//===- lib/Support/YAMLTraits.cpp -----------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Support/YAMLTraits.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Errc.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/LineIterator.h" #include "llvm/Support/YAMLParser.h" #include "llvm/Support/raw_ostream.h" #include <cctype> #include <cstring> using namespace llvm; using namespace yaml; //===----------------------------------------------------------------------===// // IO //===----------------------------------------------------------------------===// IO::IO(void *Context) : Ctxt(Context) { } IO::~IO() { } void *IO::getContext() { return Ctxt; } void IO::setContext(void *Context) { Ctxt = Context; } //===----------------------------------------------------------------------===// // Input //===----------------------------------------------------------------------===// Input::Input(StringRef InputContent, void *Ctxt, SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt) : IO(Ctxt), Strm(new Stream(InputContent, SrcMgr)), CurrentNode(nullptr) { if (DiagHandler) SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt); DocIterator = Strm->begin(); } Input::~Input() { } std::error_code Input::error() { return EC; } // Pin the vtables to this file. void Input::HNode::anchor() {} void Input::EmptyHNode::anchor() {} void Input::ScalarHNode::anchor() {} void Input::MapHNode::anchor() {} void Input::SequenceHNode::anchor() {} bool Input::outputting() { return false; } bool Input::setCurrentDocument() { if (DocIterator != Strm->end()) { Node *N = DocIterator->getRoot(); if (!N) { assert(Strm->failed() && "Root is NULL iff parsing failed"); EC = make_error_code(errc::invalid_argument); return false; } if (isa<NullNode>(N)) { // Empty files are allowed and ignored ++DocIterator; return setCurrentDocument(); } TopNode = this->createHNodes(N); CurrentNode = TopNode.get(); return true; } return false; } bool Input::nextDocument() { return ++DocIterator != Strm->end(); } const Node *Input::getCurrentNode() const { return CurrentNode ? CurrentNode->_node : nullptr; } bool Input::mapTag(StringRef Tag, bool Default) { std::string foundTag = CurrentNode->_node->getVerbatimTag(); if (foundTag.empty()) { // If no tag found and 'Tag' is the default, say it was found. return Default; } // Return true iff found tag matches supplied tag. return Tag.equals(foundTag); } void Input::beginMapping() { if (EC) return; // CurrentNode can be null if the document is empty. MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode); if (MN) { MN->ValidKeys.clear(); } } bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault, void *&SaveInfo) { UseDefault = false; if (EC) return false; // CurrentNode is null for empty documents, which is an error in case required // nodes are present. if (!CurrentNode) { if (Required) EC = make_error_code(errc::invalid_argument); return false; } MapHNode *MN = dyn_cast<MapHNode>(CurrentNode); if (!MN) { setError(CurrentNode, "not a mapping"); return false; } MN->ValidKeys.push_back(Key); HNode *Value = MN->Mapping[Key].get(); if (!Value) { if (Required) setError(CurrentNode, Twine("missing required key '") + Key + "'"); else UseDefault = true; return false; } SaveInfo = CurrentNode; CurrentNode = Value; return true; } void Input::postflightKey(void *saveInfo) { CurrentNode = reinterpret_cast<HNode *>(saveInfo); } void Input::endMapping() { if (EC) return; // CurrentNode can be null if the document is empty. MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode); if (!MN) return; for (const auto &NN : MN->Mapping) { if (!MN->isValidKey(NN.first())) { setError(NN.second.get(), Twine("unknown key '") + NN.first() + "'"); break; } } } void Input::beginFlowMapping() { beginMapping(); } void Input::endFlowMapping() { endMapping(); } unsigned Input::beginSequence() { if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) return SQ->Entries.size(); if (isa<EmptyHNode>(CurrentNode)) return 0; // Treat case where there's a scalar "null" value as an empty sequence. if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) { if (isNull(SN->value())) return 0; } // Any other type of HNode is an error. setError(CurrentNode, "not a sequence"); return 0; } void Input::endSequence() { } bool