//===- TGParser.cpp - Parser for TableGen Files ---------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implement the Parser for TableGen. // //===----------------------------------------------------------------------===// #include "TGParser.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/CommandLine.h" #include "llvm/TableGen/Record.h" #include <algorithm> #include <sstream> using namespace llvm; //===----------------------------------------------------------------------===// // Support Code for the Semantic Actions. //===----------------------------------------------------------------------===// namespace llvm { struct SubClassReference { SMRange RefRange; Record *Rec; std::vector<Init*> TemplateArgs; SubClassReference() : Rec(nullptr) {} bool isInvalid() const { return Rec == nullptr; } }; struct SubMultiClassReference { SMRange RefRange; MultiClass *MC; std::vector<Init*> TemplateArgs; SubMultiClassReference() : MC(nullptr) {} bool isInvalid() const { return MC == nullptr; } void dump() const; }; void SubMultiClassReference::dump() const { errs() << "Multiclass:\n"; MC->dump(); errs() << "Template args:\n"; for (Init *TA : TemplateArgs) TA->dump(); } } // end namespace llvm bool TGParser::AddValue(Record *CurRec, SMLoc Loc, const RecordVal &RV) { if (!CurRec) CurRec = &CurMultiClass->Rec; if (RecordVal *ERV = CurRec->getValue(RV.getNameInit())) { // The value already exists in the class, treat this as a set. if (ERV->setValue(RV.getValue())) return Error(Loc, "New definition of '" + RV.getName() + "' of type '" + RV.getType()->getAsString() + "' is incompatible with " + "previous definition of type '" + ERV->getType()->getAsString() + "'"); } else { CurRec->addValue(RV); } return false; } /// SetValue - /// Return true on error, false on success. bool TGParser::SetValue(Record *CurRec, SMLoc Loc, Init *ValName, const std::vector<unsigned> &BitList, Init *V) { if (!V) return false; if (!CurRec) CurRec = &CurMultiClass->Rec; RecordVal *RV = CurRec->getValue(ValName); if (!RV) return Error(Loc, "Value '" + ValName->getAsUnquotedString() + "' unknown!"); // Do not allow assignments like 'X = X'. This will just cause infinite loops // in the resolution machinery. if (BitList.empty()) if (VarInit *VI = dyn_cast<VarInit>(V)) if (VI->getNameInit() == ValName) return false; // If we are assigning to a subset of the bits in the value... then we must be // assigning to a field of BitsRecTy, which must have a BitsInit // initializer. // if (!BitList.empty()) { BitsInit *CurVal = dyn_cast<BitsInit>(RV->getValue()); if (!CurVal) return Error(Loc, "Value '" + ValName->getAsUnquotedString() + "' is not a bits type"); // Convert the incoming value to a bits type of the appropriate size... Init *BI = V->convertInitializerTo(BitsRecTy::get(BitList.size())); if (!BI) return Error(Loc, "Initializer is not compatible with bit range"); // We should have a BitsInit type now. BitsInit *BInit = cast<BitsInit>(BI); SmallVector<Init *, 16> NewBits(CurVal->getNumBits()); // Loop over bits, assigning values as appropriate. for (unsigned i = 0, e = BitList.size(); i != e; ++i) { unsigned Bit = BitList[i]; if (NewBits[Bit]) return Error(Loc, "Cannot set bit #" + Twine(Bit) + " of value '" + ValName->getAsUnquotedString() + "' more than once"); NewBits[Bit] = BInit->getBit(i); } for (unsigned i = 0, e = CurVal->getNumBits(); i != e; ++i) if (!NewBits[i]) NewBits[i] = CurVal->getBit(i); V = BitsInit::get(NewBits); } if (RV->setValue(V)) { std::string InitType = ""; if (BitsInit *BI = dyn_cast<BitsInit>(V)) InitType = (Twine("' of type bit initializer with length ") + Twine(BI->getNumBits())).str(); return Error(Loc, "Value '" + ValName->getAsUnquotedString() + "' of type '" + RV->getType()->getAsString() + "' is incompatible with initializer '" + V->getAsString() + InitType + "'"); } return false; } /// AddSubClass - Add SubClass as a subclass to CurRec, resolving its template /// args as SubClass's template arguments. bool TGParser::AddSubClass(Record *CurRec, SubClassReference &SubClass) { Record *SC = SubClass.Rec; // Add all of the values in the subclass into the current class. for (const RecordVal &Val : SC->getValues()) if (AddValue(CurRec, SubClass.RefRange.Start, Val)) return true; ArrayRef<Init *> TArgs = SC->getTemplateArgs(); // Ensure that an appropriate number of template arguments are specified. if (TArgs.size() < SubClass.TemplateArgs.size()) return Error(SubClass.RefRange.Start, "More template args specified than expected"); // Loop over all of the template arguments, setting them to the specified // value or leaving them as the default if necessary. for (unsigned i = 0, e = TArgs.size(); i != e; ++i) { if (i < SubClass.TemplateArgs.size()) { // If a value is specified for this template arg, set it now. if (SetValue(CurRec, SubClass.RefRange.Start, TArgs[i], std::vector<unsigned>(), SubClass.TemplateArgs[i])) return true; // Resolve it next. CurRec->resolveReferencesTo(CurRec->getValue(TArgs[i])); // Now remove it. CurRec->removeValue(TArgs[i]); } else if (!CurRec->getValue(TArgs[i])->getValue()->isComplete()) { return Error(SubClass.RefRange.Start, "Value not specified for template argument #" + Twine(i) + " (" + TArgs[i]->getAsUnquotedString() + ") of subclass '" + SC->getNameInitAsString() + "'!"); } } // Since everything went well, we can now set the "superclass" list for the // current record. ArrayRef<Record *> SCs = SC->getSuperClasses(); ArrayRef<SMRange> SCRanges = SC->getSuperClassRanges(); for (unsigned i = 0, e = SCs.size(); i != e; ++i) { if (CurRec->isSubClassOf(SCs[i])) return Error(SubClass.RefRange.Start, "Already subclass of '" + SCs[i]->getName() + "'!\n"); CurRec->addSuperClass(SCs[i], SCRanges[i]); } if (CurRec->isSubClassOf(SC)) return Error(SubClass.RefRange.Start, "Already subclass of '" + SC->getName() + "'!\n"); CurRec->addSuperClass(SC, SubClass.RefRange); return false; } /// AddSubMultiClass - Add SubMultiClass as a subclass to /// CurMC, resolving its template args as SubMultiClass's /// template arguments. bool TGParser::AddSubMultiClass(MultiClass *CurMC, SubMultiClassReference &SubMultiClass) { MultiClass *SMC = SubMultiClass.MC; Record *CurRec = &CurMC->Rec; // Add all of the values in the subclass into the current class. for (const auto &SMCVal : SMC->Rec.getValues()) if (AddValue(CurRec, SubMultiClass.RefRange.Start, SMCVal)) return true; unsigned newDefStart = CurMC->DefPrototypes.size(); // Add all of the defs in the subclass into the current multiclass. for (const std::unique_ptr<Record> &R : SMC->DefPrototypes) { // Clone the def and add it to the current multiclass auto NewDef = make_unique<Record>(*R); // Add all of the values in the superclass into the current def. for (const auto &MCVal : CurRec->getValues()) if (AddValue(NewDef.get(), SubMultiClass.RefRange.Start, MCVal)) return true; CurMC->DefPrototypes.push_back(std::move(NewDef)); } ArrayRef<Init *> SMCTArgs = SMC->Rec.getTemplateArgs(); // Ensure that an appropriate number of template arguments are // specified. if (SMCTArgs.size() < SubMultiClass.TemplateArgs.size()) return Error(SubMultiClass.RefRange.Start, "More template args specified than expected"); // Loop over all of the template arguments, setting them to the specified // value or leaving them as the default if necessary. for (unsigned i = 0, e = SMCTArgs.size(); i != e; ++i) { if (i < SubMultiClass.TemplateArgs.size()) { // If a value is specified for this template arg, set it in the // superclass now. if (SetValue(CurRec, SubMultiClass.RefRange.Start, SMCTArgs[i], std::vector<unsigned>(), SubMultiClass.TemplateArgs[i])) return true; // Resolve it next. CurRec->resolveReferencesTo(CurRec->getValue(SMCTArgs[i])); // Now remove it. CurRec->removeValue(SMCTArgs[i]); // If a value is specified for this template arg, set it in the // new defs now. for (const auto &Def : makeArrayRef(CurMC->DefPrototypes).slice(newDefStart)) { if (SetValue(Def.get(), SubMultiClass.RefRange.Start, SMCTArgs[i], std::vector<unsigned>(), SubMultiClass.TemplateArgs[i])) return true; // Resolve it next. Def->resolveReferencesTo(Def->getValue(SMCTArgs[i])); // Now remove it Def->removeValue(SMCTArgs[i]); } } else if (!CurRec->getValue(SMCTArgs[i])->getValue()->isComplete()) { return Error(SubMultiClass.RefRange.Start, "Value not specified for template argument #" + Twine(i) + " (" + SMCTArgs[i]->getAsUnquotedString() + ") of subclass '" + SMC->Rec.getNameInitAsString() + "'!"); } } return false; } /// ProcessForeachDefs - Given a record, apply all of the variable /// values in all surrounding foreach loops, creating new records for /// each combination of values. bool TGParser::ProcessForeachDefs(Record *CurRec, SMLoc Loc) { if (Loops.empty()) return false; // We want to instantiate a new copy of CurRec for each combination // of nested loop iterator values. We don't want top instantiate // any copies until we have values for each loop iterator. IterSet IterVals; return ProcessForeachDefs(CurRec, Loc, IterVals); } /// ProcessForeachDefs - Given a record, a loop and a loop iterator, /// apply each of the variable values in this loop and then process /// subloops. bool TGParser::ProcessForeachDefs(Record *CurRec, SMLoc Loc, IterSet &IterVals){ // Recursively build a tuple of