//===-- AArch64ConditionalCompares.cpp --- CCMP formation for AArch64 -----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the AArch64ConditionalCompares pass which reduces // branching and code size by using the conditional compare instructions CCMP, // CCMN, and FCMP. // // The CFG transformations for forming conditional compares are very similar to // if-conversion, and this pass should run immediately before the early // if-conversion pass. // //===----------------------------------------------------------------------===// #include "AArch64.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SparseSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/MachineTraceMetrics.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" using namespace llvm; #define DEBUG_TYPE "aarch64-ccmp" // Absolute maximum number of instructions allowed per speculated block. // This bypasses all other heuristics, so it should be set fairly high. static cl::opt<unsigned> BlockInstrLimit( "aarch64-ccmp-limit", cl::init(30), cl::Hidden, cl::desc("Maximum number of instructions per speculated block.")); // Stress testing mode - disable heuristics. static cl::opt<bool> Stress("aarch64-stress-ccmp", cl::Hidden, cl::desc("Turn all knobs to 11")); STATISTIC(NumConsidered, "Number of ccmps considered"); STATISTIC(NumPhiRejs, "Number of ccmps rejected (PHI)"); STATISTIC(NumPhysRejs, "Number of ccmps rejected (Physregs)"); STATISTIC(NumPhi2Rejs, "Number of ccmps rejected (PHI2)"); STATISTIC(NumHeadBranchRejs, "Number of ccmps rejected (Head branch)"); STATISTIC(NumCmpBranchRejs, "Number of ccmps rejected (CmpBB branch)"); STATISTIC(NumCmpTermRejs, "Number of ccmps rejected (CmpBB is cbz...)"); STATISTIC(NumImmRangeRejs, "Number of ccmps rejected (Imm out of range)"); STATISTIC(NumLiveDstRejs, "Number of ccmps rejected (Cmp dest live)"); STATISTIC(NumMultNZCVUses, "Number of ccmps rejected (NZCV used)"); STATISTIC(NumUnknNZCVDefs, "Number of ccmps rejected (NZCV def unknown)"); STATISTIC(NumSpeculateRejs, "Number of ccmps rejected (Can't speculate)"); STATISTIC(NumConverted, "Number of ccmp instructions created"); STATISTIC(NumCompBranches, "Number of cbz/cbnz branches converted"); //===----------------------------------------------------------------------===// // SSACCmpConv //===----------------------------------------------------------------------===// // // The SSACCmpConv class performs ccmp-conversion on SSA form machine code // after determining if it is possible. The class contains no heuristics; // external code should be used to determine when ccmp-conversion is a good // idea. // // CCmp-formation works on a CFG representing chained conditions, typically // from C's short-circuit || and && operators: // // From: Head To: Head // / | CmpBB // / | / | // | CmpBB / | // | / | Tail | // | / | | | // Tail | | | // | | | | // ... ... ... ... // // The Head block is terminated by a br.cond instruction, and the CmpBB block // contains compare + br.cond. Tail must be a successor of both. // // The cmp-conversion turns the compare instruction in CmpBB into a conditional // compare, and merges CmpBB into Head, speculatively executing its // instructions. The AArch64 conditional compare instructions have an immediate // operand that specifies the NZCV flag values when the condition is false and // the compare isn't executed. This makes it possible to chain compares with // different condition codes. // // Example: // // if (a == 5 || b == 17) // foo(); // // Head: // cmp w0, #5 // b.eq Tail // CmpBB: // cmp w1, #17 // b.eq Tail // ... // Tail: // bl _foo // // Becomes: // // Head: // cmp w0, #5 // ccmp w1, #17, 4, ne ; 4 = nZcv // b.eq Tail // ... // Tail: // bl _foo // // The ccmp condition code is the one that would cause the Head terminator to // branch to CmpBB. // // FIXME: It should also be possible to speculate a block on the critical edge // between Head and Tail, just like if-converting a diamond. // // FIXME: Handle PHIs in Tail by turning them into selects (if-conversion). namespace { class SSACCmpConv { MachineFunction *MF; const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; MachineRegisterInfo *MRI; public: /// The first block containing a conditional branch, dominating everything /// else. MachineBasicBlock *Head; /// The block containing cmp+br.cond with a successor shared with Head. MachineBasicBlock *CmpBB; /// The common successor for Head and CmpBB. MachineBasicBlock *Tail; /// The compare instruction in CmpBB that can be converted to a ccmp. MachineInstr *CmpMI; private: /// The branch condition in Head as determined by AnalyzeBranch. SmallVector<MachineOperand, 4> HeadCond; /// The condition code that makes Head branch to CmpBB. AArch64CC::CondCode HeadCmpBBCC; /// The branch condition in CmpBB. SmallVector<MachineOperand, 4> CmpBBCond; /// The condition code that makes CmpBB branch to Tail. AArch64CC::CondCode CmpBBTailCC; /// Check if the Tail PHIs are trivially convertible. bool trivialTailPHIs(); /// Remove CmpBB from the Tail PHIs. void updateTailPHIs(); /// Check if an operand defining DstReg is dead. bool isDeadDef(unsigned DstReg); /// Find the compare instruction in MBB that controls the conditional branch. /// Return NULL if a convertible instruction can't be found. MachineInstr *findConvertibleCompare(MachineBasicBlock *MBB); /// Return true if all non-terminator instructions in MBB can be safely /// speculated. bool canSpeculateInstrs(MachineBasicBlock *MBB, const MachineInstr *CmpMI); public: /// runOnMachineFunction - Initialize per-function data structures. void runOnMachineFunction(MachineFunction &MF) { this->MF = &MF; TII = MF.getSubtarget().getInstrInfo(); TRI = MF.getSubtarget().getRegisterInfo(); MRI = &MF.getRegInfo(); } /// If the sub-CFG headed by MBB can be cmp-converted, initialize the /// internal state, and return true. bool canConvert(MachineBasicBlock *MBB); /// Cmo-convert the last block passed to canConvertCmp(), assuming /// it is possible. Add any erased blocks to RemovedBlocks. void convert(SmallVectorImpl<MachineBasicBlock *> &RemovedBlocks); /// Return the expected code size delta if the conversion into a /// conditional compare is performed. int expectedCodeSizeDelta() const; }; } // end anonymous namespace // Check that all PHIs in Tail are selecting the same value from Head and CmpBB. // This means that no if-conversion is required when merging CmpBB into Head. bool SSACCmpConv::trivialTailPHIs() { for (auto &I : *Tail) { if (!I.isPHI()) break; unsigned HeadReg = 0, CmpBBReg = 0; // PHI operands come in (VReg, MBB) pairs. for (unsigned oi = 1, oe = I.getNumOperands(); oi != oe; oi += 2) { MachineBasicBlock *MBB = I.getOperand(oi + 1).getMBB(); unsigned Reg = I.getOperand(oi).getReg(); if (MBB == Head) { assert((!HeadReg || HeadReg == Reg) && "Inconsistent PHI operands"); HeadReg = Reg; } if (MBB == CmpBB) { assert((!CmpBBReg || CmpBBReg == Reg) && "Inconsistent PHI operands"); CmpBBReg = Reg; } } if (HeadReg != CmpBBReg) return false; } return true; } // Assuming