Input::preflightElement(unsigned Index, void *&SaveInfo) { if (EC) return false; if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { SaveInfo = CurrentNode; CurrentNode = SQ->Entries[Index].get(); return true; } return false; } void Input::postflightElement(void *SaveInfo) { CurrentNode = reinterpret_cast<HNode *>(SaveInfo); } unsigned Input::beginFlowSequence() { return beginSequence(); } bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) { if (EC) return false; if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { SaveInfo = CurrentNode; CurrentNode = SQ->Entries[index].get(); return true; } return false; } void Input::postflightFlowElement(void *SaveInfo) { CurrentNode = reinterpret_cast<HNode *>(SaveInfo); } void Input::endFlowSequence() { } void Input::beginEnumScalar() { ScalarMatchFound = false; } bool Input::matchEnumScalar(const char *Str, bool) { if (ScalarMatchFound) return false; if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) { if (SN->value().equals(Str)) { ScalarMatchFound = true; return true; } } return false; } bool Input::matchEnumFallback() { if (ScalarMatchFound) return false; ScalarMatchFound = true; return true; } void Input::endEnumScalar() { if (!ScalarMatchFound) { setError(CurrentNode, "unknown enumerated scalar"); } } bool Input::beginBitSetScalar(bool &DoClear) { BitValuesUsed.clear(); if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false); } else { setError(CurrentNode, "expected sequence of bit values"); } DoClear = true; return true; } bool Input::bitSetMatch(const char *Str, bool) { if (EC) return false; if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { unsigned Index = 0; for (auto &N : SQ->Entries) { if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N.get())) { if (SN->value().equals(Str)) { BitValuesUsed[Index] = true; return true; } } else { setError(CurrentNode, "unexpected scalar in sequence of bit values"); } ++Index; } } else { setError(CurrentNode, "expected sequence of bit values"); } return false; } void Input::endBitSetScalar() { if (EC) return; if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { assert(BitValuesUsed.size() == SQ->Entries.size()); for (unsigned i = 0; i < SQ->Entries.size(); ++i) { if (!BitValuesUsed[i]) { setError(SQ->Entries[i].get(), "unknown bit value"); return; } } } } void Input::scalarString(StringRef &S, bool) { if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) { S = SN->value(); } else { setError(CurrentNode, "unexpected scalar"); } } void Input::blockScalarString(StringRef &S) { scalarString(S, false); } void Input::setError(HNode *hnode, const Twine &message) { assert(hnode && "HNode must not be NULL"); this->setError(hnode->_node, message); } void Input::setError(Node *node, const Twine &message) { Strm->printError(node, message); EC = make_error_code(errc::invalid_argument); } std::unique_ptr<Input::HNode> Input::createHNodes(Node *N) { SmallString<128> StringStorage; if (ScalarNode *SN = dyn_cast<ScalarNode>(N)) { StringRef KeyStr = SN->getValue(StringStorage); if (!StringStorage.empty()) { // Copy string to permanent storage KeyStr = StringStorage.str().copy(StringAllocator); } return llvm::make_unique<ScalarHNode>(N, KeyStr); } else if (BlockScalarNode *BSN = dyn_cast<BlockScalarNode>(N)) { StringRef ValueCopy = BSN->getValue().copy(StringAllocator); return llvm::make_unique<ScalarHNode>(N, ValueCopy); } else if (SequenceNode *SQ = dyn_cast<SequenceNode>(N)) { auto SQHNode = llvm::make_unique<SequenceHNode>(N); for (Node &SN : *SQ) { auto Entry = this->createHNodes(&SN); if (EC) break; SQHNode->Entries.push_back(std::move(Entry)); } return std::move(SQHNode); } else if (MappingNode *Map = dyn_cast<MappingNode>(N)) { auto mapHNode = llvm::make_unique<MapHNode>(N); for (KeyValueNode &KVN : *Map) { Node *KeyNode = KVN.getKey(); ScalarNode *KeyScalar = dyn_cast<ScalarNode>(KeyNode); if (!KeyScalar) { setError(KeyNode, "Map key must be a scalar"); break; } StringStorage.clear(); StringRef KeyStr = KeyScalar->getValue(StringStorage); if (!StringStorage.empty()) { // Copy string to permanent storage KeyStr = StringStorage.str().copy(StringAllocator); } auto ValueHNode = this->createHNodes(KVN.getValue()); if (EC) break; mapHNode->Mapping[KeyStr] = std::move(ValueHNode); } return