//===-LTOCodeGenerator.cpp - LLVM Link Time Optimizer ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Link Time Optimization library. This library is // intended to be used by linker to optimize code at link time. // //===----------------------------------------------------------------------===// #include "llvm/LTO/LTOCodeGenerator.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/Passes.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Bitcode/ReaderWriter.h" #include "llvm/CodeGen/ParallelCG.h" #include "llvm/CodeGen/RuntimeLibcalls.h" #include "llvm/Config/config.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/DiagnosticPrinter.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/Module.h" #include "llvm/IR/Verifier.h" #include "llvm/InitializePasses.h" #include "llvm/LTO/LTOModule.h" #include "llvm/Linker/Linker.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/SubtargetFeature.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Host.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Signals.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/ToolOutputFile.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/IPO/PassManagerBuilder.h" #include "llvm/Transforms/ObjCARC.h" #include <system_error> using namespace llvm; const char* LTOCodeGenerator::getVersionString() { #ifdef LLVM_VERSION_INFO return PACKAGE_NAME " version " PACKAGE_VERSION ", " LLVM_VERSION_INFO; #else return PACKAGE_NAME " version " PACKAGE_VERSION; #endif } LTOCodeGenerator::LTOCodeGenerator(LLVMContext &Context) : Context(Context), MergedModule(new Module("ld-temp.o", Context)), TheLinker(new Linker(*MergedModule)) { initializeLTOPasses(); } LTOCodeGenerator::~LTOCodeGenerator() {} // Initialize LTO passes. Please keep this function in sync with // PassManagerBuilder::populateLTOPassManager(), and make sure all LTO // passes are initialized. void LTOCodeGenerator::initializeLTOPasses() { PassRegistry &R = *PassRegistry::getPassRegistry(); initializeInternalizePassPass(R); initializeIPSCCPPass(R); initializeGlobalOptPass(R); initializeConstantMergePass(R); initializeDAHPass(R); initializeInstructionCombiningPassPass(R); initializeSimpleInlinerPass(R); initializePruneEHPass(R); initializeGlobalDCEPass(R); initializeArgPromotionPass(R); initializeJumpThreadingPass(R); initializeSROALegacyPassPass(R); initializeSROA_DTPass(R); initializeSROA_SSAUpPass(R); initializeFunctionAttrsPass(R); initializeGlobalsAAWrapperPassPass(R); initializeLICMPass(R); initializeMergedLoadStoreMotionPass(R); initializeGVNPass(R); initializeMemCpyOptPass(R); initializeDCEPass(R); initializeCFGSimplifyPassPass(R); } bool LTOCodeGenerator::addModule(LTOModule *Mod) { assert(&Mod->getModule().getContext() == &Context && "Expected module in same context"); bool ret = TheLinker->linkInModule(Mod->takeModule()); const std::vector<const char *> &undefs = Mod->getAsmUndefinedRefs(); for (int i = 0, e = undefs.size(); i != e; ++i) AsmUndefinedRefs[undefs[i]] = 1; return !ret; } void LTOCodeGenerator::setModule(std::unique_ptr<LTOModule> Mod) { assert(&Mod->getModule().getContext() == &Context && "Expected module in same context"); AsmUndefinedRefs.clear(); MergedModule = Mod->takeModule(); TheLinker = make_unique<Linker>(*MergedModule); const std::vector<const char*> &Undefs = Mod->getAsmUndefinedRefs(); for (int I = 0, E = Undefs.size(); I != E; ++I) AsmUndefinedRefs[Undefs[I]] = 1; } void LTOCodeGenerator::setTargetOptions(TargetOptions Options) { this->Options = Options; } void LTOCodeGenerator::setDebugInfo(lto_debug_model Debug) { switch (Debug) { case LTO_DEBUG_MODEL_NONE: EmitDwarfDebugInfo = false; return; case LTO_DEBUG_MODEL_DWARF: EmitDwarfDebugInfo = true; return; } llvm_unreachable("Unknown debug format!"); } void LTOCodeGenerator::setOptLevel(unsigned Level) { OptLevel = Level; switch (OptLevel) { case 0: CGOptLevel = CodeGenOpt::None; break; case 1: CGOptLevel = CodeGenOpt::Less; break; case 2: CGOptLevel = CodeGenOpt::Default; break; case 3: CGOptLevel = CodeGenOpt::Aggressive; break; } } bool LTOCodeGenerator::writeMergedModules(const char *Path) { if (!determineTarget()) return false; // mark which symbols can not be internalized