that trivialTailPHIs() is true, update the Tail PHIs by simply // removing the CmpBB operands. The Head operands will be identical. void SSACCmpConv::updateTailPHIs() { for (auto &I : *Tail) { if (!I.isPHI()) break; // I is a PHI. It can have multiple entries for CmpBB. for (unsigned oi = I.getNumOperands(); oi > 2; oi -= 2) { // PHI operands are (Reg, MBB) at (oi-2, oi-1). if (I.getOperand(oi - 1).getMBB() == CmpBB) { I.RemoveOperand(oi - 1); I.RemoveOperand(oi - 2); } } } } // This pass runs before the AArch64DeadRegisterDefinitions pass, so compares // are still writing virtual registers without any uses. bool SSACCmpConv::isDeadDef(unsigned DstReg) { // Writes to the zero register are dead. if (DstReg == AArch64::WZR || DstReg == AArch64::XZR) return true; if (!TargetRegisterInfo::isVirtualRegister(DstReg)) return false; // A virtual register def without any uses will be marked dead later, and // eventually replaced by the zero register. return MRI->use_nodbg_empty(DstReg); } // Parse a condition code returned by AnalyzeBranch, and compute the CondCode // corresponding to TBB. // Return static bool parseCond(ArrayRef<MachineOperand> Cond, AArch64CC::CondCode &CC) { // A normal br.cond simply has the condition code. if (Cond[0].getImm() != -1) { assert(Cond.size() == 1 && "Unknown Cond array format"); CC = (AArch64CC::CondCode)(int)Cond[0].getImm(); return true; } // For tbz and cbz instruction, the opcode is next. switch (Cond[1].getImm()) { default: // This includes tbz / tbnz branches which can't be converted to // ccmp + br.cond. return false; case AArch64::CBZW: case AArch64::CBZX: assert(Cond.size() == 3 && "Unknown Cond array format"); CC = AArch64CC::EQ; return true; case AArch64::CBNZW: case AArch64::CBNZX: assert(Cond.size() == 3 && "Unknown Cond array format"); CC = AArch64CC::NE; return true; } } MachineInstr *SSACCmpConv::findConvertibleCompare(MachineBasicBlock *MBB) { MachineBasicBlock::iterator I = MBB->getFirstTerminator(); if (I == MBB->end()) return nullptr; // The terminator must be controlled by the flags. if (!I->readsRegister(AArch64::NZCV)) { switch (I->getOpcode()) { case AArch64::CBZW: case AArch64::CBZX: case AArch64::CBNZW: case AArch64::CBNZX: // These can be converted into a ccmp against #0. return I; } ++NumCmpTermRejs; DEBUG(dbgs() << "Flags not used by terminator: " << *I); return nullptr; } // Now find the instruction controlling the terminator. for (MachineBasicBlock::iterator B = MBB->begin(); I != B;) { --I; assert(!I->isTerminator() && "Spurious terminator"); switch (I->getOpcode()) { // cmp is an alias for subs with a dead destination register. case AArch64::SUBSWri: case AArch64::SUBSXri: // cmn is an alias for adds with a dead destination register. case AArch64::ADDSWri: case AArch64::ADDSXri: // Check that the immediate operand is within range, ccmp wants a uimm5. // Rd = SUBSri Rn, imm, shift if (I->getOperand(3).getImm() || !isUInt<5>(I->getOperand(2).getImm())) { DEBUG(dbgs() << "Immediate out of range for ccmp: " << *I); ++NumImmRangeRejs; return nullptr; } // Fall through. case AArch64::SUBSWrr: case AArch64::SUBSXrr: case AArch64::ADDSWrr: case AArch64::ADDSXrr: if (isDeadDef(I->getOperand(0).getReg())) return I; DEBUG(dbgs() << "Can't convert compare with live destination: " << *I); ++NumLiveDstRejs; return nullptr; case AArch64::FCMPSrr: case AArch64::FCMPDrr: case AArch64::FCMPESrr: case AArch64::FCMPEDrr: return I; } // Check for flag reads and clobbers. MIOperands::PhysRegInfo PRI = MIOperands(I).analyzePhysReg(AArch64::NZCV, TRI); if (PRI.Read) { // The ccmp doesn't produce exactly the same flags as the original // compare, so reject the transform if there are uses of the flags // besides the terminators. DEBUG(dbgs() << "Can't create ccmp with multiple uses: " << *I); ++NumMultNZCVUses; return nullptr; } if (PRI.Defined || PRI.Clobbered) { DEBUG(dbgs() << "Not convertible compare: " << *I); ++NumUnknNZCVDefs; return nullptr; } } DEBUG(dbgs() << "Flags not defined in BB#" << MBB->getNumber() << '\n'); return nullptr; } /// Determine if all the instructions in MBB can safely /// be speculated. The terminators are not considered. /// /// Only CmpMI is allowed to clobber the flags. /// bool SSACCmpConv::canSpeculateInstrs(MachineBasicBlock *MBB, const MachineInstr *CmpMI) { // Reject any live-in physregs. It's probably NZCV/EFLAGS, and very hard to // get right. if (!MBB->livein_empty()) { DEBUG(dbgs() << "BB#" << MBB->getNumber() << " has live-ins.\n"); return false; } unsigned InstrCount = 0; // Check all instructions, except the terminators. It is assumed that // terminators never have side effects or define any used register values. for (auto &I : make_range(MBB->begin(), MBB->getFirstTerminator())) { if (I.isDebugValue()) continue; if (++InstrCount > BlockInstrLimit && !Stress) { DEBUG(dbgs() << "BB#" << MBB->getNumber() << " has more than " << BlockInstrLimit << " instructions.\n"); return false; } // There shouldn't normally be any phis in a single-predecessor block. if (I.isPHI()) { DEBUG(dbgs() << "Can't hoist: " << I); return false; } // Don't speculate loads. Note that it may be possible and desirable to // speculate GOT or constant pool loads that are guaranteed not to trap, // but we don't support that for now. if (I.mayLoad()) { DEBUG(dbgs() << "Won't speculate load: " << I); return false; } // We never speculate stores, so an AA pointer isn't necessary. bool DontMoveAcrossStore = true; if (!I.isSafeToMove(nullptr, DontMoveAcrossStore)) { DEBUG(dbgs() << "Can't speculate: " << I); return false; } // Only CmpMI is allowed to clobber the flags. if (&I != CmpMI && I.modifiesRegister(AArch64::NZCV, TRI)) { DEBUG(dbgs() << "Clobbers flags: " << I); return false; } } return true; } /// Analyze the sub-cfg rooted in MBB, and return true if it is a potential /// candidate for cmp-conversion. Fill out the internal state. /// bool SSACCmpConv::canConvert(MachineBasicBlock *MBB) { Head = MBB; Tail = CmpBB = nullptr; if (Head->succ_size() != 2) return false; MachineBasicBlock *Succ0 = Head->succ_begin()[0]; MachineBasicBlock *Succ1 = Head->succ_begin()[1]; // CmpBB can only have a single predecessor. Tail is allowed many. if (Succ0->pred_size() != 1) std::swap(Succ0, Succ1); // Succ0 is our candidate for CmpBB. if (Succ0->pred_size() != 1 || Succ0->succ_size() != 2) return false; CmpBB = Succ0; Tail = Succ1; if (!CmpBB->isSuccessor(Tail)) return false; // The CFG topology checks out. DEBUG(dbgs() << "\nTriangle: BB#" << Head->getNumber() << " -> BB#" << CmpBB->getNumber() << " -> BB#" << Tail->getNumber() << '\n'); ++NumConsidered; // Tail is allowed to have many predecessors, but we can't handle PHIs yet. // // FIXME: Real PHIs could be if-converted as long as the CmpBB values are // defined before The CmpBB cmp clobbers the flags. Alternatively, it should // always be safe to sink the ccmp down to immediately before the CmpBB // terminators. if (!trivialTailPHIs()) { DEBUG(dbgs() << "Can't handle phis in Tail.