//===- TargetRegisterInfo.cpp - Target Register Information Implementation ===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the TargetRegisterInfo interface. // //===----------------------------------------------------------------------===// #include "llvm/ADT/BitVector.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/VirtRegMap.h" #include "llvm/IR/Function.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetFrameLowering.h" #include "llvm/Target/TargetRegisterInfo.h" #define DEBUG_TYPE "target-reg-info" using namespace llvm; TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID, regclass_iterator RCB, regclass_iterator RCE, const char *const *SRINames, const unsigned *SRILaneMasks, unsigned SRICoveringLanes) : InfoDesc(ID), SubRegIndexNames(SRINames), SubRegIndexLaneMasks(SRILaneMasks), RegClassBegin(RCB), RegClassEnd(RCE), CoveringLanes(SRICoveringLanes) { } TargetRegisterInfo::~TargetRegisterInfo() {} namespace llvm { Printable PrintReg(unsigned Reg, const TargetRegisterInfo *TRI, unsigned SubIdx) { return Printable([Reg, TRI, SubIdx](raw_ostream &OS) { if (!Reg) OS << "%noreg"; else if (TargetRegisterInfo::isStackSlot(Reg)) OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg); else if (TargetRegisterInfo::isVirtualRegister(Reg)) OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg); else if (TRI && Reg < TRI->getNumRegs()) OS << '%' << TRI->getName(Reg); else OS << "%physreg" << Reg; if (SubIdx) { if (TRI) OS << ':' << TRI->getSubRegIndexName(SubIdx); else OS << ":sub(" << SubIdx << ')'; } }); } Printable PrintRegUnit(unsigned Unit, const TargetRegisterInfo *TRI) { return Printable([Unit, TRI](raw_ostream &OS) { // Generic printout when TRI is missing. if (!TRI) { OS << "Unit~" << Unit; return; } // Check for invalid register units. if (Unit >= TRI->getNumRegUnits()) { OS << "BadUnit~" << Unit; return; } // Normal units have at least one root. MCRegUnitRootIterator Roots(Unit, TRI); assert(Roots.isValid() && "Unit has no roots."); OS << TRI->getName(*Roots); for (++Roots; Roots.isValid(); ++Roots) OS << '~' << TRI->getName(*Roots); }); } Printable PrintVRegOrUnit(unsigned Unit, const TargetRegisterInfo *TRI) { return Printable([Unit, TRI](raw_ostream &OS) { if (TRI && TRI->isVirtualRegister(Unit)) { OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Unit); } else { OS << PrintRegUnit(Unit, TRI); } }); } Printable PrintLaneMask(LaneBitmask LaneMask) { return Printable([LaneMask](raw_ostream &OS) { OS << format("%08X", LaneMask); }); } } // End of llvm namespace /// getAllocatableClass - Return the maximal subclass of the given register /// class that is alloctable, or NULL. const TargetRegisterClass * TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const { if (!RC || RC->isAllocatable()) return RC; const unsigned *SubClass = RC->getSubClassMask(); for (unsigned Base = 0, BaseE = getNumRegClasses(); Base < BaseE; Base += 32) { unsigned Idx = Base; for (unsigned Mask = *SubClass++; Mask; Mask >>= 1) { unsigned Offset = countTrailingZeros(Mask); const TargetRegisterClass *SubRC = getRegClass(Idx + Offset); if (SubRC->isAllocatable()) return SubRC; Mask >>= Offset; Idx += Offset + 1; } } return nullptr; } /// getMinimalPhysRegClass - Returns the Register Class of a physical /// register of the given type, picking the most sub register class of /// the right type that contains this physreg. const TargetRegisterClass * TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, MVT VT) const { assert(isPhysicalRegister(reg) && "reg must be a physical register"); // Pick the most sub register class of the right type that contains // this physreg. const TargetRegisterClass* BestRC = nullptr; for (regclass_iterator I = regclass_begin(), E = regclass_end(); I != E; ++I){ const TargetRegisterClass* RC = *I; if ((VT == MVT::Other || RC->hasType(VT)) && RC->contains(reg) && (!BestRC || BestRC->hasSubClass(RC))) BestRC = RC; } assert(BestRC && "Couldn't find the register class"); return BestRC; } /// getAllocatableSetForRC - Toggle the bits that represent