applyScopeRestrictions(); // create output file std::error_code EC; tool_output_file Out(Path, EC, sys::fs::F_None); if (EC) { std::string ErrMsg = "could not open bitcode file for writing: "; ErrMsg += Path; emitError(ErrMsg); return false; } // write bitcode to it WriteBitcodeToFile(MergedModule.get(), Out.os(), ShouldEmbedUselists); Out.os().close(); if (Out.os().has_error()) { std::string ErrMsg = "could not write bitcode file: "; ErrMsg += Path; emitError(ErrMsg); Out.os().clear_error(); return false; } Out.keep(); return true; } bool LTOCodeGenerator::compileOptimizedToFile(const char **Name) { // make unique temp output file to put generated code SmallString<128> Filename; int FD; const char *Extension = (FileType == TargetMachine::CGFT_AssemblyFile ? "s" : "o"); std::error_code EC = sys::fs::createTemporaryFile("lto-llvm", Extension, FD, Filename); if (EC) { emitError(EC.message()); return false; } // generate object file tool_output_file objFile(Filename.c_str(), FD); bool genResult = compileOptimized(&objFile.os()); objFile.os().close(); if (objFile.os().has_error()) { objFile.os().clear_error(); sys::fs::remove(Twine(Filename)); return false; } objFile.keep(); if (!genResult) { sys::fs::remove(Twine(Filename)); return false; } NativeObjectPath = Filename.c_str(); *Name = NativeObjectPath.c_str(); return true; } std::unique_ptr<MemoryBuffer> LTOCodeGenerator::compileOptimized() { const char *name; if (!compileOptimizedToFile(&name)) return nullptr; // read .o file into memory buffer ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr = MemoryBuffer::getFile(name, -1, false); if (std::error_code EC = BufferOrErr.getError()) { emitError(EC.message()); sys::fs::remove(NativeObjectPath); return nullptr; } // remove temp files sys::fs::remove(NativeObjectPath); return std::move(*BufferOrErr); } bool LTOCodeGenerator::compile_to_file(const char **Name, bool DisableVerify, bool DisableInline, bool DisableGVNLoadPRE, bool DisableVectorization) { if (!optimize(DisableVerify, DisableInline, DisableGVNLoadPRE, DisableVectorization)) return false; return compileOptimizedToFile(Name); } std::unique_ptr<MemoryBuffer> LTOCodeGenerator::compile(bool DisableVerify, bool DisableInline, bool DisableGVNLoadPRE, bool DisableVectorization) { if (!optimize(DisableVerify, DisableInline, DisableGVNLoadPRE, DisableVectorization)) return nullptr; return compileOptimized(); } bool LTOCodeGenerator::determineTarget() { if (TargetMach) return true; std::string TripleStr = MergedModule->getTargetTriple(); if (TripleStr.empty()) { TripleStr = sys::getDefaultTargetTriple(); MergedModule->setTargetTriple(TripleStr); } llvm::Triple Triple(TripleStr); // create target machine from info for merged modules std::string ErrMsg; const Target *march = TargetRegistry::lookupTarget(TripleStr, ErrMsg); if (!march) { emitError(ErrMsg); return false; } // Construct LTOModule, hand over ownership of module and target. Use MAttr as // the default set of features. SubtargetFeatures Features(MAttr); Features.getDefaultSubtargetFeatures(Triple); FeatureStr = Features.getString(); // Set a default CPU for Darwin triples. if (MCpu.empty() && Triple.isOSDarwin()) { if (Triple.getArch() == llvm::Triple::x86_64) MCpu = "core2"; else if (Triple.getArch() == llvm::Triple::x86) MCpu = "yonah"; else if (Triple.getArch() == llvm::Triple::aarch64) MCpu = "cyclone"; } TargetMach.reset(march->createTargetMachine(TripleStr, MCpu, FeatureStr, Options, RelocModel, CodeModel::Default, CGOptLevel)); return true; } void LTOCodeGenerator:: applyRestriction(GlobalValue &GV, ArrayRef<StringRef> Libcalls, std::vector<const char*> &MustPreserveList, SmallPtrSetImpl<GlobalValue*> &AsmUsed, Mangler &Mangler) { // There are no restrictions to apply to declarations. if (GV.isDeclaration()) return; // There is nothing more restrictive than private linkage. if (GV.hasPrivateLinkage()) return; SmallString<64> Buffer; TargetMach->getNameWithPrefix(Buffer, &GV, Mangler); if (MustPreserveSymbols.count(Buffer)) MustPreserveList.push_back(GV.getName().data()); if (AsmUndefinedRefs.count(Buffer)) AsmUsed.insert(&GV); // Conservatively append user-supplied runtime library functions to // llvm.compiler.used. These could be internalized and deleted by // optimizations like -globalopt, causing problems when later optimizations // add new library calls (e.g., llvm.memset => memset and printf => puts). // Leave it to the linker to remove any dead code (e.g. with -dead_strip). if (isa<Function>(GV) && std::binary_search(Libcalls.begin(), Libcalls.end(), GV.getName())) AsmUsed.insert(&GV); } static void findUsedValues(GlobalVariable *LLVMUsed, SmallPtrSetImpl<GlobalValue*> &UsedValues) { if (!LLVMUsed) return; ConstantArray *Inits = cast<ConstantArray>(LLVMUsed->getInitializer()); for (unsigned i = 0, e = Inits->getNumOperands(); i != e; ++i) if (GlobalValue *GV = dyn_cast<GlobalValue>(Inits->getOperand(i)->stripPointerCasts())) UsedValues.insert(GV); } // Collect names of runtime library functions. User-defined functions with the // same names are added to llvm.compiler.used to prevent them from being // deleted by optimizations. static void accumulateAndSortLibcalls(std::vector<StringRef> &Libcalls, const TargetLibraryInfo& TLI, const Module &Mod, const TargetMachine &TM) { // TargetLibraryInfo has info on C runtime library calls on the current // target. for (unsigned I = 0, E = static_cast<unsigned>(LibFunc::NumLibFuncs); I != E; ++I) { LibFunc::Func F = static_cast<LibFunc::Func>(I); if (TLI.has(F)) Libcalls.push_back(TLI.getName(F)); } SmallPtrSet<const TargetLowering *, 1> TLSet; for (const Function &F : Mod) { const TargetLowering *Lowering = TM.getSubtargetImpl(F)->getTargetLowering(); if (Lowering && TLSet.insert(Lowering).second) // TargetLowering has info on library calls that CodeGen expects to be // available, both from the C runtime and compiler-rt. for (unsigned I = 0, E = static_cast<unsigned>(RTLIB::UNKNOWN_LIBCALL); I != E; ++I) if (const char *Name = Lowering->getLibcallName(static_cast<RTLIB::Libcall>(I))) Libcalls.push_back(Name); } array_pod_sort(Libcalls.begin(), Libcalls.end()); Libcalls.erase(std::unique(Libcalls.begin(), Libcalls.end()), Libcalls.end()); } void LTOCodeGenerator::applyScopeRestrictions() { if (ScopeRestrictionsDone || !ShouldInternalize) return; // Start off with a verification pass. legacy::PassManager passes; passes.add(createVerifierPass()); // mark which symbols can not be internalized Mangler Mangler; std::vector<const char*> MustPreserveList; SmallPtrSet<GlobalValue*, 8> AsmUsed; std::vector<StringRef> Libcalls; TargetLibraryInfoImpl TLII(Triple(TargetMach->getTargetTriple())); TargetLibraryInfo TLI(TLII); accumulateAndSortLibcalls(Libcalls, TLI, *MergedModule, *TargetMach); for (Function &f : *MergedModule) applyRestriction(f, Libcalls, MustPreserveList, AsmUsed, Mangler); for (GlobalVariable &v : MergedModule->globals()) applyRestriction(v, Libcalls, MustPreserveList, AsmUsed, Mangler); for (GlobalAlias &a : MergedModule->aliases()) applyRestriction(a, Libcalls, MustPreserveList, AsmUsed, Mangler); GlobalVariable *LLVMCompilerUsed = MergedModule->getGlobalVariable("llvm.compiler.used"); findUsedValues(LLVMCompilerUsed, AsmUsed); if (LLVMCompilerUsed) LLVMCompilerUsed->eraseFromParent(); if (!AsmUsed.empty()) { llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(Context); std::vector<Constant*> asmUsed2; for (auto *GV : AsmUsed) { Constant *c = ConstantExpr::getBitCast(GV, i8PTy); asmUsed2.push_back(c); } llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, asmUsed2.size()); LLVMCompilerUsed = new llvm::GlobalVariable(*MergedModule, ATy, false, llvm::GlobalValue::AppendingLinkage, llvm::ConstantArray::get(ATy, asmUsed2), "llvm.compiler.used"); LLVMCompilerUsed->setSection("llvm.metadata"); } passes.add(createInternalizePass(MustPreserveList)); // apply scope restrictions passes.run(*MergedModule); ScopeRestrictionsDone = true; } /// Optimize merged modules using various IPO passes bool LTOCodeGenerator::optimize(bool DisableVerify, bool DisableInline, bool DisableGVNLoadPRE, bool DisableVectorization) { if (!this->determineTarget()) return false; // Mark which symbols can not be internalized this->applyScopeRestrictions(); // Instantiate the pass manager to organize the passes. legacy::PassManager passes; // Add an appropriate DataLayout instance for this