. Do this first thing so that the // getCalleeSavedRegs() below will get the right answer. if (RegInfo->hasBasePointer(MF)) SavedRegs.set(RegInfo->getBaseRegister()); if (RegInfo->needsStackRealignment(MF) && !RegInfo->hasBasePointer(MF)) SavedRegs.set(AArch64::X9); // If any callee-saved registers are used, the frame cannot be eliminated. unsigned NumGPRSpilled = 0; unsigned NumFPRSpilled = 0; bool ExtraCSSpill = false; bool CanEliminateFrame = true; DEBUG(dbgs() << "*** determineCalleeSaves\nUsed CSRs:"); const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); // Check pairs of consecutive callee-saved registers. for (unsigned i = 0; CSRegs[i]; i += 2) { assert(CSRegs[i + 1] && "Odd number of callee-saved registers!"); const unsigned OddReg = CSRegs[i]; const unsigned EvenReg = CSRegs[i + 1]; assert((AArch64::GPR64RegClass.contains(OddReg) && AArch64::GPR64RegClass.contains(EvenReg)) ^ (AArch64::FPR64RegClass.contains(OddReg) && AArch64::FPR64RegClass.contains(EvenReg)) && "Register class mismatch!"); const bool OddRegUsed = SavedRegs.test(OddReg); const bool EvenRegUsed = SavedRegs.test(EvenReg); // Early exit if none of the registers in the register pair is actually // used. if (!OddRegUsed && !EvenRegUsed) { if (AArch64::GPR64RegClass.contains(OddReg)) { UnspilledCSGPRs.push_back(OddReg); UnspilledCSGPRs.push_back(EvenReg); } else { UnspilledCSFPRs.push_back(OddReg); UnspilledCSFPRs.push_back(EvenReg); } continue; } unsigned Reg = AArch64::NoRegister; // If only one of the registers of the register pair is used, make sure to // mark the other one as used as well. if (OddRegUsed ^ EvenRegUsed) { // Find out which register is the additional spill. Reg = OddRegUsed ? EvenReg : OddReg; SavedRegs.set(Reg); } DEBUG(dbgs() << ' ' << PrintReg(OddReg, RegInfo)); DEBUG(dbgs() << ' ' << PrintReg(EvenReg, RegInfo)); assert(((OddReg == AArch64::LR && EvenReg == AArch64::FP) || (RegInfo->getEncodingValue(OddReg) + 1 == RegInfo->getEncodingValue(EvenReg))) && "Register pair of non-adjacent registers!"); if (AArch64::GPR64RegClass.contains(OddReg)) { NumGPRSpilled += 2; // If it's not a reserved register, we can use it in lieu of an // emergency spill slot for the register scavenger. // FIXME: It would be better to instead keep looking and choose another // unspilled register that isn't reserved, if there is one. if (Reg != AArch64::NoRegister && !RegInfo->isReservedReg(MF, Reg)) ExtraCSSpill = true; } else NumFPRSpilled += 2; CanEliminateFrame = false; } // FIXME: Set BigStack if any stack slot references may be out of range. // For now, just conservatively guestimate based on unscaled indexing // range. We'll end up allocating an unnecessary spill slot a lot, but // realistically that's not a big deal at this stage of the game. // The CSR spill slots have not been allocated yet, so estimateStackSize // won't include them. MachineFrameInfo *MFI = MF.getFrameInfo(); unsigned CFSize = MFI->estimateStackSize(MF) + 8 * (NumGPRSpilled + NumFPRSpilled); DEBUG(dbgs() << "Estimated stack frame size: " << CFSize << " bytes.\n"); bool BigStack = (CFSize >= 256); if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) AFI->setHasStackFrame(true); // Estimate if we might need to scavenge a register at some point in order // to materialize a stack offset. If so, either spill one additional // callee-saved register or reserve a special spill slot to facilitate // register scavenging. If we already spilled an extra callee-saved register // above to keep the number of spills even, we don't need to do anything else // here. if (BigStack && !ExtraCSSpill) { // If we're adding a register to spill here, we have to add two of them // to keep the number of regs to spill even. assert(((UnspilledCSGPRs.size() & 1) == 0) && "Odd number of registers!"); unsigned Count = 0; while (!UnspilledCSGPRs.empty() && Count < 2) { unsigned Reg = UnspilledCSGPRs.back(); UnspilledCSGPRs.pop_back(); DEBUG(dbgs() << "Spilling " << PrintReg(Reg, RegInfo) << " to get a scratch register.\n"); SavedRegs.set(Reg); ExtraCSSpill = true; ++Count; } // If we didn't find an extra callee-saved register to spill, create // an emergency spill slot. if (!ExtraCSSpill) { const TargetRegisterClass *RC = &AArch64::GPR64RegClass; int FI = MFI->CreateStackObject(RC->getSize(), RC->getAlignment(), false); RS->addScavengingFrameIndex(FI); DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI << " as the emergency spill slot.\n"); } } }