std::move(mapHNode); } else if (isa<NullNode>(N)) { return llvm::make_unique<EmptyHNode>(N); } else { setError(N, "unknown node kind"); return nullptr; } } bool Input::MapHNode::isValidKey(StringRef Key) { for (const char *K : ValidKeys) { if (Key.equals(K)) return true; } return false; } void Input::setError(const Twine &Message) { this->setError(CurrentNode, Message); } bool Input::canElideEmptySequence() { return false; } //===----------------------------------------------------------------------===// // Output //===----------------------------------------------------------------------===// Output::Output(raw_ostream &yout, void *context, int WrapColumn) : IO(context), Out(yout), WrapColumn(WrapColumn), Column(0), ColumnAtFlowStart(0), ColumnAtMapFlowStart(0), NeedBitValueComma(false), NeedFlowSequenceComma(false), EnumerationMatchFound(false), NeedsNewLine(false) { } Output::~Output() { } bool Output::outputting() { return true; } void Output::beginMapping() { StateStack.push_back(inMapFirstKey); NeedsNewLine = true; } bool Output::mapTag(StringRef Tag, bool Use) { if (Use) { this->output(" "); this->output(Tag); } return Use; } void Output::endMapping() { StateStack.pop_back(); } bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault, bool &UseDefault, void *&) { UseDefault = false; if (Required || !SameAsDefault) { auto State = StateStack.back(); if (State == inFlowMapFirstKey || State == inFlowMapOtherKey) { flowKey(Key); } else { this->newLineCheck(); this->paddedKey(Key); } return true; } return false; } void Output::postflightKey(void *) { if (StateStack.back() == inMapFirstKey) { StateStack.pop_back(); StateStack.push_back(inMapOtherKey); } else if (StateStack.back() == inFlowMapFirstKey) { StateStack.pop_back(); StateStack.push_back(inFlowMapOtherKey); } } void Output::beginFlowMapping() { StateStack.push_back(inFlowMapFirstKey); this->newLineCheck(); ColumnAtMapFlowStart = Column; output("{ "); } void Output::endFlowMapping() { StateStack.pop_back(); this->outputUpToEndOfLine(" }"); } void Output::beginDocuments() { this->outputUpToEndOfLine("---"); } bool Output::preflightDocument(unsigned index) { if (index > 0) this->outputUpToEndOfLine("\n---"); return true; } void Output::postflightDocument() { } void Output::endDocuments() { output("\n...\n"); } unsigned Output::beginSequence() { StateStack.push_back(inSeq); NeedsNewLine = true; return 0; } void Output::endSequence() { StateStack.pop_back(); } bool Output::preflightElement(unsigned, void *&) { return true; } void Output::postflightElement(void *) { } unsigned Output::beginFlowSequence() { StateStack.push_back(inFlowSeq); this->newLineCheck(); ColumnAtFlowStart = Column; output("[ "); NeedFlowSequenceComma = false; return 0; } void Output::endFlowSequence() { StateStack.pop_back(); this->outputUpToEndOfLine(" ]"); } bool Output::preflightFlowElement(unsigned, void *&) { if (NeedFlowSequenceComma) output(", "); if (WrapColumn && Column > WrapColumn) { output("\n"); for (int i = 0; i < ColumnAtFlowStart; ++i) output(" "); Column = ColumnAtFlowStart; output(" "); } return true; } void Output::postflightFlowElement(void *) { NeedFlowSequenceComma = true; } void Output::beginEnumScalar() { EnumerationMatchFound = false; } bool Output::matchEnumScalar(const char *Str, bool Match) { if (Match && !EnumerationMatchFound) { this->newLineCheck(); this->outputUpToEndOfLine(Str); EnumerationMatchFound = true; } return false; } bool Output::matchEnumFallback() { if (EnumerationMatchFound) return false; EnumerationMatchFound = true; return true; } void Output::endEnumScalar() { if (!EnumerationMatchFound) llvm_unreachable("bad runtime enum value"); } bool Output::beginBitSetScalar(bool &DoClear) { this->newLineCheck(); output("[ "); NeedBitValueComma = false; DoClear = false; return true; } bool Output::bitSetMatch(const char *Str, bool Matches) { if (Matches) { if (NeedBitValueComma) output(", "); this->output(Str); NeedBitValueComma = true; } return false; } void Output::endBitSetScalar() { this->outputUpToEndOfLine(" ]"); } void Output::scalarString(StringRef &S, bool MustQuote) { this->newLineCheck(); if (S.empty()) { // Print '' for the empty string because leaving the field empty is not // allowed. this->outputUpToEndOfLine("''"); return; } if (!MustQuote) { // Only quote if we must. this->outputUpToEndOfLine(S); return; } unsigned i = 0; unsigned j = 0; unsigned End = S.size(); output("'"); // Starting single quote. const char *Base = S.data(); while (j < End) { // Escape a single quote by doubling it. if (S[j] == '\'') { output(StringRef(&Base[i], j - i + 1)); output("'"); i = j + 1; } ++j; } output(StringRef(&Base[i], j - i)); this->outputUpToEndOfLine("'"); // Ending single quote. } void Output::blockScalarString(StringRef &S) { if (!StateStack.empty()) newLineCheck(); output(" |"); outputNewLine(); unsigned Indent = StateStack.empty() ? 