//===- FuzzerSHA1.h - Private copy of the SHA1 implementation ---*- C++ -* ===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This code is taken from public domain
// (http://oauth.googlecode.com/svn/code/c/liboauth/src/sha1.c)
// and modified by adding anonymous namespace, adding an interface
// function fuzzer::ComputeSHA1() and removing unnecessary code.
//
// lib/Fuzzer can not use SHA1 implementation from openssl because
// openssl may not be available and because we may be fuzzing openssl itself.
// For the same reason we do not want to depend on SHA1 from LLVM tree.
//===----------------------------------------------------------------------===//

#include "FuzzerInternal.h"

/* This code is public-domain - it is based on libcrypt
 * placed in the public domain by Wei Dai and other contributors.
 */

#include <stdint.h>
#include <string.h>

namespace {  // Added for LibFuzzer

#ifdef __BIG_ENDIAN__
# define SHA_BIG_ENDIAN
#elif defined __LITTLE_ENDIAN__
/* override */
#elif defined __BYTE_ORDER
# if __BYTE_ORDER__ ==  __ORDER_BIG_ENDIAN__
# define SHA_BIG_ENDIAN
# endif
#else // ! defined __LITTLE_ENDIAN__
# include <endian.h> // machine/endian.h
# if __BYTE_ORDER__ ==  __ORDER_BIG_ENDIAN__
#  define SHA_BIG_ENDIAN
# endif
#endif


/* header */

#define HASH_LENGTH 20
#define BLOCK_LENGTH 64

typedef struct sha1nfo {
	uint32_t buffer[BLOCK_LENGTH/4];
	uint32_t state[HASH_LENGTH/4];
	uint32_t byteCount;
	uint8_t bufferOffset;
	uint8_t keyBuffer[BLOCK_LENGTH];
	uint8_t innerHash[HASH_LENGTH];
} sha1nfo;

/* public API - prototypes - TODO: doxygen*/

/**
 */
void sha1_init(sha1nfo *s);
/**
 */
void sha1_writebyte(sha1nfo *s, uint8_t data);
/**
 */
void sha1_write(sha1nfo *s, const char *data, size_t len);
/**
 */
uint8_t* sha1_result(sha1nfo *s);


/* code */
#define SHA1_K0  0x5a827999
#define SHA1_K20 0x6ed9eba1
#define SHA1_K40 0x8f1bbcdc
#define SHA1_K60 0xca62c1d6

void sha1_init(sha1nfo *s) {
	s->state[0] = 0x67452301;
	s->state[1] = 0xefcdab89;
	s->state[2] = 0x98badcfe;
	s->state[3] = 0x10325476;
	s->state[4] = 0xc3d2e1f0;
	s->byteCount = 0;
	s->bufferOffset = 0;
}

uint32_t sha1_rol32(uint32_t number, uint8_t bits) {
	return ((number << bits) | (number >> (32-bits)));
}

void sha1_hashBlock(sha1nfo *s) {
	uint8_t i;
	uint32_t a,b,c,d,e,t;

	a=s->state[0];
	b=s->state[1];
	c=s->state[2];
	d=s->state[3];
	e=s->state[4];
	for (i=0; i<80; i++) {
		if (i>=16) {
			t = s->buffer[(i+13)&15] ^ s->buffer[(i+8)&15] ^ s->buffer[(i+2)&15] ^ s->buffer[i&15];
			s->buffer[i&15] = sha1_rol32(t,1);
		}
		if (i<20) {
			t = (d ^ (b & (c ^ d))) + SHA1_K0;
		} else if (i<40) {
			t = (b ^ c ^ d) + SHA1_K20;
		} else if (i<60) {
			t = ((b & c) | (d & (b | c))) + SHA1_K40;
		} else {
			t = (b ^ c ^ d) + SHA1_K60;
		}
		t+=sha1_rol32(a,5) + e + s->buffer[i&15];
		e=d;
		d=c;
		c=sha1_rol32(b,30);
		b=a;
		a=t;
	}
	s->state[0] += a;
	s->state[1] += b;
	s->state[2] += c;
	s->state[3] += d;
	s->state[4] += e;
}

void sha1_addUncounted(sha1nfo *s, uint8_t data) {
	uint8_t * const b = (uint8_t*) s->buffer;
#ifdef SHA_BIG_ENDIAN
	b[s->bufferOffset] = data;
#else
	b[s->bufferOffset ^ 3] = data;
#endif
	s->bufferOffset++;
	if (s->bufferOffset == BLOCK_LENGTH) {
		sha1_hashBlock(s);
		s->bufferOffset = 0;
	}
}

void sha1_writebyte(sha1nfo *s, uint8_t data) {
	++s->byteCount;
	sha1_addUncounted(s, data);
}

void sha1_write(sha1nfo *s, const char *data, size_t len) {
	for (;len--;) sha1_writebyte(s, (uint8_t) *data++);
}

void sha1_pad(sha1nfo *s) {
	// Implement SHA-1 padding (fips180-2 §5.1.1)

	// Pad with 0x80 followed by 0x00 until the end of the block
	sha1_addUncounted(s, 0x80);
	while (s->bufferOffset != 56) sha1_addUncounted(s, 0x00);

	// Append length in the last 8 bytes
	sha1_addUncounted(s, 0); // We're only using 32 bit lengths
	sha1_addUncounted(s, 0); // But SHA-1 supports 64 bit lengths
	sha1_addUncounted(s, 0); // So zero pad the top bits
	sha1_addUncounted(s, s->byteCount >> 29); // Shifting to multiply by 8
	sha1_addUncounted(s, s->byteCount >> 21); // as SHA-1 supports bitstreams as well as
	sha1_addUncounted(s, s->byteCount >> 13); // byte.
	sha1_addUncounted(s, s->byteCount >> 5);
	sha1_addUncounted(s, s->byteCount << 3);
}

uint8_t* sha1_result(sha1nfo *s) {
	// Pad to complete the last block
	sha1_pad(s);

#ifndef SHA_BIG_ENDIAN
	// Swap byte order back
	int i;
	for (i=0; i<5; i++) {
		s->state[i]=
			  (((s->state[i])<<24)& 0xff000000)
			| (((s->state[i])<<8) & 0x00ff0000)
			| (((s->state[i])>>8) & 0x0000ff00)
			| (((s->state[i])>>24)& 0x000000ff);
	}
#endif

	// Return pointer to hash (20 characters)
	return (uint8_t*) s->state;
}

}  // namespace; Added for LibFuzzer

// The rest is added for LibFuzzer
void fuzzer::ComputeSHA1(const uint8_t *Data, size_t Len, uint8_t *Out) {
  sha1nfo s;
  sha1_init(&s);
  sha1_write(&s, (const char*)Data, Len);
  memcpy(Out, sha1_result(&s), HASH_LENGTH);
}