iterator values. if (IterVals.size() != Loops.size()) { assert(IterVals.size() < Loops.size()); ForeachLoop &CurLoop = Loops[IterVals.size()]; ListInit *List = dyn_cast<ListInit>(CurLoop.ListValue); if (!List) { Error(Loc, "Loop list is not a list"); return true; } // Process each value. for (unsigned i = 0; i < List->size(); ++i) { Init *ItemVal = List->resolveListElementReference(*CurRec, nullptr, i); IterVals.push_back(IterRecord(CurLoop.IterVar, ItemVal)); if (ProcessForeachDefs(CurRec, Loc, IterVals)) return true; IterVals.pop_back(); } return false; } // This is the bottom of the recursion. We have all of the iterator values // for this point in the iteration space. Instantiate a new record to // reflect this combination of values. auto IterRec = make_unique<Record>(*CurRec); // Set the iterator values now. for (IterRecord &IR : IterVals) { VarInit *IterVar = IR.IterVar; TypedInit *IVal = dyn_cast<TypedInit>(IR.IterValue); if (!IVal) return Error(Loc, "foreach iterator value is untyped"); IterRec->addValue(RecordVal(IterVar->getName(), IVal->getType(), false)); if (SetValue(IterRec.get(), Loc, IterVar->getName(), std::vector<unsigned>(), IVal)) return Error(Loc, "when instantiating this def"); // Resolve it next. IterRec->resolveReferencesTo(IterRec->getValue(IterVar->getName())); // Remove it. IterRec->removeValue(IterVar->getName()); } if (Records.getDef(IterRec->getNameInitAsString())) { // If this record is anonymous, it's no problem, just generate a new name if (!IterRec->isAnonymous()) return Error(Loc, "def already exists: " +IterRec->getNameInitAsString()); IterRec->setName(GetNewAnonymousName()); } Record *IterRecSave = IterRec.get(); // Keep a copy before release. Records.addDef(std::move(IterRec)); IterRecSave->resolveReferences(); return false; } //===----------------------------------------------------------------------===// // Parser Code //===----------------------------------------------------------------------===// /// isObjectStart - Return true if this is a valid first token for an Object. static bool isObjectStart(tgtok::TokKind K) { return K == tgtok::Class || K == tgtok::Def || K == tgtok::Defm || K == tgtok::Let || K == tgtok::MultiClass || K == tgtok::Foreach; } /// GetNewAnonymousName - Generate a unique anonymous name that can be used as /// an identifier. std::string TGParser::GetNewAnonymousName() { return "anonymous_" + utostr(AnonCounter++); } /// ParseObjectName - If an object name is specified, return it. Otherwise, /// return 0. /// ObjectName ::= Value [ '#' Value ]* /// ObjectName ::= /*empty*/ /// Init *TGParser::ParseObjectName(MultiClass *CurMultiClass) { switch (Lex.getCode()) { case tgtok::colon: case tgtok::semi: case tgtok::l_brace: // These are all of the tokens that can begin an object body. // Some of these can also begin values but we disallow those cases // because they are unlikely to be useful. return nullptr; default: break; } Record *CurRec = nullptr; if (CurMultiClass) CurRec = &CurMultiClass->Rec; RecTy *Type = nullptr; if (CurRec) { const TypedInit *CurRecName = dyn_cast<TypedInit>(CurRec->getNameInit()); if (!CurRecName) { TokError("Record name is not typed!"); return nullptr; } Type = CurRecName->getType(); } return ParseValue(CurRec, Type, ParseNameMode); } /// ParseClassID - Parse and resolve a reference to a class name. This returns /// null on error. /// /// ClassID ::= ID /// Record *TGParser::ParseClassID() { if (Lex.getCode() != tgtok::Id) { TokError("expected name for ClassID"); return nullptr; } Record *Result = Records.getClass(Lex.getCurStrVal()); if (!Result) TokError("Couldn't find class '" + Lex.getCurStrVal() + "'"); Lex.Lex(); return Result; } /// ParseMultiClassID - Parse and resolve a reference to a multiclass name. /// This returns null on error. /// /// MultiClassID ::= ID /// MultiClass *TGParser::ParseMultiClassID() { if (Lex.getCode() != tgtok::Id) { TokError("expected name for MultiClassID"); return nullptr; } MultiClass *Result = MultiClasses[Lex.getCurStrVal()].get(); if (!Result) TokError("Couldn't find multiclass '" + Lex.getCurStrVal() + "'"); Lex.Lex(); return Result; } /// ParseSubClassReference - Parse a reference to a subclass or to a templated /// subclass. This returns a SubClassRefTy with a null Record* on error. /// /// SubClassRef ::= ClassID /// SubClassRef ::= ClassID '<' ValueList '>' /// SubClassReference TGParser:: ParseSubClassReference(Record *CurRec, bool isDefm) { SubClassReference Result; Result.RefRange.Start = Lex.getLoc(); if (isDefm) { if (MultiClass *MC = ParseMultiClassID()) Result.Rec = &MC->Rec; } else { Result.Rec = ParseClassID(); } if (!Result.Rec) return Result; // If there is no template arg list, we're done. if (Lex.getCode() != tgtok::less) { Result.RefRange.End = Lex.getLoc(); return Result; } Lex.Lex(); // Eat the '<' if (Lex.getCode() == tgtok::greater) { TokError("subclass reference requires a non-empty list of template values"); Result.Rec = nullptr; return Result; } Result.TemplateArgs = ParseValueList(CurRec, Result.Rec); if (Result.TemplateArgs.empty()) { Result.Rec = nullptr; // Error parsing value list. return Result; } if (Lex.getCode() != tgtok::greater) { TokError("expected '>' in template value list"); Result.Rec = nullptr; return Result; } Lex.Lex(); Result.RefRange.End = Lex.getLoc(); return Result; } /// ParseSubMultiClassReference - Parse a reference to a subclass or to a /// templated submulticlass. This returns a SubMultiClassRefTy with a null /// Record* on error. /// /// SubMultiClassRef ::= MultiClassID /// SubMultiClassRef ::= MultiClassID '<' ValueList '>' /// SubMultiClassReference TGParser:: ParseSubMultiClassReference(MultiClass *CurMC) { SubMultiClassReference Result; Result.RefRange.Start = Lex.getLoc(); Result.MC = ParseMultiClassID(); if (!Result.MC) return Result; // If there is no template arg list, we're done. if (Lex.getCode() != tgtok::less) { Result.RefRange.End = Lex.getLoc(); return Result; } Lex.Lex(); // Eat the '<' if (Lex.getCode() == tgtok::greater) { TokError("subclass reference requires a non-empty list of template values"); Result.MC = nullptr; return Result; } Result.TemplateArgs = ParseValueList(&CurMC->Rec, &Result.MC->Rec); if (Result.TemplateArgs.empty()) { Result.MC = nullptr; // Error parsing value list. return Result; } if (Lex.getCode() != tgtok::greater) { TokError("expected '>' in template value list"); Result.MC = nullptr; return Result; } Lex.Lex(); Result.RefRange.End = Lex.getLoc(); return Result; } /// ParseRangePiece - Parse a bit/value range. /// RangePiece ::= INTVAL /// RangePiece ::= INTVAL '-' INTVAL /// RangePiece ::= INTVAL INTVAL bool TGParser::ParseRangePiece(std::vector<unsigned> &Ranges) { if (Lex.getCode() != tgtok::IntVal) { TokError("expected integer or bitrange"); return true; } int64_t Start = Lex.getCurIntVal(); int64_t End; if (Start < 0) return TokError("invalid range, cannot be negative"); switch (Lex.Lex()) { // eat first character. default: Ranges.push_back(Start); return false; case tgtok::minus: if (Lex.Lex() != tgtok::IntVal) { TokError("expected integer value as end of range"); return true; } End = Lex.getCurIntVal(); break; case tgtok::IntVal: End = -Lex.getCurIntVal(); break; } if (End < 0) return TokError("invalid range, cannot be negative"); Lex.Lex(); // Add to the range. if (Start < End) for (; Start <= End; ++Start) Ranges.push_back(Start); else for (; Start >= End; --Start) Ranges.push_back(Start); return false; } /// ParseRangeList - Parse a list of scalars and ranges into scalar values. /// /// RangeList ::= RangePiece (',' RangePiece)* /// std::vector<unsigned> TGParser::ParseRangeList() { std::vector<unsigned> Result; // Parse the first piece. if (ParseRangePiece(Result)) return std::vector<unsigned>(); while (Lex.getCode() == tgtok::comma) { Lex.Lex(); // Eat the comma. // Parse the next range piece. if (ParseRangePiece(Result)) return std::vector<unsigned>(); } return Result; } /// ParseOptionalRangeList - Parse either a range list in <>'s or nothing. /// OptionalRangeList ::= '<' RangeList '>' /// OptionalRangeList ::= /*empty*/ bool TGParser::ParseOptionalRangeList(std::vector<unsigned> &Ranges) { if (Lex.getCode() != tgtok::less) return false; SMLoc StartLoc = Lex.getLoc(); Lex.Lex(); // eat the '<' // Parse the range list. Ranges = ParseRangeList(); if (Ranges.empty()) return true; if (Lex.getCode() != tgtok::greater) { TokError("expected '>' at end of range list"); return Error(StartLoc, "to match this '<'"); } Lex.Lex(); // eat the '>'. return false; } /// ParseOptionalBitList - Parse either a bit list in {}'s or nothing. /// OptionalBitList ::= '{' RangeList '}' /// OptionalBitList ::= /*empty*/ bool TGParser::ParseOptionalBitList(std::vector<unsigned> &Ranges) { if (Lex.getCode() != tgtok::l_brace) return false; SMLoc StartLoc = Lex.getLoc(); Lex.Lex(); // eat the '{' // Parse the range list. Ranges = ParseRangeList(); if (Ranges.empty()) return true; if (Lex.getCode() != tgtok::r_brace) { TokError("expected '}' at end of bit list"); return Error(StartLoc, "to match this '{'"); } Lex.Lex(); // eat the '}'. return false; } /// ParseType - Parse and return a tblgen type. This returns null on error. /// /// Type ::= STRING // string type /// Type ::= CODE // code type /// Type ::= BIT // bit type /// Type ::= BITS '<' INTVAL '>' // bits<x> type /// Type ::= INT // int type /// Type ::= LIST '<' Type '>' // list<x> type /// Type ::= DAG // dag type /// Type ::= ClassID // Record Type /// RecTy *TGParser::ParseType() { switch (Lex.getCode()) { default: TokError("Unknown token when expecting a type"); return nullptr; case tgtok::String: Lex.Lex(); return StringRecTy::get(); case tgtok::Code: Lex.Lex(); return StringRecTy::get(); case tgtok::Bit: Lex.Lex(); return BitRecTy::get(); case tgtok::Int: Lex.Lex(); return IntRecTy::get(); case tgtok::Dag: Lex.Lex(); return DagRecTy::get(); case tgtok::Id: if (Record *R = ParseClassID()) return RecordRecTy::get(R); return nullptr; case tgtok::Bits: { if (Lex.Lex() != tgtok::less) { // Eat 'bits' TokError("expected '<' after bits type"); return nullptr; } if (Lex.Lex() != tgtok::IntVal) { // Eat '<' TokError("expected integer in bits<n> type"); return nullptr; } uint64_t Val = Lex.getCurIntVal(); if (Lex.Lex() != tgtok::greater) { // Eat count. TokError("expected '>' at end of bits<n> type"); return nullptr; } Lex.Lex(); // Eat '>' return BitsRecTy::get(Val); } case tgtok::List: { if (Lex.Lex() != tgtok::less) { // Eat 'bits' TokError("expected '<' after list type"); return nullptr; } Lex.Lex(); // Eat '<' RecTy *SubType = ParseType(); if (!SubType) return nullptr; if (Lex.getCode() != tgtok::greater) { TokError("expected '>' at end of list<ty> type"); return nullptr; } Lex.Lex(); // Eat '>' return ListRecTy::get(SubType); } } } /// ParseIDValue - This is just like ParseIDValue above, but it assumes the ID /// has already been read. Init *TGParser::ParseIDValue(Record *CurRec, const std::string &Name, SMLoc NameLoc, IDParseMode Mode) { if (CurRec) { if (const RecordVal *RV = CurRec->getValue(Name)) return VarInit::get(Name, RV->getType()); Init *TemplateArgName = QualifyName(*CurRec, CurMultiClass, Name, ":"); if (CurMultiClass) TemplateArgName = QualifyName(CurMultiClass->Rec, CurMultiClass, Name, "::"); if (CurRec->isTemplateArg(TemplateArgName)) { const RecordVal *RV = CurRec->getValue(TemplateArgName); assert(RV && "Template arg doesn't exist??"); return VarInit::get(TemplateArgName, RV->getType()); } } if (CurMultiClass) { Init *MCName = QualifyName(CurMultiClass->Rec, CurMultiClass, Name, "::"); if (CurMultiClass->Rec.isTemplateArg(MCName)) { const RecordVal *RV = CurMultiClass->Rec.getValue(MCName); assert(RV && "Template arg doesn't exist??"); return VarInit::get(MCName, RV->getType()); } } // If this is in a foreach loop, make sure it's not a loop iterator for (const auto &L : Loops) { VarInit *IterVar = dyn_cast<VarInit>(L.IterVar); if (IterVar && IterVar->getName() == Name) return IterVar; } if (Mode == ParseNameMode) return StringInit::get(Name); if (Record *D = Records.getDef(Name)) return DefInit::get(D); if (Mode == ParseValueMode) { Error(NameLoc, "Variable not defined: '" + Name + "'"); return nullptr; } return StringInit::get(Name); } /// ParseOperation - Parse an operator. This returns null on error. /// /// Operation ::= XOperator ['<' Type '>'] '(' Args ')' /// Init *TGParser::ParseOperation(Record *CurRec, RecTy *ItemType) { switch (Lex.getCode()) { default: TokError("unknown operation"); return nullptr; case tgtok::XHead: case tgtok::XTail: case tgtok::XEmpty: case tgtok::XCast: { // Value ::= !unop '(' Value ')' UnOpInit::UnaryOp Code; RecTy *Type = nullptr; switch (Lex.getCode()) { default: llvm_unreachable("Unhandled code!"); case tgtok::XCast: Lex.Lex(); // eat the operation Code = UnOpInit::CAST; Type = ParseOperatorType(); if (!Type) { TokError("did not get type for unary operator"); return nullptr; } break; case tgtok::XHead: Lex.Lex(); // eat the operation Code = UnOpInit::HEAD; break; case tgtok::XTail: Lex.Lex(); // eat the operation Code = UnOpInit::TAIL; break; case tgtok::XEmpty: Lex.Lex(); // eat the operation Code = UnOpInit::EMPTY; Type = IntRecTy::get(); break; } if (Lex.getCode() != tgtok::l_paren) { TokError("expected '(' after unary operator"); return nullptr; } Lex.Lex(); // eat the '(' Init *LHS = ParseValue(CurRec); if (!LHS) return nullptr; if (Code == UnOpInit::HEAD || Code == UnOpInit::TAIL || Code == UnOpInit::EMPTY) { ListInit *LHSl = dyn_cast<ListInit>(LHS); StringInit *LHSs = dyn_cast<StringInit>(LHS); TypedInit *LHSt = dyn_cast<TypedInit>(LHS); if (!LHSl && !LHSs && !LHSt) { TokError("expected list or string type argument in unary operator"); return nullptr; } if (LHSt) { ListRecTy *LType = dyn_cast<ListRecTy>(LHSt->getType()); StringRecTy *SType = dyn_cast<StringRecTy>(LHSt->getType()); if (!LType && !SType) { TokError("expected list or string type argument in unary operator"); return nullptr; } } if (Code == UnOpInit::HEAD || Code == UnOpInit::TAIL) { if (!LHSl && !LHSt) { TokError("expected list type argument in unary operator"); return nullptr; } if (LHSl && LHSl->empty()) { TokError("empty list argument in unary operator"); return nullptr; } if (LHSl) { Init *Item = LHSl->getElement(0); TypedInit *Itemt = dyn_cast<TypedInit>(Item); if (!Itemt) { TokError("untyped list element in unary operator"); return nullptr; } Type = (Code == UnOpInit::HEAD) ? Itemt->getType() : ListRecTy::get(Itemt->getType()); } else { assert(LHSt && "expected list type argument in unary operator"); ListRecTy *LType = dyn_cast<ListRecTy>(LHSt->getType()); if (!LType) { TokError("expected list type argument in unary operator"); return nullptr; } Type = (Code == UnOpInit::HEAD) ? LType->getElementType() : LType; } } } if (Lex.getCode() != tgtok::r_paren) { TokError("expected ')' in unary operator"); return nullptr; } Lex.Lex(); // eat the ')' return (UnOpInit::get(Code, LHS, Type))->Fold(CurRec, CurMultiClass); } case tgtok::XConcat: case tgtok::XADD: case tgtok::XAND: case tgtok::XSRA: case tgtok::XSRL: case tgtok::XSHL: case tgtok::XEq: case tgtok::XListConcat: case tgtok::XStrConcat: { // Value ::= !binop '(' Value ',' Value ')' tgtok::TokKind OpTok = Lex.getCode(); SMLoc OpLoc = Lex.getLoc(); Lex.Lex(); // eat the operation BinOpInit::BinaryOp Code; RecTy *Type = nullptr; switch (OpTok) { default: llvm_unreachable("Unhandled code!"); case tgtok::XConcat: Code = BinOpInit::CONCAT;Type = DagRecTy::get(); break; case tgtok::XADD: Code = BinOpInit::ADD; Type = IntRecTy::get(); break; case tgtok::XAND: Code = BinOpInit::AND; Type = IntRecTy::get(); break; case tgtok::XSRA: Code = BinOpInit::SRA; Type = IntRecTy::get(); break; case tgtok::XSRL: Code = BinOpInit::SRL; Type = IntRecTy::get(); break; case tgtok::XSHL: Code = BinOpInit::SHL; Type = IntRecTy::get(); break; case tgtok::XEq: Code = BinOpInit::EQ; Type = BitRecTy::get(); break; case tgtok::XListConcat: Code = BinOpInit::LISTCONCAT; // We don't know the list type until we parse the first argument break; case tgtok::XStrConcat: Code = BinOpInit::STRCONCAT; Type = StringRecTy::get(); break; } if (Lex.getCode() != tgtok::l_paren) { TokError("expected '(' after binary operator"); return nullptr; } Lex.Lex(); // eat the '(' SmallVector<Init*, 2> InitList; InitList.push_back(ParseValue(CurRec)); if (!InitList.back()) return nullptr; while (Lex.getCode() == tgtok::comma) { Lex.Lex(); // eat the ',' InitList.push_back(ParseValue(CurRec)); if (!InitList.back()) return nullptr; } if (Lex.getCode() != tgtok::r_paren) { TokError("expected ')' in operator"); return nullptr; } Lex.Lex(); // eat the ')' // If we are doing !listconcat, we should know the type by now if (OpTok == tgtok::XListConcat) { if (VarInit *Arg0 = dyn_cast<VarInit>(InitList[0])) Type = Arg0->getType(); else if (ListInit *Arg0 = dyn_cast<ListInit>(InitList[0])) Type = Arg0->getType(); else { InitList[0]->dump(); Error(OpLoc, "expected a list"); return nullptr; } } // We allow multiple operands to associative operators like !strconcat as // shorthand for nesting them. if (Code == BinOpInit::STRCONCAT || Code == BinOpInit::LISTCONCAT) { while (InitList.size() > 2) { Init *RHS = InitList.pop_back_val(); RHS = (BinOpInit::get(Code, InitList.back(), RHS, Type)) ->Fold(CurRec, CurMultiClass); InitList.back() = RHS; } } if (InitList.size() == 2) return (BinOpInit::get(Code, InitList[0], InitList[1], Type)) ->Fold(CurRec, CurMultiClass); Error(OpLoc, "expected two operands to operator"); return nullptr; } case tgtok::XIf: case tgtok::XForEach: case tgtok::XSubst: { // Value ::= !ternop '(' Value ',' Value ',' Value ')' TernOpInit::TernaryOp Code; RecTy *Type = nullptr; tgtok::TokKind LexCode = Lex.getCode(); Lex.Lex(); // eat the operation switch (LexCode) { default: llvm_unreachable("Unhandled code!"); case tgtok::XIf: Code = TernOpInit::IF; break; case tgtok::XForEach: Code = TernOpInit::FOREACH; break; case tgtok::XSubst: Code = TernOpInit::SUBST; break; } if (Lex.getCode() != tgtok::l_paren) { TokError("expected '(' after ternary operator"); return nullptr; } Lex.Lex(); // eat the '(' Init *LHS = ParseValue(CurRec); if (!LHS) return nullptr; if (Lex.getCode() != tgtok::comma) { TokError("expected ',' in ternary operator"); return nullptr; } Lex.Lex(); // eat the ',' Init *MHS = ParseValue(CurRec, ItemType); if (!MHS) return nullptr; if (Lex.getCode() != tgtok::comma) { TokError("expected ',' in ternary operator"); return nullptr; } Lex.Lex(); // eat the ',' Init *RHS = ParseValue(CurRec, ItemType); if (!RHS) return nullptr; if (Lex.getCode() != tgtok::r_paren) { TokError("expected ')' in binary operator"); return nullptr; } Lex.Lex(); // eat the ')' switch (LexCode) { default: llvm_unreachable("Unhandled code!"); case tgtok::XIf: { RecTy *MHSTy = nullptr; RecTy *RHSTy = nullptr; if (TypedInit *MHSt = dyn_cast<TypedInit>(MHS)) MHSTy = MHSt->getType(); if (BitsInit *MHSbits = dyn_cast<BitsInit>(MHS)) MHSTy = BitsRecTy::get(MHSbits->getNumBits()); if (isa<BitInit>(MHS)) MHSTy = BitRecTy::get(); if (TypedInit *RHSt = dyn_cast<TypedInit>(RHS)) RHSTy = RHSt->getType(); if (BitsInit *RHSbits = dyn_cast<BitsInit>(RHS)) RHSTy = BitsRecTy::get(RHSbits->getNumBits()); if (isa<BitInit>(RHS)) RHSTy = BitRecTy::get(); // For UnsetInit, it's typed from the other hand. if (isa<UnsetInit>(MHS)) MHSTy = RHSTy; if (isa<UnsetInit>(RHS)) RHSTy = MHSTy; if (!MHSTy || !RHSTy) { TokError("could not get type for !if"); return nullptr; } if (MHSTy->typeIsConvertibleTo(RHSTy)) { Type = RHSTy; } else if (RHSTy->typeIsConvertibleTo(MHSTy)) { Type = MHSTy; } else { TokError("inconsistent types for !if"); return nullptr; } break; } case tgtok::XForEach: { TypedInit *MHSt = dyn_cast<TypedInit>(MHS); if (!MHSt) { TokError("could not get type for !foreach"); return nullptr; } Type = MHSt->getType(); break; } case tgtok::XSubst: { TypedInit *RHSt = dyn_cast<TypedInit>(RHS); if (!RHSt) { TokError("could not get type for !subst"); return nullptr; } Type = RHSt->getType(); break; } } return (TernOpInit::get(Code, LHS, MHS, RHS, Type))->Fold(CurRec, CurMultiClass); } } } /// ParseOperatorType - Parse a type for an operator. This returns /// null on error. /// /// OperatorType ::= '<' Type '>' /// RecTy *TGParser::ParseOperatorType() { RecTy *Type = nullptr; if (Lex.getCode() != tgtok::less) { TokError("expected type name for operator"); return nullptr; } Lex.Lex(); // eat the < Type = ParseType(); if (!Type) { TokError("expected type name for operator"); return nullptr; } if (Lex.getCode() != tgtok::greater) { TokError("expected type name for operator"); return nullptr; } Lex.Lex(); // eat the > return Type; } /// ParseSimpleValue - Parse a tblgen value. This returns null on error. /// /// SimpleValue ::= IDValue /// SimpleValue ::= INTVAL /// SimpleValue ::= STRVAL+ /// SimpleValue ::= CODEFRAGMENT /// SimpleValue ::= '?' /// SimpleValue ::= '{' ValueList '}' /// SimpleValue ::= ID '<' ValueListNE '>' /// SimpleValue ::= '[' ValueList ']' /// SimpleValue ::= '(' IDValue DagArgList ')' /// SimpleValue ::= CONCATTOK '(' Value ',' Value ')' /// SimpleValue ::= ADDTOK '(' Value ',' Value ')' /// SimpleValue ::= SHLTOK '(' Value ',' Value ')' /// SimpleValue ::= SRATOK '(' Value ',' Value ')' /// SimpleValue ::= SRLTOK '(' Value ',' Value ')' /// SimpleValue ::= LISTCONCATTOK '(' Value ',' Value ')' /// SimpleValue ::= STRCONCATTOK '(' Value ',' Value ')' /// Init *TGParser::ParseSimpleValue(Record *CurRec, RecTy *ItemType, IDParseMode Mode) { Init *R = nullptr; switch (Lex.getCode()) { default: TokError("Unknown token when parsing a value"); break; case tgtok::paste: // This is a leading paste operation. This is deprecated but // still exists in some .td files. Ignore it. Lex.Lex(); // Skip '#'. return ParseSimpleValue(CurRec, ItemType, Mode); case tgtok::IntVal: R = IntInit::get(Lex.getCurIntVal()); Lex.Lex(); break; case tgtok::BinaryIntVal: { auto BinaryVal = Lex.getCurBinaryIntVal(); SmallVector<Init*, 16> Bits(BinaryVal.second); for (unsigned i = 0, e = BinaryVal.second; i != e; ++i) Bits[i] = BitInit::get(BinaryVal.first & (1LL << i)); R = BitsInit::get(Bits); Lex.Lex(); break; } case tgtok::StrVal: { std::string Val = Lex.getCurStrVal(); Lex.Lex(); // Handle multiple consecutive concatenated strings. while (Lex.getCode() == tgtok::StrVal) { Val += Lex.getCurStrVal(); Lex.Lex(); } R = StringInit::get(Val); break; } case tgtok::CodeFragment: R = StringInit::get(Lex.getCurStrVal()); Lex.Lex(); break; case tgtok::question: R = UnsetInit::get(); Lex.Lex(); break; case tgtok::Id: { SMLoc NameLoc = Lex.getLoc(); std::string Name = Lex.getCurStrVal(); if (Lex.Lex() != tgtok::less) // consume the Id. return ParseIDValue(CurRec, Name, NameLoc, Mode); // Value ::= IDValue // Value ::= ID '<' ValueListNE '>' if (Lex.Lex() == tgtok::greater) { TokError("expected non-empty value list"); return nullptr; } // This is a CLASS<initvalslist> expression. This is supposed to synthesize // a new anonymous definition, deriving from CLASS<initvalslist> with no // body. Record *Class = Records.getClass(Name); if (!Class) { Error(NameLoc, "Expected a class name, got '" + Name + "'"); return nullptr; } std::vector<Init*> ValueList = ParseValueList(CurRec, Class); if (ValueList.empty()) return nullptr; if (Lex.getCode() != tgtok::greater) { TokError("expected '>' at end of value list"); return nullptr; } Lex.Lex(); // eat the '>' SMLoc EndLoc = Lex.getLoc(); // Create the new record, set it as CurRec temporarily. auto NewRecOwner = llvm::make_unique<Record>(GetNewAnonymousName(), NameLoc, Records, /*IsAnonymous=*/true); Record *NewRec = NewRecOwner.get(); // Keep a copy since we may release. SubClassReference SCRef; SCRef.RefRange = SMRange(NameLoc, EndLoc); SCRef.Rec = Class; SCRef.TemplateArgs = ValueList; // Add info about the subclass to NewRec. if (AddSubClass(NewRec, SCRef)) return nullptr; if (!CurMultiClass) { NewRec->resolveReferences(); Records.addDef(std::move(NewRecOwner)); } else { // This needs to get resolved once the multiclass template arguments are // known before any use. NewRec->setResolveFirst(true); // Otherwise, we're inside a multiclass, add it to the multiclass. CurMultiClass->DefPrototypes.push_back(std::move(NewRecOwner)); // Copy the template arguments for the multiclass into the def. for (Init *TArg : CurMultiClass->Rec.getTemplateArgs()) { const RecordVal *RV = CurMultiClass->Rec.getValue(TArg); assert(RV && "Template arg doesn't exist?"); NewRec->addValue(*RV); } // We can't return the prototype def here, instead return: // !cast<ItemType>(!strconcat(NAME, AnonName)). const RecordVal *MCNameRV = CurMultiClass->Rec.getValue("NAME"); assert(MCNameRV && "multiclass record must have a NAME"); return UnOpInit::get(UnOpInit::CAST, BinOpInit::get(BinOpInit::STRCONCAT, VarInit::get(MCNameRV->getName(), MCNameRV->getType()), NewRec->getNameInit(), StringRecTy::get()), Class->getDefInit()->getType()); } // The result of the expression is a reference to the new record. return DefInit::get(NewRec); } case tgtok::l_brace: { // Value ::= '{' ValueList '}' SMLoc BraceLoc = Lex.getLoc(); Lex.Lex(); // eat the '{' std::vector<Init*> Vals; if (Lex.getCode() != tgtok::r_brace) { Vals = ParseValueList(CurRec); if (Vals.empty()) return nullptr; } if (Lex.getCode() != tgtok::r_brace) { TokError("expected '}' at end of bit list value"); return nullptr; } Lex.Lex(); // eat the '}' SmallVector<Init *, 16> NewBits; // As we parse { a, b, ... }, 'a' is the highest bit, but we parse it // first. We'll first read everything in to a vector, then we can reverse // it to get the bits in the correct order for the BitsInit value. for (unsigned i = 0, e = Vals.size(); i != e; ++i) { // FIXME: The following two loops would not be duplicated // if the API was a little more orthogonal. // bits<n> values are allowed to initialize n bits. if (BitsInit *BI = dyn_cast<BitsInit>(Vals[i])) { for (unsigned i = 0, e = BI->getNumBits(); i != e; ++i) NewBits.push_back(BI->getBit((e - i) - 1)); continue; } // bits<n> can also come from variable initializers. if (VarInit *VI = dyn_cast<VarInit>(Vals[i])) { if (BitsRecTy *BitsRec = dyn_cast<BitsRecTy>(VI->getType())) { for (unsigned i = 0, e = BitsRec->getNumBits(); i != e; ++i) NewBits.push_back(VI->getBit((e - i) - 1)); continue; } // Fallthrough to try convert this to a bit. } // All other values must be convertible to just a single bit. Init *Bit = Vals[i]->convertInitializerTo(BitRecTy::get()); if (!Bit) { Error(BraceLoc, "Element #" + Twine(i) + " (" + Vals[i]->getAsString() + ") is not convertable to a bit"); return nullptr; } NewBits.push_back(Bit); } std::reverse(NewBits.begin(), NewBits.end()); return BitsInit::get(NewBits); } case tgtok::l_square: { // Value ::= '[' ValueList ']' Lex.Lex(); // eat the '[' std::vector<Init*> Vals; RecTy *DeducedEltTy = nullptr; ListRecTy *GivenListTy = nullptr; if (ItemType) { ListRecTy *ListType = dyn_cast<ListRecTy>(ItemType); if (!ListType) { TokError(Twine("Type mismatch for list, expected list type, got ") + ItemType->getAsString()); return nullptr; } GivenListTy = ListType; } if (Lex.getCode() != tgtok::r_square) { Vals = ParseValueList(CurRec, nullptr, GivenListTy ? GivenListTy->getElementType() : nullptr); if (Vals.empty()) return nullptr; } if (Lex.getCode() != tgtok::r_square) { TokError("expected ']' at end of list value"); return nullptr; } Lex.Lex(); // eat the ']' RecTy *GivenEltTy = nullptr; if (Lex.getCode() == tgtok::less) { // Optional list element type Lex.Lex(); // eat the '<' GivenEltTy = ParseType(); if (!GivenEltTy) { // Couldn't parse element type return nullptr; } if (Lex.getCode() != tgtok::greater) { TokError("expected '>' at end of list element type"); return nullptr; } Lex.Lex(); // eat the '>' } // Check elements RecTy *EltTy = nullptr; for (Init *V : Vals) { TypedInit *TArg = dyn_cast<TypedInit>(V); if (!TArg) { TokError("Untyped list element"); return nullptr; } if (EltTy) { EltTy = resolveTypes(EltTy, TArg->getType()); if (!EltTy) { TokError("Incompatible types in list elements"); return nullptr; } } else { EltTy = TArg->getType(); } } if (GivenEltTy) { if (EltTy) { // Verify consistency if (!EltTy->typeIsConvertibleTo(GivenEltTy)) { TokError("Incompatible types in list elements"); return nullptr; } } EltTy = GivenEltTy; } if (!EltTy) { if (!ItemType) { TokError("No type for list"); return nullptr; } DeducedEltTy = GivenListTy->getElementType(); } else { // Make sure the deduced type is compatible with the given type if (GivenListTy) { if (!EltTy->typeIsConvertibleTo(GivenListTy->getElementType())) { TokError("Element type mismatch for list"); return nullptr; } } DeducedEltTy = EltTy; } return ListInit::get(Vals, DeducedEltTy); } case tgtok::l_paren: { // Value ::= '(' IDValue DagArgList ')' Lex.Lex(); // eat the '(' if (Lex.getCode() != tgtok::Id && Lex.getCode() != tgtok::XCast) { TokError("expected identifier in dag init"); return nullptr; } Init *Operator = ParseValue(CurRec); if (!Operator) return nullptr; // If the operator name is present, parse it. std::string OperatorName; if (Lex.getCode() == tgtok::colon) { if (Lex.Lex() != tgtok::VarName) { // eat the ':' TokError("expected variable name in dag operator"); return nullptr; } OperatorName = Lex.getCurStrVal(); Lex.Lex(); // eat the VarName. } std::vector<std::pair<llvm::Init*, std::string> > DagArgs; if (Lex.getCode() != tgtok::r_paren) { DagArgs = ParseDagArgList(CurRec); if (DagArgs.empty()) return nullptr; } if (Lex.getCode() != tgtok::r_paren) { TokError("expected ')' in dag init"); return nullptr; } Lex.Lex(); // eat the ')' return DagInit::get(Operator, OperatorName, DagArgs); } case tgtok::XHead: case tgtok::XTail: case tgtok::XEmpty: case tgtok::XCast: // Value ::= !unop '(' Value ')' case tgtok::XConcat: case tgtok::XADD: case tgtok::XAND: case tgtok::XSRA: case tgtok::XSRL: case tgtok::XSHL: case tgtok::XEq: case tgtok::XListConcat: case tgtok::XStrConcat: // Value ::= !binop '(' Value ',' Value ')' case tgtok::XIf: case tgtok::XForEach: case tgtok::XSubst: { // Value ::= !ternop '(' Value ',' Value ',' Value ')' return ParseOperation(CurRec, ItemType); } } return R; } /// ParseValue - Parse a tblgen value. This returns null on error. /// /// Value ::= SimpleValue ValueSuffix* /// ValueSuffix ::= '{' BitList '}' /// ValueSuffix ::= '[' BitList ']' /// ValueSuffix ::= '.' ID /// Init *TGParser::ParseValue(Record *CurRec, RecTy *ItemType, IDParseMode Mode) { Init *Result = ParseSimpleValue(CurRec, ItemType, Mode); if (!Result) return nullptr; // Parse the suffixes now if present. while (1) { switch (Lex.getCode()) { default: return Result; case tgtok::l_brace: { if (Mode == ParseNameMode || Mode == ParseForeachMode) // This is the beginning of the object body. return Result; SMLoc CurlyLoc = Lex.getLoc(); Lex.Lex(); // eat the '{' std::vector<unsigned> Ranges = ParseRangeList(); if (Ranges.empty()) return nullptr; // Reverse the bitlist. std::reverse(Ranges.begin(), Ranges.end()); Result = Result->convertInitializerBitRange(Ranges); if (!Result) { Error(CurlyLoc, "Invalid bit range for value"); return nullptr; } // Eat the '}'. if (Lex.getCode() != tgtok::r_brace) { TokError("expected '}' at end of bit range list"); return nullptr; } Lex.Lex(); break; } case tgtok::l_square: { SMLoc SquareLoc = Lex.getLoc(); Lex.Lex(); // eat the '[' std::vector<unsigned> Ranges = ParseRangeList(); if (Ranges.empty()) return nullptr; Result = Result->convertInitListSlice(Ranges); if (!Result) { Error(SquareLoc, "Invalid range for list slice"); return nullptr; } // Eat the ']'. if (Lex.getCode() != tgtok::r_square) { TokError("expected ']' at end of list slice"); return nullptr; } Lex.Lex(); break; } case tgtok::period: if (Lex.Lex() != tgtok::Id) { // eat the . TokError("expected field identifier after '.'"); return nullptr; } if (!Result->getFieldType(Lex.getCurStrVal())) { TokError("Cannot access field '" + Lex.getCurStrVal() + "' of value '" + Result->getAsString() + "'"); return nullptr; } Result = FieldInit::get(Result, Lex.getCurStrVal()); Lex.Lex(); // eat field name break; case tgtok::paste: SMLoc PasteLoc = Lex.getLoc(); // Create a !strconcat() operation, first casting each operand to // a string if necessary. TypedInit *LHS = dyn_cast<TypedInit>(Result); if (!LHS) { Error(PasteLoc, "LHS of paste is not typed!"); return nullptr; } if (LHS->getType() != StringRecTy::get()) { LHS = UnOpInit::get(UnOpInit::CAST, LHS, StringRecTy::get()); } TypedInit *RHS = nullptr; Lex.Lex(); // Eat the '#'. switch (Lex.getCode()) { case tgtok::colon: case tgtok::semi: case tgtok::l_brace: // These are all of the tokens that can begin an object body. // Some of these can also begin values but we disallow those cases // because they are unlikely to be useful. // Trailing paste, concat with an empty string. RHS = StringInit::get(""); break; default: Init *RHSResult = ParseValue(CurRec, ItemType, ParseNameMode); RHS = dyn_cast<TypedInit>(RHSResult); if (!RHS) { Error(PasteLoc, "RHS of paste is not typed!"); return nullptr; } if (RHS->getType() != StringRecTy::get()) { RHS = UnOpInit::get(UnOpInit::CAST, RHS, StringRecTy::get()); } break; } Result = BinOpInit::get(BinOpInit::STRCONCAT, LHS, RHS, StringRecTy::get())->Fold(CurRec, CurMultiClass); break; } } } /// ParseDagArgList - Parse the argument list for a dag literal expression. /// /// DagArg ::= Value (':' VARNAME)? /// DagArg ::= VARNAME /// DagArgList ::= DagArg /// DagArgList ::= DagArgList ',' DagArg std::vector<std::pair<llvm::Init*, std::string> > TGParser::ParseDagArgList(Record *CurRec) { std::vector<std::pair<llvm::Init*, std::string> > Result; while (1) { // DagArg ::= VARNAME if (Lex.getCode() == tgtok::VarName) { // A missing value is treated like '?'. Result.emplace_back(UnsetInit::get(), Lex.getCurStrVal()); Lex.Lex(); } else { // DagArg ::= Value (':' VARNAME)? Init *Val = ParseValue(CurRec); if (!Val) return std::vector<std::pair<llvm::Init*, std::string> >(); // If the variable name is present, add it. std::string VarName; if (Lex.getCode() == tgtok::colon) { if (Lex.Lex() != tgtok::VarName) { // eat the ':' TokError("expected variable name in dag literal"); return std::vector<std::pair<llvm::Init*, std::string> >(); } VarName = Lex.getCurStrVal(); Lex.Lex(); // eat the VarName. } Result.push_back(std::make_pair(Val, VarName)); } if (Lex.getCode() != tgtok::comma) break; Lex.Lex(); // eat the ',' } return Result; } /// ParseValueList - Parse a comma separated list of values, returning them as a /// vector. Note that this always expects to be able to parse at least one /// value. It returns an empty list if this is not possible. /// /// ValueList ::= Value (',' Value) /// std::vector<Init*> TGParser::ParseValueList(Record *CurRec, Record *ArgsRec, RecTy *EltTy) { std::vector<Init*> Result; RecTy *ItemType = EltTy; unsigned int ArgN = 0; if (ArgsRec && !EltTy) { ArrayRef<Init *> TArgs = ArgsRec->getTemplateArgs(); if (TArgs.empty()) { TokError("template argument provided to non-template class"); return std::vector<Init*>(); } const RecordVal *RV = ArgsRec->getValue(TArgs[ArgN]); if (!RV) { errs() << "Cannot find template arg " << ArgN << " (" << TArgs[ArgN] << ")\n"; } assert(RV && "Template argument record not found??"); ItemType = RV->getType(); ++ArgN; } Result.push_back(ParseValue(CurRec, ItemType)); if (!Result.back()) return std::vector<Init*>(); while (Lex.getCode() == tgtok::comma) { Lex.Lex(); // Eat the comma if (ArgsRec && !EltTy) { ArrayRef<Init *> TArgs = ArgsRec->getTemplateArgs(); if (ArgN >= TArgs.size()) { TokError("too many template arguments"); return std::vector<Init*>(); } const RecordVal *RV = ArgsRec->getValue(TArgs[ArgN]); assert(RV && "Template argument record not found??"); ItemType = RV->getType(); ++ArgN; } Result.push_back(ParseValue(CurRec, ItemType)); if (!Result.back()) return std::vector<Init*>(); } return Result; } /// ParseDeclaration - Read a declaration, returning the name of field ID, or an /// empty string on error. This can happen in a number of different context's, /// including within a def or in the template args for a def (which which case /// CurRec will be non-null) and within the template args for a multiclass (in /// which case CurRec will be null, but CurMultiClass will be set). This can /// also happen within a def that is within a multiclass, which will set both /// CurRec and CurMultiClass. /// /// Declaration ::= FIELD? Type ID ('=' Value)? /// Init *TGParser::ParseDeclaration(Record *CurRec, bool ParsingTemplateArgs) { // Read the field prefix if present. bool HasField = Lex.getCode() == tgtok::Field; if (HasField) Lex.Lex(); RecTy *Type = ParseType(); if (!Type) return nullptr; if (Lex.getCode() != tgtok::Id) { TokError("Expected identifier in declaration"); return nullptr; } SMLoc IdLoc = Lex.getLoc(); Init *DeclName = StringInit::get(Lex.getCurStrVal()); Lex.Lex(); if (ParsingTemplateArgs) { if (CurRec) DeclName = QualifyName(*CurRec, CurMultiClass, DeclName, ":"); else assert(CurMultiClass); if (CurMultiClass) DeclName = QualifyName(CurMultiClass->Rec, CurMultiClass, DeclName, "::"); } // Add