allocatable /// registers for the specific register class. static void getAllocatableSetForRC(const MachineFunction &MF, const TargetRegisterClass *RC, BitVector &R){ assert(RC->isAllocatable() && "invalid for nonallocatable sets"); ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF); for (unsigned i = 0; i != Order.size(); ++i) R.set(Order[i]); } BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF, const TargetRegisterClass *RC) const { BitVector Allocatable(getNumRegs()); if (RC) { // A register class with no allocatable subclass returns an empty set. const TargetRegisterClass *SubClass = getAllocatableClass(RC); if (SubClass) getAllocatableSetForRC(MF, SubClass, Allocatable); } else { for (TargetRegisterInfo::regclass_iterator I = regclass_begin(), E = regclass_end(); I != E; ++I) if ((*I)->isAllocatable()) getAllocatableSetForRC(MF, *I, Allocatable); } // Mask out the reserved registers BitVector Reserved = getReservedRegs(MF); Allocatable &= Reserved.flip(); return Allocatable; } static inline const TargetRegisterClass *firstCommonClass(const uint32_t *A, const uint32_t *B, const TargetRegisterInfo *TRI, const MVT::SimpleValueType SVT = MVT::SimpleValueType::Any) { const MVT VT(SVT); for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32) if (unsigned Common = *A++ & *B++) { const TargetRegisterClass *RC = TRI->getRegClass(I + countTrailingZeros(Common)); if (SVT == MVT::SimpleValueType::Any || RC->hasType(VT)) return RC; } return nullptr; } const TargetRegisterClass * TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A, const TargetRegisterClass *B, const MVT::SimpleValueType SVT) const { // First take care of the trivial cases. if (A == B) return A; if (!A || !B) return nullptr; // Register classes are ordered topologically, so the largest common // sub-class it the common sub-class with the smallest ID. return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this, SVT); } const TargetRegisterClass * TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A, const TargetRegisterClass *B, unsigned Idx) const { assert(A && B && "Missing register class"); assert(Idx && "Bad sub-register index"); // Find Idx in the list of super-register indices. for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI) if (RCI.getSubReg() == Idx) // The bit mask contains all register classes that are projected into B // by Idx. Find a class that is also a sub-class of A. return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this); return nullptr; } const TargetRegisterClass *TargetRegisterInfo:: getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, const TargetRegisterClass *RCB, unsigned SubB, unsigned &PreA, unsigned &PreB) const { assert(RCA && SubA && RCB && SubB && "Invalid arguments"); // Search all pairs of sub-register indices that project into RCA and RCB // respectively. This is quadratic, but usually the sets are very small. On // most targets like X86, there will only be a single sub-register index // (e.g., sub_16bit projecting into GR16). // // The worst case is a register class like DPR on ARM. // We have indices dsub_0..dsub_7 projecting into that class. // // It is very common that one register class is a sub-register of the other. // Arrange for RCA to be the larger register so the answer will be found in // the first iteration. This makes the search linear for the most common // case. const TargetRegisterClass *BestRC = nullptr; unsigned *BestPreA = &PreA; unsigned *BestPreB = &PreB; if (RCA->getSize() < RCB->getSize()) { std::swap(RCA, RCB); std::swap(SubA, SubB); std::swap(BestPreA, BestPreB); } // Also terminate the search one we have found a register class as small as // RCA. unsigned MinSize = RCA->getSize(); for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) { unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA); for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) { // Check if a common super-register class exists for this index pair. const TargetRegisterClass *RC = firstCommonClass(IA.getMask(), IB.getMask(), this); if (!RC || RC->getSize() < MinSize) continue; // The indexes must compose identically: PreA+SubA == PreB+SubB. unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB); if (FinalA != FinalB) continue; // Is RC a better candidate than BestRC? if (BestRC && RC->getSize() >= BestRC->getSize()) continue; // Yes, RC is the smallest super-register seen so far. BestRC = RC; *BestPreA = IA.getSubReg(); *BestPreB = IB.getSubReg(); // Bail early if we reached MinSize. We won't find a better candidate. if (BestRC->getSize() == MinSize) return BestRC; } } return BestRC; } /// \brief Check if the registers defined by the pair (RegisterClass, SubReg) /// share the same register file. static bool shareSameRegisterFile(const TargetRegisterInfo &TRI, const TargetRegisterClass *DefRC, unsigned DefSubReg, const TargetRegisterClass *SrcRC, unsigned SrcSubReg) { // Same register class. if (DefRC == SrcRC) return true; // Both operands are sub registers. Check if they share a register class. unsigned SrcIdx, DefIdx; if (SrcSubReg && DefSubReg) { return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg, SrcIdx, DefIdx) != nullptr; } // At most one of the register is a sub register, make it Src to avoid // duplicating the test. if (!SrcSubReg) { std::swap(DefSubReg, SrcSubReg); std::swap(DefRC, SrcRC); } // One of the register is a sub register, check if we can get a superclass. if (SrcSubReg) return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr; // Plain copy. return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr; } bool TargetRegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC, unsigned DefSubReg, const TargetRegisterClass *SrcRC, unsigned SrcSubReg) const { // If this source does not incur a cross register bank copy, use it. return shareSameRegisterFile(*this, DefRC, DefSubReg, SrcRC, SrcSubReg); } // Compute target-independent register allocator hints to help eliminate copies. void TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg, ArrayRef<MCPhysReg> Order, SmallVectorImpl<MCPhysReg> &Hints, const MachineFunction &MF, const VirtRegMap *VRM, const LiveRegMatrix *Matrix) const { const MachineRegisterInfo &MRI = MF.getRegInfo(); std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg); // Hints with HintType != 0 were set by target-dependent code. // Such targets must provide their own implementation of // TRI::getRegAllocationHints to interpret those hint types. assert(Hint.first == 0 && "Target must implement TRI::getRegAllocationHints"); // Target-independent hints are either a physical or a virtual register. unsigned Phys = Hint.second; if (VRM && isVirtualRegister(Phys)) Phys = VRM->getPhys(Phys); // Check that Phys is a valid hint in VirtReg's register class. if (!isPhysicalRegister(Phys)) return; if (MRI.isReserved(Phys)) return; // Check that Phys is in the allocation order. We shouldn't heed hints // from VirtReg's register class if they aren't in the allocation order. The // target probably has a reason for removing the register. if (std::find(Order.begin(), Order.end(), Phys) == Order.end()) return; // All clear, tell the register allocator to prefer this register. Hints.push_back(Phys); } bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const { return !MF.getFunction()->hasFnAttribute("no-realign-stack"); } bool TargetRegisterInfo::needsStackRealignment( const MachineFunction &MF) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); const Function *F = MF.getFunction(); unsigned StackAlign = TFI->getStackAlignment(); bool requiresRealignment = ((MFI->getMaxAlignment() > StackAlign) || F->hasFnAttribute(Attribute::StackAlignment)); if (MF.getFunction()->hasFnAttribute("stackrealign") || requiresRealignment) { if (canRealignStack(MF)) return true; DEBUG(dbgs() << "Can't realign function's stack: " << F->getName() << "\n"); } return false; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void TargetRegisterInfo::dumpReg(unsigned Reg, unsigned SubRegIndex, const TargetRegisterInfo *TRI) { dbgs() << PrintReg(Reg, TRI, SubRegIndex) << "\n"; } #endif