\n"); ++NumPhiRejs; return false; } if (!Tail->livein_empty()) { DEBUG(dbgs() << "Can't handle live-in physregs in Tail.\n"); ++NumPhysRejs; return false; } // CmpBB should never have PHIs since Head is its only predecessor. // FIXME: Clean them up if it happens. if (!CmpBB->empty() && CmpBB->front().isPHI()) { DEBUG(dbgs() << "Can't handle phis in CmpBB.\n"); ++NumPhi2Rejs; return false; } if (!CmpBB->livein_empty()) { DEBUG(dbgs() << "Can't handle live-in physregs in CmpBB.\n"); ++NumPhysRejs; return false; } // The branch we're looking to eliminate must be analyzable. HeadCond.clear(); MachineBasicBlock *TBB = nullptr, *FBB = nullptr; if (TII->AnalyzeBranch(*Head, TBB, FBB, HeadCond)) { DEBUG(dbgs() << "Head branch not analyzable.\n"); ++NumHeadBranchRejs; return false; } // This is weird, probably some sort of degenerate CFG, or an edge to a // landing pad. if (!TBB || HeadCond.empty()) { DEBUG(dbgs() << "AnalyzeBranch didn't find conditional branch in Head.\n"); ++NumHeadBranchRejs; return false; } if (!parseCond(HeadCond, HeadCmpBBCC)) { DEBUG(dbgs() << "Unsupported branch type on Head\n"); ++NumHeadBranchRejs; return false; } // Make sure the branch direction is right. if (TBB != CmpBB) { assert(TBB == Tail && "Unexpected TBB"); HeadCmpBBCC = AArch64CC::getInvertedCondCode(HeadCmpBBCC); } CmpBBCond.clear(); TBB = FBB = nullptr; if (TII->AnalyzeBranch(*CmpBB, TBB, FBB, CmpBBCond)) { DEBUG(dbgs() << "CmpBB branch not analyzable.\n"); ++NumCmpBranchRejs; return false; } if (!TBB || CmpBBCond.empty()) { DEBUG(dbgs() << "AnalyzeBranch didn't find conditional branch in CmpBB.\n"); ++NumCmpBranchRejs; return false; } if (!parseCond(CmpBBCond, CmpBBTailCC)) { DEBUG(dbgs() << "Unsupported branch type on CmpBB\n"); ++NumCmpBranchRejs; return false; } if (TBB != Tail) CmpBBTailCC = AArch64CC::getInvertedCondCode(CmpBBTailCC); DEBUG(dbgs() << "Head->CmpBB on " << AArch64CC::getCondCodeName(HeadCmpBBCC) << ", CmpBB->Tail on " << AArch64CC::getCondCodeName(CmpBBTailCC) << '\n'); CmpMI = findConvertibleCompare(CmpBB); if (!CmpMI) return false; if (!canSpeculateInstrs(CmpBB, CmpMI)) { ++NumSpeculateRejs; return false; } return true; } void SSACCmpConv::convert(SmallVectorImpl<MachineBasicBlock *> &RemovedBlocks) { DEBUG(dbgs() << "Merging BB#" << CmpBB->getNumber() << " into BB#" << Head->getNumber() << ":\n" << *CmpBB); // All CmpBB instructions are moved into Head, and CmpBB is deleted. // Update the CFG first. updateTailPHIs(); Head->removeSuccessor(CmpBB, true); CmpBB->removeSuccessor(Tail, true); Head->transferSuccessorsAndUpdatePHIs(CmpBB); DebugLoc TermDL = Head->getFirstTerminator()->getDebugLoc(); TII->RemoveBranch(*Head); // If the Head terminator was one of the cbz / tbz branches with built-in // compare, we need to insert an explicit compare instruction in its place. if (HeadCond[0].getImm() == -1) { ++NumCompBranches; unsigned Opc = 0; switch (HeadCond[1].getImm()) { case AArch64::CBZW: case AArch64::CBNZW: Opc = AArch64::SUBSWri; break; case AArch64::CBZX: case AArch64::CBNZX: Opc = AArch64::SUBSXri; break; default: llvm_unreachable("Cannot convert Head branch"); } const MCInstrDesc &MCID = TII->get(Opc); // Create a dummy virtual register for the SUBS def. unsigned DestReg = MRI->createVirtualRegister(TII->getRegClass(MCID, 0, TRI, *MF)); // Insert a SUBS Rn, #0 instruction instead of the cbz / cbnz. BuildMI(*Head, Head->end(), TermDL, MCID) .addReg(DestReg, RegState::Define | RegState::Dead) .addOperand(HeadCond[2]) .addImm(0) .addImm(0); // SUBS uses the GPR*sp register