//===-- AArch64A53Fix835769.cpp -------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // This pass changes code to work around Cortex-A53 erratum 835769. // It works around it by inserting a nop instruction in code sequences that // in some circumstances may trigger the erratum. // It inserts a nop instruction between a sequence of the following 2 classes // of instructions: // instr 1: mem-instr (including loads, stores and prefetches). // instr 2: non-SIMD integer multiply-accumulate writing 64-bit X registers. //===----------------------------------------------------------------------===// #include "AArch64.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" using namespace llvm; #define DEBUG_TYPE "aarch64-fix-cortex-a53-835769" STATISTIC(NumNopsAdded, "Number of Nops added to work around erratum 835769"); //===----------------------------------------------------------------------===// // Helper functions // Is the instruction a match for the instruction that comes first in the // sequence of instructions that can trigger the erratum? static bool isFirstInstructionInSequence(MachineInstr *MI) { // Must return true if this instruction is a load, a store or a prefetch. switch (MI->getOpcode()) { case AArch64::PRFMl: case AArch64::PRFMroW: case AArch64::PRFMroX: case AArch64::PRFMui: case AArch64::PRFUMi: return true; default: return MI->mayLoadOrStore(); } } // Is the instruction a match for the instruction that comes second in the // sequence that can trigger the erratum? static bool isSecondInstructionInSequence(MachineInstr *MI) { // Must return true for non-SIMD integer multiply-accumulates, writing // to a 64-bit register. switch (MI->getOpcode()) { // Erratum cannot be triggered when the destination register is 32 bits, // therefore only include the following. case AArch64::MSUBXrrr: case AArch64::MADDXrrr: case AArch64::SMADDLrrr: case AArch64::SMSUBLrrr: case AArch64::UMADDLrrr: case AArch64::UMSUBLrrr: // Erratum can only be triggered by multiply-adds, not by regular // non-accumulating multiplies, i.e. when Ra=XZR='11111' return MI->getOperand(3).getReg() != AArch64::XZR; default: return false; } } //===----------------------------------------------------------------------===// namespace { class AArch64A53Fix835769 : public MachineFunctionPass { const TargetInstrInfo *TII; public: static char ID; explicit AArch64A53Fix835769() : MachineFunctionPass(ID) {} bool runOnMachineFunction(MachineFunction &F) override; const char *getPassName() const override { return "Workaround A53 erratum 835769 pass"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } private: bool runOnBasicBlock(MachineBasicBlock &MBB); }; char AArch64A53Fix835769::ID = 0; } // end anonymous namespace //===----------------------------------------------------------------------===// bool AArch64A53Fix835769::runOnMachineFunction(MachineFunction &F) { DEBUG(dbgs() << "***** AArch64A53Fix835769 *****\n"); bool Changed = false; TII = F.getSubtarget().getInstrInfo(); for (auto &MBB : F) { Changed |= runOnBasicBlock(MBB); } return Changed; } // Return the block that was fallen through to get to MBB, if any, // otherwise nullptr. static MachineBasicBlock *getBBFallenThrough(MachineBasicBlock *MBB, const TargetInstrInfo *TII) { // Get the previous machine basic block in the function. MachineFunction::iterator MBBI(MBB); // Can't go off top of function. if (MBBI == MBB->getParent()->begin()) return nullptr; MachineBasicBlock *TBB = nullptr, *FBB = nullptr; SmallVector<MachineOperand, 2> Cond; MachineBasicBlock *PrevBB = &*std::prev(MBBI); for (MachineBasicBlock *S : MBB->predecessors()) if (S == PrevBB && !TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond) && !TBB && !FBB) return S; return nullptr; } // Iterate through fallen through blocks trying to find a previous non-pseudo if // there is one, otherwise return nullptr. Only look for instructions in // previous blocks, not the current block, since we only use this to look at // previous blocks. static MachineInstr *getLastNonPseudo(MachineBasicBlock &MBB, const TargetInstrInfo *TII) { MachineBasicBlock *FMBB = &MBB; // If there is no non-pseudo in the current block, loop back around and try // the previous block (if there is one). while ((FMBB = getBBFallenThrough(FMBB, TII))) { for (MachineInstr &I : make_range(FMBB->rbegin(), FMBB->rend())) if (!I.isPseudo()) return &I; } // There was no previous non-pseudo in the fallen through blocks return nullptr; } static void insertNopBeforeInstruction(MachineBasicBlock &MBB, MachineInstr* MI, const TargetInstrInfo *TII) { // If we are the first instruction of the block, put the NOP at the end of // the previous fallthrough block if (MI == &MBB.front()) { MachineInstr *I = getLastNonPseudo(MBB, TII); assert(I && "Expected instruction"); DebugLoc DL = I->getDebugLoc(); BuildMI(I->getParent(), DL, TII->get(AArch64::HINT)).addImm(0); } else { DebugLoc DL = MI->getDebugLoc(); BuildMI(MBB, MI, DL, TII->get(AArch64::HINT)).addImm(0); } ++NumNopsAdded; } bool AArch64A53Fix835769::runOnBasicBlock(MachineBasicBlock &MBB) { bool Changed = false; DEBUG(dbgs() << "Running on MBB: " << MBB << " - scanning instructions...\n"); // First, scan the basic block, looking for a sequence of 2 instructions // that match the conditions under which the erratum may trigger. // List of terminating instructions in matching sequences std::vector<MachineInstr*> Sequences; unsigned Idx = 0; MachineInstr *PrevInstr = nullptr; // Try and find the last non-pseudo instruction in any fallen through blocks, // if there isn't one, then we use nullptr to represent that. PrevInstr = getLastNonPseudo(MBB, TII); for (auto &MI : MBB) { MachineInstr *CurrInstr = &MI; DEBUG(dbgs() << " Examining: " << MI); if (PrevInstr) { DEBUG(dbgs() << " PrevInstr: " << *PrevInstr << " CurrInstr: " << *CurrInstr << " isFirstInstructionInSequence(PrevInstr): " << isFirstInstructionInSequence(PrevInstr) << "\n" << " isSecondInstructionInSequence(CurrInstr): " << isSecondInstructionInSequence(CurrInstr) << "\n"); if (isFirstInstructionInSequence(PrevInstr) && isSecondInstructionInSequence(CurrInstr)) { DEBUG(dbgs() << " ** pattern found at Idx " << Idx << "!\n"); Sequences.push_back(CurrInstr); } } if (!CurrInstr->isPseudo()) PrevInstr = CurrInstr; ++Idx; } DEBUG(dbgs() << "Scan complete, " << Sequences.size() << " occurrences of pattern found.\n"); // Then update the basic block, inserting nops between the detected sequences. for (auto &MI : Sequences) { Changed = true; insertNopBeforeInstruction(MBB, MI, TII); } return Changed; } // Factory function used by AArch64TargetMachine to add the pass to // the passmanager. FunctionPass *llvm::createAArch64A53Fix835769() { return new AArch64A53Fix835769(); }