the value. if (AddValue(CurRec, IdLoc, RecordVal(DeclName, Type, HasField))) return nullptr; // If a value is present, parse it. if (Lex.getCode() == tgtok::equal) { Lex.Lex(); SMLoc ValLoc = Lex.getLoc(); Init *Val = ParseValue(CurRec, Type); if (!Val || SetValue(CurRec, ValLoc, DeclName, std::vector<unsigned>(), Val)) // Return the name, even if an error is thrown. This is so that we can // continue to make some progress, even without the value having been // initialized. return DeclName; } return DeclName; } /// ParseForeachDeclaration - Read a foreach declaration, returning /// the name of the declared object or a NULL Init on error. Return /// the name of the parsed initializer list through ForeachListName. /// /// ForeachDeclaration ::= ID '=' '[' ValueList ']' /// ForeachDeclaration ::= ID '=' '{' RangeList '}' /// ForeachDeclaration ::= ID '=' RangePiece /// VarInit *TGParser::ParseForeachDeclaration(ListInit *&ForeachListValue) { if (Lex.getCode() != tgtok::Id) { TokError("Expected identifier in foreach declaration"); return nullptr; } Init *DeclName = StringInit::get(Lex.getCurStrVal()); Lex.Lex(); // If a value is present, parse it. if (Lex.getCode() != tgtok::equal) { TokError("Expected '=' in foreach declaration"); return nullptr; } Lex.Lex(); // Eat the '=' RecTy *IterType = nullptr; std::vector<unsigned> Ranges; switch (Lex.getCode()) { default: TokError("Unknown token when expecting a range list"); return nullptr; case tgtok::l_square: { // '[' ValueList ']' Init *List = ParseSimpleValue(nullptr, nullptr, ParseForeachMode); ForeachListValue = dyn_cast<ListInit>(List); if (!ForeachListValue) { TokError("Expected a Value list"); return nullptr; } RecTy *ValueType = ForeachListValue->getType(); ListRecTy *ListType = dyn_cast<ListRecTy>(ValueType); if (!ListType) { TokError("Value list is not of list type"); return nullptr; } IterType = ListType->getElementType(); break; } case tgtok::IntVal: { // RangePiece. if (ParseRangePiece(Ranges)) return nullptr; break; } case tgtok::l_brace: { // '{' RangeList '}' Lex.Lex(); // eat the '{' Ranges = ParseRangeList(); if (Lex.getCode() != tgtok::r_brace) { TokError("expected '}' at end of bit range list"); return nullptr; } Lex.Lex(); break; } } if (!Ranges.empty()) { assert(!IterType && "Type already initialized?"); IterType = IntRecTy::get(); std::vector<Init*> Values; for (unsigned R : Ranges) Values.push_back(IntInit::get(R)); ForeachListValue = ListInit::get(Values, IterType); } if (!IterType) return nullptr; return VarInit::get(DeclName, IterType); } /// ParseTemplateArgList - Read a template argument list, which is a non-empty /// sequence of template-declarations in <>'s. If CurRec is non-null, these are /// template args for a def, which may or may not be in a multiclass. If null, /// these are the template args for a multiclass. /// /// TemplateArgList ::= '<' Declaration (',' Declaration)* '>' /// bool TGParser::ParseTemplateArgList(Record *CurRec) { assert(Lex.getCode() == tgtok::less && "Not a template arg list!"); Lex.Lex(); // eat the '<' Record *TheRecToAddTo = CurRec ? CurRec : &CurMultiClass->Rec; // Read the first declaration. Init *TemplArg = ParseDeclaration(CurRec, true/*templateargs*/); if (!TemplArg) return true; TheRecToAddTo->addTemplateArg(TemplArg); while (Lex.getCode() == tgtok::comma) { Lex.Lex(); // eat the ',' // Read the following declarations. TemplArg = ParseDeclaration(CurRec, true/*templateargs*/); if (!TemplArg) return true; TheRecToAddTo->addTemplateArg(TemplArg); } if (Lex.getCode() != tgtok::greater) return TokError("expected '>' at end of template argument list"); Lex.Lex(); // eat the '>'. return false; } /// ParseBodyItem - Parse a single item at within the body of a def or class. /// /// BodyItem ::= Declaration ';' /// BodyItem ::= LET ID OptionalBitList '=' Value ';' bool TGParser::ParseBodyItem(Record *CurRec) { if (Lex.getCode() != tgtok::Let) { if (!ParseDeclaration(CurRec, false)) return true; if (Lex.getCode() != tgtok::semi) return TokError("expected ';' after declaration"); Lex.Lex(); return false; } // LET ID OptionalRangeList '=' Value ';' if (Lex.Lex() != tgtok::Id) return TokError("expected field identifier after let"); SMLoc IdLoc = Lex.getLoc(); std::string FieldName = Lex.getCurStrVal(); Lex.Lex(); // eat the field name. std::vector<unsigned> BitList; if (ParseOptionalBitList(BitList)) return true; std::reverse(BitList.begin(), BitList.end()); if (Lex.getCode() != tgtok::equal) return TokError("expected '=' in let expression"); Lex.Lex(); // eat the '='. RecordVal *Field = CurRec->getValue(FieldName); if (!Field) return TokError("Value '" + FieldName + "' unknown!"); RecTy *Type = Field->getType(); Init *Val = ParseValue(CurRec, Type); if (!Val) return true; if (Lex.getCode() != tgtok::semi) return TokError("expected ';' after let expression"); Lex.Lex(); return SetValue(CurRec, IdLoc, FieldName, BitList, Val); } /// ParseBody - Read the body of a class or def. Return true on error, false on /// success. /// /// Body ::= ';' /// Body ::= '{' BodyList '}' /// BodyList BodyItem* /// bool TGParser::ParseBody(Record *CurRec) { // If this is a null definition, just eat the semi and return. if (Lex.getCode() == tgtok::semi) { Lex.Lex(); return false; } if (Lex.getCode() != tgtok::l_brace) return TokError("Expected ';' or '{' to start body"); // Eat the '{'. Lex.Lex(); while (Lex.getCode() != tgtok::r_brace) if (ParseBodyItem(CurRec)) return true; // Eat the '}'. Lex.Lex(); return false; } /// \brief Apply the current let bindings to \a CurRec. /// \returns true on error, false otherwise. bool TGParser::ApplyLetStack(Record *CurRec) { for (std::vector<LetRecord> &LetInfo : LetStack) for (LetRecord &LR : LetInfo) if (SetValue(CurRec, LR.Loc, LR.Name, LR.Bits, LR.Value)) return true; return false; } /// ParseObjectBody - Parse the body of a def or class. This consists of an /// optional ClassList followed by a Body. CurRec is the current def or class /// that is being parsed. /// /// ObjectBody ::= BaseClassList Body /// BaseClassList ::= /*empty*/ /// BaseClassList ::= ':' BaseClassListNE /// BaseClassListNE ::= SubClassRef (',' SubClassRef)* /// bool TGParser::ParseObjectBody(Record *CurRec) { // If there is a baseclass list, read it. if (Lex.getCode() == tgtok::colon) { Lex.Lex(); // Read all of the subclasses. SubClassReference SubClass = ParseSubClassReference(CurRec, false); while (1) { // Check for error. if (!SubClass.Rec) return true; // Add it. if (AddSubClass(CurRec, SubClass)) return true; if (Lex.getCode() != tgtok::comma) break; Lex.Lex(); // eat ','. SubClass = ParseSubClassReference(CurRec, false); } } if (ApplyLetStack(CurRec)) return true; return ParseBody(CurRec); } /// ParseDef - Parse and return a top level or multiclass def, return the record /// corresponding to it. This returns null on error. /// /// DefInst ::= DEF ObjectName ObjectBody /// bool TGParser::ParseDef(MultiClass *CurMultiClass) { SMLoc DefLoc = Lex.getLoc(); assert(Lex.getCode() == tgtok::Def && "Unknown tok"); Lex.Lex(); // Eat the 'def' token. // Parse ObjectName and make a record for it. std::unique_ptr<Record> CurRecOwner; Init *Name = ParseObjectName(CurMultiClass); if (Name) CurRecOwner = make_unique<Record>(Name, DefLoc, Records); else CurRecOwner = llvm::make_unique<Record>(GetNewAnonymousName(), DefLoc, Records, /*IsAnonymous=*/true); Record *CurRec = CurRecOwner.get(); // Keep a copy since we may release. if (!CurMultiClass && Loops.empty()) { // Top-level def definition. // Ensure redefinition doesn't happen. if (Records.getDef(CurRec->getNameInitAsString())) return Error(DefLoc, "def '" + CurRec->getNameInitAsString()+ "' already defined"); Records.addDef(std::move(CurRecOwner)); if (ParseObjectBody(CurRec)) return true; } else if (CurMultiClass) { // Parse the body before adding this prototype to the DefPrototypes vector. // That way implicit definitions will be added to the DefPrototypes vector // before this object, instantiated prior to defs derived from this object, // and this available for indirect name resolution when defs derived from // this object are instantiated. if (ParseObjectBody(CurRec)) return true; // Otherwise, a def inside a multiclass, add it to the multiclass. for (const auto &Proto : CurMultiClass->DefPrototypes) if (Proto->getNameInit() == CurRec->getNameInit()) return Error(DefLoc, "def '" + CurRec->getNameInitAsString() + "' already defined in this multiclass!"); CurMultiClass->DefPrototypes.push_back(std::move(CurRecOwner)); } else if (ParseObjectBody(CurRec)) { return true; } if (!CurMultiClass) // Def's in multiclasses aren't really defs. // See Record::setName(). This resolve step will see any new name // for the def that might have been created when resolving // inheritance, values and arguments above. CurRec->resolveReferences(); // If ObjectBody has template arguments, it's an error. assert(CurRec->getTemplateArgs().empty() && "How'd this get template args?"); if (CurMultiClass) { // Copy the template arguments for the multiclass into the def. for (Init *TArg : CurMultiClass->Rec.getTemplateArgs()) { const RecordVal *RV = CurMultiClass->Rec.getValue(TArg); assert(RV && "Template arg doesn't exist?"); CurRec->addValue(*RV); } } if (ProcessForeachDefs(CurRec, DefLoc)) return