1 : StateStack.size(); auto Buffer = MemoryBuffer::getMemBuffer(S, "", false); for (line_iterator Lines(*Buffer, false); !Lines.is_at_end(); ++Lines) { for (unsigned I = 0; I < Indent; ++I) { output(" "); } output(*Lines); outputNewLine(); } } void Output::setError(const Twine &message) { } bool Output::canElideEmptySequence() { // Normally, with an optional key/value where the value is an empty sequence, // the whole key/value can be not written. But, that produces wrong yaml // if the key/value is the only thing in the map and the map is used in // a sequence. This detects if the this sequence is the first key/value // in map that itself is embedded in a sequnce. if (StateStack.size() < 2) return true; if (StateStack.back() != inMapFirstKey) return true; return (StateStack[StateStack.size()-2] != inSeq); } void Output::output(StringRef s) { Column += s.size(); Out << s; } void Output::outputUpToEndOfLine(StringRef s) { this->output(s); if (StateStack.empty() || (StateStack.back() != inFlowSeq && StateStack.back() != inFlowMapFirstKey && StateStack.back() != inFlowMapOtherKey)) NeedsNewLine = true; } void Output::outputNewLine() { Out << "\n"; Column = 0; } // if seq at top, indent as if map, then add "- " // if seq in middle, use "- " if firstKey, else use " " // void Output::newLineCheck() { if (!NeedsNewLine) return; NeedsNewLine = false; this->outputNewLine(); assert(StateStack.size() > 0); unsigned Indent = StateStack.size() - 1; bool OutputDash = false; if (StateStack.back() == inSeq) { OutputDash = true; } else if ((StateStack.size() > 1) && ((StateStack.back() == inMapFirstKey) || (StateStack.back() == inFlowSeq) || (StateStack.back() == inFlowMapFirstKey)) && (StateStack[StateStack.size() - 2] == inSeq)) { --Indent; OutputDash = true; } for (unsigned i = 0; i < Indent; ++i) { output(" "); } if (OutputDash) { output("- "); } } void Output::paddedKey(StringRef key) { output(key); output(":"); const char *spaces = " "; if (key.size() < strlen(spaces)) output(&spaces[key.size()]); else output(" "); } void Output::flowKey(StringRef Key) { if (StateStack.back() == inFlowMapOtherKey) output(", "); if (WrapColumn && Column > WrapColumn) { output("\n"); for (int I = 0; I < ColumnAtMapFlowStart; ++I) output(" "); Column = ColumnAtMapFlowStart; output(" "); } output(Key); output(": "); } //===----------------------------------------------------------------------===// // traits for built-in types //===----------------------------------------------------------------------===// void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) { Out << (Val ? "true" : "false"); } StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) { if (Scalar.equals("true")) { Val = true; return StringRef(); } else if (Scalar.equals("false")) { Val = false; return StringRef(); } return "invalid boolean"; } void ScalarTraits<StringRef>::output(const StringRef &Val, void *, raw_ostream &Out) { Out << Val; } StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *, StringRef &Val) { Val = Scalar; return StringRef(); } void ScalarTraits<std::string>::output(const std::string &Val, void *, raw_ostream &Out) { Out << Val; } StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *, std::string &Val) { Val = Scalar.str(); return StringRef(); } void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *, raw_ostream &Out) { // use temp uin32_t because ostream thinks uint8_t is a character uint32_t Num = Val; Out << Num; } StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) { unsigned long long n; if (getAsUnsignedInteger(Scalar, 0, n)) return "invalid number"; if (n > 0xFF) return "out of range number"; Val = n; return