module... MergedModule->setDataLayout(TargetMach->createDataLayout()); passes.add( createTargetTransformInfoWrapperPass(TargetMach->getTargetIRAnalysis())); Triple TargetTriple(TargetMach->getTargetTriple()); PassManagerBuilder PMB; PMB.DisableGVNLoadPRE = DisableGVNLoadPRE; PMB.LoopVectorize = !DisableVectorization; PMB.SLPVectorize = !DisableVectorization; if (!DisableInline) PMB.Inliner = createFunctionInliningPass(); PMB.LibraryInfo = new TargetLibraryInfoImpl(TargetTriple); PMB.OptLevel = OptLevel; PMB.VerifyInput = !DisableVerify; PMB.VerifyOutput = !DisableVerify; PMB.populateLTOPassManager(passes); // Run our queue of passes all at once now, efficiently. passes.run(*MergedModule); return true; } bool LTOCodeGenerator::compileOptimized(ArrayRef<raw_pwrite_stream *> Out) { if (!this->determineTarget()) return false; legacy::PassManager preCodeGenPasses; // If the bitcode files contain ARC code and were compiled with optimization, // the ObjCARCContractPass must be run, so do it unconditionally here. preCodeGenPasses.add(createObjCARCContractPass()); preCodeGenPasses.run(*MergedModule); // Do code generation. We need to preserve the module in case the client calls // writeMergedModules() after compilation, but we only need to allow this at // parallelism level 1. This is achieved by having splitCodeGen return the // original module at parallelism level 1 which we then assign back to // MergedModule. MergedModule = splitCodeGen(std::move(MergedModule), Out, MCpu, FeatureStr, Options, RelocModel, CodeModel::Default, CGOptLevel, FileType); return true; } /// setCodeGenDebugOptions - Set codegen debugging options to aid in debugging /// LTO problems. void LTOCodeGenerator::setCodeGenDebugOptions(const char *Options) { for (std::pair<StringRef, StringRef> o = getToken(Options); !o.first.empty(); o = getToken(o.second)) CodegenOptions.push_back(o.first); } void LTOCodeGenerator::parseCodeGenDebugOptions() { // if options were requested, set them if (!CodegenOptions.empty()) { // ParseCommandLineOptions() expects argv[0] to be program name. std::vector<const char *> CodegenArgv(1, "libLLVMLTO"); for (std::string &Arg : CodegenOptions) CodegenArgv.push_back(Arg.c_str()); cl::ParseCommandLineOptions(CodegenArgv.size(), CodegenArgv.data()); } } void LTOCodeGenerator::DiagnosticHandler(const DiagnosticInfo &DI, void *Context) { ((LTOCodeGenerator *)Context)->DiagnosticHandler2(DI); } void LTOCodeGenerator::DiagnosticHandler2(const DiagnosticInfo &DI) { // Map the LLVM internal diagnostic severity to the LTO diagnostic severity. lto_codegen_diagnostic_severity_t Severity; switch (DI.getSeverity()) { case DS_Error: Severity = LTO_DS_ERROR; break; case DS_Warning: Severity = LTO_DS_WARNING; break; case DS_Remark: Severity = LTO_DS_REMARK; break; case DS_Note: Severity = LTO_DS_NOTE; break; } // Create the string that will be reported to the external diagnostic handler. std::string MsgStorage; raw_string_ostream Stream(MsgStorage); DiagnosticPrinterRawOStream DP(Stream); DI.print(DP); Stream.flush(); // If this method has been called it means someone has set up an external // diagnostic handler. Assert on that. assert(DiagHandler && "Invalid diagnostic handler"); (*DiagHandler)(Severity, MsgStorage.c_str(), DiagContext); } void LTOCodeGenerator::setDiagnosticHandler(lto_diagnostic_handler_t DiagHandler, void *Ctxt) { this->DiagHandler = DiagHandler; this->DiagContext = Ctxt; if (!DiagHandler) return Context.setDiagnosticHandler(nullptr, nullptr); // Register the LTOCodeGenerator stub in the LLVMContext to forward the // diagnostic to the external DiagHandler. Context.setDiagnosticHandler(LTOCodeGenerator::DiagnosticHandler, this, /* RespectFilters */ true); } namespace { class LTODiagnosticInfo : public DiagnosticInfo { const Twine &Msg; public: LTODiagnosticInfo(const Twine &DiagMsg, DiagnosticSeverity Severity=DS_Error) : DiagnosticInfo(DK_Linker, Severity), Msg(DiagMsg) {} void print(DiagnosticPrinter &DP) const override { DP << Msg; } }; } void LTOCodeGenerator::emitError(const std::string &ErrMsg) { if (DiagHandler) (*DiagHandler)(LTO_DS_ERROR, ErrMsg.c_str(), DiagContext); else Context.diagnose(LTODiagnosticInfo(ErrMsg)); }