classes. MRI->constrainRegClass(HeadCond[2].getReg(), TII->getRegClass(MCID, 1, TRI, *MF)); } Head->splice(Head->end(), CmpBB, CmpBB->begin(), CmpBB->end()); // Now replace CmpMI with a ccmp instruction that also considers the incoming // flags. unsigned Opc = 0; unsigned FirstOp = 1; // First CmpMI operand to copy. bool isZBranch = false; // CmpMI is a cbz/cbnz instruction. switch (CmpMI->getOpcode()) { default: llvm_unreachable("Unknown compare opcode"); case AArch64::SUBSWri: Opc = AArch64::CCMPWi; break; case AArch64::SUBSWrr: Opc = AArch64::CCMPWr; break; case AArch64::SUBSXri: Opc = AArch64::CCMPXi; break; case AArch64::SUBSXrr: Opc = AArch64::CCMPXr; break; case AArch64::ADDSWri: Opc = AArch64::CCMNWi; break; case AArch64::ADDSWrr: Opc = AArch64::CCMNWr; break; case AArch64::ADDSXri: Opc = AArch64::CCMNXi; break; case AArch64::ADDSXrr: Opc = AArch64::CCMNXr; break; case AArch64::FCMPSrr: Opc = AArch64::FCCMPSrr; FirstOp = 0; break; case AArch64::FCMPDrr: Opc = AArch64::FCCMPDrr; FirstOp = 0; break; case AArch64::FCMPESrr: Opc = AArch64::FCCMPESrr; FirstOp = 0; break; case AArch64::FCMPEDrr: Opc = AArch64::FCCMPEDrr; FirstOp = 0; break; case AArch64::CBZW: case AArch64::CBNZW: Opc = AArch64::CCMPWi; FirstOp = 0; isZBranch = true; break; case AArch64::CBZX: case AArch64::CBNZX: Opc = AArch64::CCMPXi; FirstOp = 0; isZBranch = true; break; } // The ccmp instruction should set the flags according to the comparison when // Head would have branched to CmpBB. // The NZCV immediate operand should provide flags for the case where Head // would have branched to Tail. These flags should cause the new Head // terminator to branch to tail. unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(CmpBBTailCC); const MCInstrDesc &MCID = TII->get(Opc); MRI->constrainRegClass(CmpMI->getOperand(FirstOp).getReg(), TII->getRegClass(MCID, 0, TRI, *MF)); if (CmpMI->getOperand(FirstOp + 1).isReg()) MRI->constrainRegClass(CmpMI->getOperand(FirstOp + 1).getReg(), TII->getRegClass(MCID, 1, TRI, *MF)); MachineInstrBuilder MIB = BuildMI(*Head, CmpMI, CmpMI->getDebugLoc(), MCID) .addOperand(CmpMI->getOperand(FirstOp)); // Register Rn if (isZBranch) MIB.addImm(0); // cbz/cbnz Rn -> ccmp Rn, #0 else MIB.addOperand(CmpMI->getOperand(FirstOp + 1)); // Register Rm / Immediate MIB.addImm(NZCV).addImm(HeadCmpBBCC); // If CmpMI was a terminator, we need a new conditional branch to replace it. // This now becomes a Head terminator. if (isZBranch) { bool isNZ = CmpMI->getOpcode() == AArch64::CBNZW || CmpMI->getOpcode() == AArch64::CBNZX; BuildMI(*Head, CmpMI, CmpMI->getDebugLoc(), TII->get(AArch64::Bcc)) .addImm(isNZ ? AArch64CC::NE : AArch64CC::EQ) .addOperand(CmpMI->getOperand(1)); // Branch target. } CmpMI->eraseFromParent(); Head->updateTerminator(); RemovedBlocks.push_back(CmpBB); CmpBB->eraseFromParent(); DEBUG(dbgs() << "Result:\n" << *Head); ++NumConverted; } int SSACCmpConv::expectedCodeSizeDelta() const { int delta = 0; // If the Head terminator was one of the cbz / tbz branches with built-in // compare, we need to insert an explicit compare instruction in its place // plus a branch instruction. if (HeadCond[0].getImm() == -1) { switch (HeadCond[1].getImm()) { case AArch64::CBZW: case AArch64::CBNZW: case AArch64::CBZX: case AArch64::CBNZX: // Therefore delta += 1 delta = 1; break; default: llvm_unreachable("Cannot convert Head branch"); } } // If the Cmp terminator was one of the cbz / tbz branches with // built-in compare, it will be turned into a compare instruction // into Head, but we do