StringRef(); } void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *, raw_ostream &Out) { Out << Val; } StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *, uint16_t &Val) { unsigned long long n; if (getAsUnsignedInteger(Scalar, 0, n)) return "invalid number"; if (n > 0xFFFF) return "out of range number"; Val = n; return StringRef(); } void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *, raw_ostream &Out) { Out << Val; } StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *, uint32_t &Val) { unsigned long long n; if (getAsUnsignedInteger(Scalar, 0, n)) return "invalid number"; if (n > 0xFFFFFFFFUL) return "out of range number"; Val = n; return StringRef(); } void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *, raw_ostream &Out) { Out << Val; } StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *, uint64_t &Val) { unsigned long long N; if (getAsUnsignedInteger(Scalar, 0, N)) return "invalid number"; Val = N; return StringRef(); } void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) { // use temp in32_t because ostream thinks int8_t is a character int32_t Num = Val; Out << Num; } StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) { long long N; if (getAsSignedInteger(Scalar, 0, N)) return "invalid number"; if ((N > 127) || (N < -128)) return "out of range number"; Val = N; return StringRef(); } void ScalarTraits<int16_t>::output(const int16_t &Val, void *, raw_ostream &Out) { Out << Val; } StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) { long long N; if (getAsSignedInteger(Scalar, 0, N)) return "invalid number"; if ((N > INT16_MAX) || (N < INT16_MIN)) return "out of range number"; Val = N; return StringRef(); } void ScalarTraits<int32_t>::output(const int32_t &Val, void *, raw_ostream &Out) { Out << Val; } StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) { long long N; if (getAsSignedInteger(Scalar, 0, N)) return "invalid number"; if ((N > INT32_MAX) || (N < INT32_MIN)) return "out of range number"; Val = N; return StringRef(); } void ScalarTraits<int64_t>::output(const int64_t &Val, void *, raw_ostream &Out) { Out << Val; } StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) { long long N; if (getAsSignedInteger(Scalar, 0, N)) return "invalid number"; Val = N; return StringRef(); } void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) { Out << format("%g", Val); } StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) { SmallString<32> buff(Scalar.begin(), Scalar.end()); char *end; Val = strtod(buff.c_str(), &end); if (*end != '\0') return "invalid floating point number"; return StringRef(); } void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) { Out << format("%g", Val); } StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) { SmallString<32> buff(Scalar.begin(), Scalar.end()); char *end; Val = strtod(buff.c_str(), &end); if (*end != '\0') return "invalid floating point number"; return StringRef(); } void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) { uint8_t Num = Val; Out << format("0x%02X", Num); } StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) { unsigned long long n; if (getAsUnsignedInteger(Scalar, 0, n)) return "invalid hex8 number"; if (n > 0xFF) return "out of range hex8 number"; Val = n; return StringRef(); } void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) { uint16_t Num = Val; Out << format("0x%04X", Num); } StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) { unsigned long long n; if (getAsUnsignedInteger(Scalar, 0, n)) return "invalid hex16 number"; if (n > 0xFFFF) return "out of range hex16 number"; Val = n; return StringRef(); } void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) { uint32_t Num = Val; Out << format("0x%08X", Num); } StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) { unsigned long long n; if (getAsUnsignedInteger(Scalar, 0, n)) return "invalid hex32 number"; if (n > 0xFFFFFFFFUL) return "out of range hex32 number"; Val = n; return StringRef(); } void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) { uint64_t Num = Val; Out << format("0x%016llX", Num); } StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) { unsigned long long Num; if (getAsUnsignedInteger(Scalar, 0, Num)) return "invalid hex64 number"; Val = Num; return StringRef(); }