Error(DefLoc, "Could not process loops for def" + CurRec->getNameInitAsString()); return false; } /// ParseForeach - Parse a for statement. Return the record corresponding /// to it. This returns true on error. /// /// Foreach ::= FOREACH Declaration IN '{ ObjectList '}' /// Foreach ::= FOREACH Declaration IN Object /// bool TGParser::ParseForeach(MultiClass *CurMultiClass) { assert(Lex.getCode() == tgtok::Foreach && "Unknown tok"); Lex.Lex(); // Eat the 'for' token. // Make a temporary object to record items associated with the for // loop. ListInit *ListValue = nullptr; VarInit *IterName = ParseForeachDeclaration(ListValue); if (!IterName) return TokError("expected declaration in for"); if (Lex.getCode() != tgtok::In) return TokError("Unknown tok"); Lex.Lex(); // Eat the in // Create a loop object and remember it. Loops.push_back(ForeachLoop(IterName, ListValue)); if (Lex.getCode() != tgtok::l_brace) { // FOREACH Declaration IN Object if (ParseObject(CurMultiClass)) return true; } else { SMLoc BraceLoc = Lex.getLoc(); // Otherwise, this is a group foreach. Lex.Lex(); // eat the '{'. // Parse the object list. if (ParseObjectList(CurMultiClass)) return true; if (Lex.getCode() != tgtok::r_brace) { TokError("expected '}' at end of foreach command"); return Error(BraceLoc, "to match this '{'"); } Lex.Lex(); // Eat the } } // We've processed everything in this loop. Loops.pop_back(); return false; } /// ParseClass - Parse a tblgen class definition. /// /// ClassInst ::= CLASS ID TemplateArgList? ObjectBody /// bool TGParser::ParseClass() { assert(Lex.getCode() == tgtok::Class && "Unexpected token!"); Lex.Lex(); if (Lex.getCode() != tgtok::Id) return TokError("expected class name after 'class' keyword"); Record *CurRec = Records.getClass(Lex.getCurStrVal()); if (CurRec) { // If the body was previously defined, this is an error. if (CurRec->getValues().size() > 1 || // Account for NAME. !CurRec->getSuperClasses().empty() || !CurRec->getTemplateArgs().empty()) return TokError("Class '" + CurRec->getNameInitAsString() + "' already defined"); } else { // If this is the first reference to this class, create and add it. auto NewRec = llvm::make_unique<Record>(Lex.getCurStrVal(), Lex.getLoc(), Records); CurRec = NewRec.get(); Records.addClass(std::move(NewRec)); } Lex.Lex(); // eat the name. // If there are template args, parse them. if (Lex.getCode() == tgtok::less) if (ParseTemplateArgList(CurRec)) return true; // Finally, parse the object body. return ParseObjectBody(CurRec); } /// ParseLetList - Parse a non-empty list of assignment expressions into a list /// of LetRecords. /// /// LetList ::= LetItem (',' LetItem)* /// LetItem ::= ID OptionalRangeList '=' Value /// std::vector<LetRecord> TGParser::ParseLetList() { std::vector<LetRecord> Result; while (1) { if (Lex.getCode() != tgtok::Id) { TokError("expected identifier in let definition"); return std::vector<LetRecord>(); } std::string Name = Lex.getCurStrVal(); SMLoc NameLoc = Lex.getLoc(); Lex.Lex(); // Eat the identifier. // Check for an optional RangeList. std::vector<unsigned> Bits; if (ParseOptionalRangeList(Bits)) return std::vector<LetRecord>(); std::reverse(Bits.begin(), Bits.end()); if (Lex.getCode() != tgtok::equal) { TokError("expected '=' in let expression"); return std::vector<LetRecord>(); } Lex.Lex(); // eat the '='. Init *Val = ParseValue(nullptr); if (!Val) return std::vector<LetRecord>(); // Now that we have everything, add the record. Result.emplace_back(std::move(Name), std::move(Bits), Val, NameLoc); if (Lex.getCode() != tgtok::comma) return Result; Lex.Lex(); // eat the comma. } } /// ParseTopLevelLet - Parse a 'let' at top level. This can be a couple of /// different related productions. This works inside multiclasses too. /// /// Object ::= LET LetList IN '{' ObjectList '}' /// Object ::= LET LetList IN Object /// bool TGParser::ParseTopLevelLet(MultiClass *CurMultiClass) { assert(Lex.getCode() == tgtok::Let && "Unexpected token"); Lex.Lex(); // Add this entry to the let stack. std::vector<LetRecord> LetInfo = ParseLetList(); if (LetInfo.empty()) return true; LetStack.push_back(std::move(LetInfo)); if (Lex.getCode() != tgtok::In) return TokError("expected 'in' at end of top-level 'let'"); Lex.Lex(); // If this is a scalar let, just handle it now if (Lex.getCode() != tgtok::l_brace) { // LET LetList IN Object if (ParseObject(CurMultiClass)) return true; } else { // Object ::= LETCommand '{' ObjectList '}' SMLoc BraceLoc = Lex.getLoc(); // Otherwise, this is a group let. Lex.Lex(); // eat the '{'. // Parse the object list. if (ParseObjectList(CurMultiClass)) return true; if (Lex.getCode() != tgtok::r_brace) { TokError("expected '}' at end of top level let command"); return Error(BraceLoc, "to match this '{'"); } Lex.Lex(); } // Outside this let scope, this let block is not active. LetStack.pop_back(); return false; } /// ParseMultiClass - Parse a multiclass definition. /// /// MultiClassInst ::= MULTICLASS ID TemplateArgList? /// ':' BaseMultiClassList '{' MultiClassObject+ '}' /// MultiClassObject ::= DefInst /// MultiClassObject ::= MultiClassInst /// MultiClassObject ::= DefMInst /// MultiClassObject ::= LETCommand '{' ObjectList '}' /// MultiClassObject ::= LETCommand Object /// bool TGParser::ParseMultiClass() { assert(Lex.getCode() == tgtok::MultiClass && "Unexpected token"); Lex.Lex(); // Eat the multiclass token. if (Lex.getCode() != tgtok::Id) return TokError("expected identifier after multiclass for name"); std::string Name = Lex.getCurStrVal(); auto Result = MultiClasses.insert(std::make_pair(Name, llvm::make_unique<MultiClass>(Name, Lex.getLoc(),Records))); if (!Result.second) return TokError("multiclass '" + Name + "' already defined"); CurMultiClass = Result.first->second.get(); Lex.Lex(); // Eat the identifier. // If there are template args, parse them. if (Lex.getCode() == tgtok::less) if (ParseTemplateArgList(nullptr)) return true; bool inherits = false; // If there are submulticlasses, parse them. if (Lex.getCode() == tgtok::colon) { inherits = true; Lex.Lex(); // Read all of the submulticlasses. SubMultiClassReference SubMultiClass = ParseSubMultiClassReference(CurMultiClass); while (1) { // Check for error. if (!SubMultiClass.MC) return true; // Add it. if (AddSubMultiClass(CurMultiClass, SubMultiClass)) return true; if (Lex.getCode() != tgtok::comma) break; Lex.Lex(); // eat ','. SubMultiClass = ParseSubMultiClassReference(CurMultiClass); } } if (Lex.getCode() != tgtok::l_brace) { if (!inherits) return TokError("expected '{' in multiclass definition"); if (Lex.getCode() != tgtok::semi) return TokError("expected ';' in multiclass definition"); Lex.Lex(); // eat the ';'. } else { if (Lex.Lex() == tgtok::r_brace) // eat the '{'. return TokError("multiclass must contain at least one def"); while (Lex.getCode() != tgtok::r_brace) { switch (Lex.getCode()) { default: return TokError("expected 'let', 'def' or 'defm' in multiclass body"); case tgtok::Let: case tgtok::Def: case tgtok::Defm: case tgtok::Foreach: if (ParseObject(CurMultiClass)) return true; break; } } Lex.Lex(); // eat the '}'. } CurMultiClass = nullptr; return false; } Record *TGParser::InstantiateMulticlassDef(MultiClass &MC, Record *DefProto, Init *&DefmPrefix, SMRange DefmPrefixRange, ArrayRef<Init *> TArgs, std::vector<Init *> &TemplateVals) { // We need to preserve DefProto so it can be reused for later // instantiations, so create a new Record to inherit from it. // Add in the defm name. If the defm prefix is empty, give each // instantiated def a unique name. Otherwise, if "#NAME#" exists in the // name, substitute the prefix for #NAME#. Otherwise, use the defm name // as a prefix. bool IsAnonymous = false; if (!DefmPrefix) { DefmPrefix = StringInit::get(GetNewAnonymousName()); IsAnonymous = true; } Init *DefName = DefProto->getNameInit(); StringInit *DefNameString = dyn_cast<StringInit>(DefName); if (DefNameString) { // We have a fully expanded string so there are no operators to // resolve. We should concatenate the given prefix and name. DefName = BinOpInit::get(BinOpInit::STRCONCAT, UnOpInit::get(UnOpInit::CAST, DefmPrefix, StringRecTy::get())->Fold(DefProto, &MC), DefName, StringRecTy::get())->Fold(DefProto, &MC); } // Make a trail of SMLocs from the multiclass instantiations. SmallVector<SMLoc, 4> Locs(1, DefmPrefixRange.Start); Locs.append(DefProto->getLoc().begin(), DefProto->getLoc().end()); auto CurRec = make_unique<Record>(DefName, Locs, Records, IsAnonymous); SubClassReference Ref; Ref.RefRange = DefmPrefixRange; Ref.Rec = DefProto; AddSubClass(CurRec.get(), Ref); // Set the value for NAME. We don't resolve references to it 'til later, // though, so that uses in nested multiclass names don't get // confused. if (SetValue(CurRec.get(), Ref.RefRange.Start, "NAME", std::vector<unsigned>(), DefmPrefix)) { Error(DefmPrefixRange.Start, "Could not resolve " + CurRec->getNameInitAsString() + ":NAME to '" + DefmPrefix->getAsUnquotedString() + "'"); return nullptr; } // If the DefNameString didn't resolve, we probably have a reference to // NAME and need to replace it. We need to do at least this much greedily, // otherwise nested multiclasses will end up with incorrect NAME expansions. if (!DefNameString) { RecordVal *DefNameRV = CurRec->getValue("NAME"); CurRec->resolveReferencesTo(DefNameRV); } if (!CurMultiClass) { // Now that we're at the top level, resolve all NAME references // in the resultant defs that weren't in the def names themselves. RecordVal *DefNameRV = CurRec->getValue("NAME"); CurRec->resolveReferencesTo(DefNameRV); // Check if the name is a complex pattern. // If so, resolve it. DefName = CurRec->getNameInit(); DefNameString = dyn_cast<StringInit>(DefName); // OK the pattern is more complex than simply using NAME. // Let's use the heavy weaponery. if (!DefNameString) { ResolveMulticlassDefArgs(MC, CurRec.get(), DefmPrefixRange.Start, Lex.getLoc(), TArgs, TemplateVals, false/*Delete args*/); DefName = CurRec->getNameInit(); DefNameString = dyn_cast<StringInit>(DefName); if (!DefNameString) DefName = DefName->convertInitializerTo(StringRecTy::get()); // We ran out of options here... DefNameString = dyn_cast<StringInit>(DefName); if (!DefNameString) { PrintFatalError(CurRec->getLoc()[CurRec->getLoc().size() - 1], DefName->getAsUnquotedString() + " is not a string."); return nullptr; } CurRec->setName(DefName); } // Now that NAME references are resolved and we're at the top level of // any multiclass expansions, add the record to the RecordKeeper. If we are // currently in a multiclass, it means this defm appears inside a // multiclass and its name won't be fully resolvable until we see // the top-level defm. Therefore, we don't add this to the // RecordKeeper at this point. If we did we could get duplicate // defs as more than one probably refers to NAME or some other // common internal placeholder. // Ensure redefinition doesn't happen. if (Records.getDef(CurRec->getNameInitAsString())) { Error(DefmPrefixRange.Start, "def '" + CurRec->getNameInitAsString() + "' already defined, instantiating defm with subdef '" + DefProto->getNameInitAsString() + "'"); return nullptr; } Record *CurRecSave = CurRec.get(); // Keep a copy before we release. Records.addDef(std::move(CurRec)); return CurRecSave; } // FIXME This is bad but the ownership transfer to caller is pretty messy. // The unique_ptr in this function at least protects the exits above. return CurRec.release(); } bool TGParser::ResolveMulticlassDefArgs(MultiClass &MC, Record *CurRec, SMLoc DefmPrefixLoc, SMLoc SubClassLoc, ArrayRef<Init *> TArgs, std::vector<Init *> &TemplateVals, bool DeleteArgs) { // Loop over all of the template arguments, setting them to the specified // value or leaving them as the default if necessary. for (unsigned i = 0, e = TArgs.size(); i != e; ++i) { // Check if a value is specified for this temp-arg. if (i < TemplateVals.size()) { // Set it now. if (SetValue(CurRec, DefmPrefixLoc, TArgs[i], std::vector<unsigned>(), TemplateVals[i])) return true; // Resolve it next. CurRec->resolveReferencesTo(CurRec->getValue(TArgs[i])); if (DeleteArgs) // Now remove it. CurRec->removeValue(TArgs[i]); } else if (!CurRec->getValue(TArgs[i])->getValue()->isComplete()) { return Error(SubClassLoc, "value not specified for template argument #" + Twine(i) + " (" + TArgs[i]->getAsUnquotedString() + ") of multiclassclass '" + MC.Rec.getNameInitAsString() + "'"); } } return false; } bool TGParser::ResolveMulticlassDef(MultiClass &MC, Record *CurRec, Record *DefProto, SMLoc DefmPrefixLoc) { // If the mdef is inside a 'let' expression, add to each def. if (ApplyLetStack(CurRec)) return Error(DefmPrefixLoc, "when instantiating this defm"); // Don't create a top level definition for defm inside multiclasses, // instead, only update the prototypes and bind the template args // with the new created definition. if (!CurMultiClass) return false; for (const auto &Proto : CurMultiClass->DefPrototypes) if (Proto->getNameInit() == CurRec->getNameInit()) return Error(DefmPrefixLoc, "defm '" + CurRec->getNameInitAsString() + "' already defined in this multiclass!"); CurMultiClass->DefPrototypes.push_back(std::unique_ptr<Record>(CurRec)); // Copy the template arguments for the multiclass into the new def. for (Init * TA : CurMultiClass->Rec.getTemplateArgs()) { const RecordVal *RV = CurMultiClass->Rec.getValue(TA); assert(RV && "Template arg doesn't exist?"); CurRec->addValue(*RV); } return false; } /// ParseDefm - Parse the instantiation of a multiclass. /// /// DefMInst ::= DEFM ID ':' DefmSubClassRef ';' /// bool TGParser::ParseDefm(MultiClass *CurMultiClass) { assert(Lex.getCode() == tgtok::Defm && "Unexpected token!"); SMLoc DefmLoc = Lex.getLoc(); Init *DefmPrefix = nullptr; if (Lex.Lex() == tgtok::Id) { // eat the defm. DefmPrefix = ParseObjectName(CurMultiClass); } SMLoc DefmPrefixEndLoc = Lex.getLoc(); if (Lex.getCode() != tgtok::colon) return TokError("expected ':' after defm identifier"); // Keep track of the new generated record definitions. std::vector<Record*> NewRecDefs; // This record also inherits from a regular class (non-multiclass)? bool InheritFromClass = false; // eat the colon. Lex.Lex(); SMLoc SubClassLoc = Lex.getLoc(); SubClassReference Ref = ParseSubClassReference(nullptr, true); while (1) { if (!Ref.Rec) return true; // To instantiate a multiclass, we need to first get the multiclass, then // instantiate each def contained in the multiclass with the SubClassRef // template parameters. MultiClass *MC = MultiClasses[Ref.Rec->getName()].get(); assert(MC && "Didn't lookup multiclass correctly?"); std::vector<Init*> &TemplateVals = Ref.TemplateArgs; // Verify that the correct number of template arguments were specified. ArrayRef<Init *> TArgs = MC->Rec.getTemplateArgs(); if (TArgs.size() < TemplateVals.size()) return Error(SubClassLoc, "more template args specified than multiclass expects"); // Loop over all the def's in the multiclass, instantiating each one. for (const std::unique_ptr<Record> &DefProto : MC->DefPrototypes) { // The record name construction goes as follow: // - If the def name is a string, prepend the prefix. // - If the def name is a more complex pattern, use that pattern. // As a result, the record is instanciated before resolving // arguments, as it would make its name a string. Record *CurRec = InstantiateMulticlassDef(*MC, DefProto.get(), DefmPrefix, SMRange(DefmLoc, DefmPrefixEndLoc), TArgs, TemplateVals); if (!CurRec) return true; // Now that the record is instanciated, we can resolve arguments. if (ResolveMulticlassDefArgs(*MC, CurRec, DefmLoc, SubClassLoc, TArgs, TemplateVals, true/*Delete args*/)) return Error(SubClassLoc, "could not instantiate def"); if (ResolveMulticlassDef(*MC, CurRec, DefProto.get(), DefmLoc)) return Error(SubClassLoc, "could not instantiate def"); // Defs that can be used by other definitions should be fully resolved // before any use. if (DefProto->isResolveFirst() && !CurMultiClass) { CurRec->resolveReferences(); CurRec->setResolveFirst(false); } NewRecDefs.push_back(CurRec); } if (Lex.getCode() != tgtok::comma) break; Lex.Lex(); // eat ','. if (Lex.getCode() != tgtok::Id) return TokError("expected identifier"); SubClassLoc = Lex.getLoc(); // A defm can inherit from regular classes (non-multiclass) as // long as they come in the end of the inheritance list. InheritFromClass = (Records.getClass(Lex.getCurStrVal()) != nullptr); if (InheritFromClass) break; Ref = ParseSubClassReference(nullptr, true); } if (InheritFromClass) { // Process all the classes to inherit as if they were part of a // regular 'def' and inherit all record values. SubClassReference SubClass = ParseSubClassReference(nullptr, false); while (1) { // Check for error. if (!SubClass.Rec) return true; // Get the expanded definition prototypes and teach them about // the record values the current class to inherit has for (Record *CurRec : NewRecDefs) { // Add it. if (AddSubClass(CurRec, SubClass)) return true; if (ApplyLetStack(CurRec)) return true; } if (Lex.getCode() != tgtok::comma) break; Lex.Lex(); // eat ','. SubClass = ParseSubClassReference(nullptr, false); } } if (!CurMultiClass) for (Record *CurRec : NewRecDefs) // See Record::setName(). This resolve step will see any new // name for the def that might have been created when resolving // inheritance, values and arguments above. CurRec->resolveReferences(); if (Lex.getCode() != tgtok::semi) return TokError("expected ';' at end of defm"); Lex.Lex(); return false; } /// ParseObject /// Object ::= ClassInst /// Object ::= DefInst /// Object ::= MultiClassInst /// Object ::= DefMInst /// Object ::= LETCommand '{' ObjectList '}' /// Object ::= LETCommand Object bool TGParser::ParseObject(MultiClass *MC) { switch (Lex.getCode()) { default: return TokError("Expected class, def, defm, multiclass or let definition"); case tgtok::Let: return ParseTopLevelLet(MC); case tgtok::Def: return ParseDef(MC); case tgtok::Foreach: return ParseForeach(MC); case tgtok::Defm: return ParseDefm(MC); case tgtok::Class: return ParseClass(); case tgtok::MultiClass: return ParseMultiClass(); } } /// ParseObjectList /// ObjectList :== Object* bool TGParser::ParseObjectList(MultiClass *MC) { while (isObjectStart(Lex.getCode())) { if (ParseObject(MC)) return true; } return false; } bool TGParser::ParseFile() { Lex.Lex(); // Prime the lexer. if (ParseObjectList()) return true; // If we have unread input at the end of the file, report it. if (Lex.getCode() == tgtok::Eof) return false; return TokError("Unexpected input at top level"); }