not save any instruction. // Otherwise, we save the branch instruction. switch (CmpMI->getOpcode()) { default: --delta; break; case AArch64::CBZW: case AArch64::CBNZW: case AArch64::CBZX: case AArch64::CBNZX: break; } return delta; } //===----------------------------------------------------------------------===// // AArch64ConditionalCompares Pass //===----------------------------------------------------------------------===// namespace { class AArch64ConditionalCompares : public MachineFunctionPass { const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; MCSchedModel SchedModel; // Does the proceeded function has Oz attribute. bool MinSize; MachineRegisterInfo *MRI; MachineDominatorTree *DomTree; MachineLoopInfo *Loops; MachineTraceMetrics *Traces; MachineTraceMetrics::Ensemble *MinInstr; SSACCmpConv CmpConv; public: static char ID; AArch64ConditionalCompares() : MachineFunctionPass(ID) {} void getAnalysisUsage(AnalysisUsage &AU) const override; bool runOnMachineFunction(MachineFunction &MF) override; const char *getPassName() const override { return "AArch64 Conditional Compares"; } private: bool tryConvert(MachineBasicBlock *); void updateDomTree(ArrayRef<MachineBasicBlock *> Removed); void updateLoops(ArrayRef<MachineBasicBlock *> Removed); void invalidateTraces(); bool shouldConvert(); }; } // end anonymous namespace char AArch64ConditionalCompares::ID = 0; namespace llvm { void initializeAArch64ConditionalComparesPass(PassRegistry &); } INITIALIZE_PASS_BEGIN(AArch64ConditionalCompares, "aarch64-ccmp", "AArch64 CCMP Pass", false, false) INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics) INITIALIZE_PASS_END(AArch64ConditionalCompares, "aarch64-ccmp", "AArch64 CCMP Pass", false, false) FunctionPass *llvm::createAArch64ConditionalCompares() { return new AArch64ConditionalCompares(); } void AArch64ConditionalCompares::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired<MachineBranchProbabilityInfo>(); AU.addRequired<MachineDominatorTree>(); AU.addPreserved<MachineDominatorTree>(); AU.addRequired<MachineLoopInfo>(); AU.addPreserved<MachineLoopInfo>(); AU.addRequired<MachineTraceMetrics>(); AU.addPreserved<MachineTraceMetrics>(); MachineFunctionPass::getAnalysisUsage(AU); } /// Update the dominator tree after if-conversion erased some blocks. void AArch64ConditionalCompares::updateDomTree( ArrayRef<MachineBasicBlock *> Removed) { // convert() removes CmpBB which was previously dominated by Head. // CmpBB children should be transferred to Head. MachineDomTreeNode *HeadNode = DomTree->getNode(CmpConv.Head); for (MachineBasicBlock *RemovedMBB : Removed) { MachineDomTreeNode *Node = DomTree->getNode(RemovedMBB); assert(Node != HeadNode && "Cannot erase the head node"); assert(Node->getIDom() == HeadNode && "CmpBB should be dominated by Head"); while (Node->getNumChildren()) DomTree->changeImmediateDominator(Node->getChildren().back(), HeadNode); DomTree->eraseNode(RemovedMBB); } } /// Update LoopInfo after if-conversion. void AArch64ConditionalCompares::updateLoops(ArrayRef<MachineBasicBlock *> Removed) { if (!Loops) return; for (MachineBasicBlock *RemovedMBB : Removed) Loops->removeBlock(RemovedMBB); } /// Invalidate MachineTraceMetrics before if-conversion. void AArch64ConditionalCompares::invalidateTraces() { Traces->invalidate(CmpConv.Head); Traces->invalidate(CmpConv.CmpBB); } /// Apply cost model and heuristics to the if-conversion in IfConv. /// Return true if the conversion is a good idea. /// bool AArch64ConditionalCompares::shouldConvert() { // Stress testing mode disables all cost considerations. if (Stress) return true; if (!MinInstr) MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount); // Head dominates CmpBB, so it is always included in its trace. MachineTraceMetrics::Trace Trace = MinInstr->getTrace(CmpConv.CmpBB); // If code size is the main concern if (MinSize) { int CodeSizeDelta = CmpConv.expectedCodeSizeDelta(); DEBUG(dbgs() << "Code size delta: " << CodeSizeDelta << '\n'); // If we are minimizing the code size, do the conversion whatever // the cost is. if (CodeSizeDelta < 0) return true; if (CodeSizeDelta > 0) { DEBUG(dbgs() << "Code size is increasing, give up on this one.\n"); return false; } // CodeSizeDelta == 0, continue with the regular heuristics } // Heuristic: The compare conversion delays the execution of the branch // instruction because we must wait for the inputs to the second compare as // well. The branch has no dependent instructions, but delaying it increases // the cost of a misprediction. // // Set a limit on the delay we will accept. unsigned DelayLimit = SchedModel.MispredictPenalty * 3 / 4; // Instruction depths can be computed for all trace instructions above CmpBB. unsigned HeadDepth = Trace.getInstrCycles(CmpConv.Head->getFirstTerminator()).Depth; unsigned CmpBBDepth = Trace.getInstrCycles(CmpConv.CmpBB->getFirstTerminator()).Depth; DEBUG(dbgs() << "Head depth: " << HeadDepth << "\nCmpBB depth: " << CmpBBDepth << '\n'); if (CmpBBDepth > HeadDepth + DelayLimit) { DEBUG(dbgs() << "Branch delay would be larger than " << DelayLimit << " cycles.\n"); return false; } // Check the resource depth at the bottom of CmpBB - these instructions will // be speculated. unsigned ResDepth = Trace.getResourceDepth(true); DEBUG(dbgs() << "Resources: " << ResDepth << '\n'); // Heuristic: The speculatively executed instructions must all be able to // merge into the Head block. The Head critical path should dominate the // resource cost of the speculated instructions. if (ResDepth > HeadDepth) { DEBUG(dbgs() << "Too many instructions to speculate.\n"); return false; } return true; } bool AArch64ConditionalCompares::tryConvert(MachineBasicBlock *MBB) { bool Changed = false; while (CmpConv.canConvert(MBB) && shouldConvert()) { invalidateTraces(); SmallVector<MachineBasicBlock *, 4> RemovedBlocks; CmpConv.convert(RemovedBlocks); Changed = true; updateDomTree(RemovedBlocks); updateLoops(RemovedBlocks); } return Changed; } bool AArch64ConditionalCompares::runOnMachineFunction(MachineFunction &MF) { DEBUG(dbgs() << "********** AArch64 Conditional Compares **********\n" << "********** Function: " << MF.getName() << '\n'); TII = MF.getSubtarget().getInstrInfo(); TRI = MF.getSubtarget().getRegisterInfo(); SchedModel = MF.getSubtarget().getSchedModel(); MRI = &MF.getRegInfo(); DomTree = &getAnalysis<MachineDominatorTree>(); Loops = getAnalysisIfAvailable<MachineLoopInfo>(); Traces = &getAnalysis<MachineTraceMetrics>(); MinInstr = nullptr; MinSize = MF.getFunction()->optForMinSize(); bool Changed = false; CmpConv.runOnMachineFunction(MF); // Visit blocks in dominator tree pre-order. The pre-order enables multiple // cmp-conversions from the same head block. // Note that updateDomTree() modifies the children of the DomTree node // currently being visited. The df_iterator supports that; it doesn't look at // child_begin() / child_end() until after a node has been visited. for (auto *I : depth_first(DomTree)) if (tryConvert(I->getBlock())) Changed = true; return Changed; }