//===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file includes support code use by SelectionDAGBuilder when lowering a // statepoint sequence in SelectionDAG IR. // //===----------------------------------------------------------------------===// #include "StatepointLowering.h" #include "SelectionDAGBuilder.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/GCMetadata.h" #include "llvm/CodeGen/GCStrategy.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/StackMaps.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Statepoint.h" #include "llvm/Target/TargetLowering.h" #include <algorithm> using namespace llvm; #define DEBUG_TYPE "statepoint-lowering" STATISTIC(NumSlotsAllocatedForStatepoints, "Number of stack slots allocated for statepoints"); STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); STATISTIC(StatepointMaxSlotsRequired, "Maximum number of stack slots required for a singe statepoint"); static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, SelectionDAGBuilder &Builder, uint64_t Value) { SDLoc L = Builder.getCurSDLoc(); Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, MVT::i64)); Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); } void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { // Consistency check assert(PendingGCRelocateCalls.empty() && "Trying to visit statepoint before finished processing previous one"); Locations.clear(); NextSlotToAllocate = 0; // Need to resize this on each safepoint - we need the two to stay in // sync and the clear patterns of a SelectionDAGBuilder have no relation // to FunctionLoweringInfo. AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); for (size_t i = 0; i < AllocatedStackSlots.size(); i++) { AllocatedStackSlots[i] = false; } } void StatepointLoweringState::clear() { Locations.clear(); AllocatedStackSlots.clear(); assert(PendingGCRelocateCalls.empty() && "cleared before statepoint sequence completed"); } SDValue StatepointLoweringState::allocateStackSlot(EVT ValueType, SelectionDAGBuilder &Builder) { NumSlotsAllocatedForStatepoints++; // The basic scheme here is to first look for a previously created stack slot // which is not in use (accounting for the fact arbitrary slots may already // be reserved), or to create a new stack slot and use it. // If this doesn't succeed in 40000 iterations, something is seriously wrong for (int i = 0; i < 40000; i++) { assert(Builder.FuncInfo.StatepointStackSlots.size() == AllocatedStackSlots.size() && "broken invariant"); const size_t NumSlots = AllocatedStackSlots.size(); assert(NextSlotToAllocate <= NumSlots && "broken invariant"); if (NextSlotToAllocate >= NumSlots) { assert(NextSlotToAllocate == NumSlots); // record stats if (NumSlots + 1 > StatepointMaxSlotsRequired) { StatepointMaxSlotsRequired = NumSlots + 1; } SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); Builder.FuncInfo.StatepointStackSlots.push_back(FI); AllocatedStackSlots.push_back(true); return SpillSlot; } if (!AllocatedStackSlots[NextSlotToAllocate]) { const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; AllocatedStackSlots[NextSlotToAllocate] = true; return Builder.DAG.getFrameIndex(FI, ValueType); } // Note: We deliberately choose to advance this only on the failing path. // Doing so on the succeeding path involves a bit of complexity that caused // a minor bug previously. Unless performance shows this matters, please // keep this code as simple as possible. NextSlotToAllocate++; } llvm_unreachable("infinite loop?"); } /// Utility function for reservePreviousStackSlotForValue. Tries to find /// stack slot index to which we have spilled value for previous statepoints. /// LookUpDepth specifies maximum DFS depth this function is allowed to look. static Optional<int> findPreviousSpillSlot(const Value *Val, SelectionDAGBuilder &Builder, int LookUpDepth) { // Can not look any further - give up now if (LookUpDepth <= 0) return Optional<int>(); // Spill location is known for gc relocates if (isGCRelocate(Val)) { GCRelocateOperands RelocOps(cast<Instruction>(Val)); FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap = Builder.FuncInfo.StatepointRelocatedValues[RelocOps.getStatepoint()]; auto It = SpillMap.find(RelocOps.getDerivedPtr()); if (It == SpillMap.end()) return Optional<int>(); return It->second; } // Look through bitcast instructions. if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) { return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); } // Look through phi nodes // All incoming values should have same known stack slot, otherwise result // is unknown. if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { Optional<int> MergedResult = None; for (auto &IncomingValue : Phi->incoming_values()) { Optional<int> SpillSlot = findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); if (!SpillSlot.hasValue()) return Optional<int>(); if (MergedResult.hasValue() && *MergedResult != *SpillSlot) return Optional<int>(); MergedResult = SpillSlot; } return MergedResult; } // TODO: We can do better for PHI nodes. In cases like this: // ptr = phi(relocated_pointer, not_relocated_pointer) // statepoint(ptr) // We will return that stack slot for ptr is unknown. And later we might // assign different stack slots for ptr and relocated_pointer. This limits // llvm's ability to remove redundant stores. // Unfortunately it's hard to accomplish in current infrastructure. // We use this function to eliminate spill store completely, while // in example we still need to emit store, but instead of any location // we need to use special "preferred" location. // TODO: handle simple updates. If a value is modified and the original // value is no longer live, it would be nice to put the modified value in the // same slot. This allows folding of the memory accesses for some // instructions types (like an increment). // statepoint (i) // i1 = i+1 // statepoint (i1) // However we need to be careful for cases like this: // statepoint(i) // i1 = i+1 // statepoint(i, i1) // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just // put handling of simple modifications in this function like it's done // for bitcasts we might end up reserving i's slot for 'i+1' because order in // which we visit values is unspecified. // Don't know any information about this instruction return Optional<int>(); } /// Try to find existing copies of the incoming values in stack slots used for /// statepoint spilling. If we can find a spill slot for the incoming value, /// mark that slot as allocated, and reuse the same slot for this safepoint. /// This helps to avoid series of loads and stores that only serve to reshuffle /// values on the stack between calls. static void reservePreviousStackSlotForValue(const Value *IncomingValue, SelectionDAGBuilder &Builder) { SDValue Incoming = Builder.getValue(IncomingValue); if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { // We won't need to spill this, so no need to check for previously // allocated stack slots return; } SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); if (OldLocation.getNode()) // duplicates in input return; const int LookUpDepth = 6; Optional<int> Index = findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); if (!Index.hasValue()) return; auto Itr = std::find(Builder.FuncInfo.StatepointStackSlots.begin(), Builder.FuncInfo.StatepointStackSlots.end(), *Index); assert(Itr != Builder.FuncInfo.StatepointStackSlots.end() && "value spilled to the unknown stack slot"); // This is one of our dedicated lowering slots const int Offset = std::distance(Builder.FuncInfo.StatepointStackSlots.begin(), Itr); if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { // stack slot already assigned to someone else, can't use it! // TODO: currently we reserve space for gc arguments after doing // normal allocation for deopt arguments. We should reserve for // _all_ deopt and gc arguments, then start allocating. This // will prevent some moves being inserted when vm state changes, // but gc state doesn't between two calls. return; } // Reserve this stack slot Builder.StatepointLowering.reserveStackSlot(Offset); // Cache this slot so we find it when going through the normal // assignment loop. SDValue Loc = Builder.DAG.getTargetFrameIndex(*Index, Incoming.getValueType()); Builder.StatepointLowering.setLocation(Incoming, Loc); } /// Remove any duplicate (as SDValues) from the derived pointer pairs. This /// is not required for correctness. It's purpose is to reduce the size of /// StackMap section. It has no effect on the number of spill slots required /// or the actual lowering. static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases, SmallVectorImpl<const Value *> &Ptrs, SmallVectorImpl<const Value *> &Relocs, SelectionDAGBuilder &Builder) { // This is horribly inefficient, but I don't care right now SmallSet<SDValue, 64> Seen; SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs; for (size_t i = 0; i < Ptrs.size(); i++) { SDValue SD = Builder.getValue(Ptrs[i]); // Only add non-duplicates if (Seen.count(SD) == 0) { NewBases.push_back(Bases[i]); NewPtrs.push_back(Ptrs[i]); NewRelocs.push_back(Relocs[i]); } Seen.insert(SD); } assert(Bases.size() >= NewBases.size()); assert(Ptrs.size() >= NewPtrs.size()); assert(Relocs.size() >= NewRelocs.size()); Bases = NewBases; Ptrs = NewPtrs; Relocs = NewRelocs; assert(Ptrs.size() == Bases.size()); assert(Ptrs.size() == Relocs.size()); } /// Extract call from statepoint, lower it and return pointer to the /// call node. Also update NodeMap so that getValue(statepoint) will /// reference lowered call result static SDNode * lowerCallFromStatepoint(ImmutableStatepoint ISP, const BasicBlock *EHPadBB, SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { ImmutableCallSite CS(ISP.getCallSite()); SDValue ActualCallee; if (ISP.getNumPatchBytes() > 0) { // If we've been asked to emit a nop sequence instead of a call instruction // for this statepoint then don't lower the call target, but use a constant // `null` instead. Not lowering the call target lets statepoint clients get // away without providing a physical address for the symbolic call target at // link time. const auto &TLI = Builder.DAG.getTargetLoweringInfo(); const auto &DL = Builder.DAG.getDataLayout(); unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace(); ActualCallee = Builder.DAG.getConstant(0, Builder.getCurSDLoc(), TLI.getPointerTy(DL, AS)); } else ActualCallee = Builder.getValue(ISP.getCalledValue()); assert(CS.getCallingConv() != CallingConv::AnyReg && "anyregcc is not supported on statepoints!"); Type *DefTy = ISP.getActualReturnType(); bool HasDef = !DefTy->isVoidTy(); SDValue ReturnValue, CallEndVal; std::tie(ReturnValue, CallEndVal) = Builder.lowerCallOperands( ISP.getCallSite(), ImmutableStatepoint::CallArgsBeginPos, ISP.getNumCallArgs(), ActualCallee, DefTy, EHPadBB, false /* IsPatchPoint */); SDNode *CallEnd = CallEndVal.getNode(); // Get a call instruction from the call sequence chain. Tail calls are not // allowed. The following code is essentially reverse engineering X86's // LowerCallTo. // // We are expecting DAG to have the following form: // // ch = eh_label (only in case of invoke statepoint) // ch, glue = callseq_start ch // ch, glue = X86::Call ch, glue // ch, glue = callseq_end ch, glue // get_return_value ch, glue // // get_return_value can either be a sequence of CopyFromReg instructions // to grab the return value from the return register(s), or it can be a LOAD // to load a value returned by reference via a stack slot. if (HasDef) { if (CallEnd->getOpcode() == ISD::LOAD) CallEnd = CallEnd->getOperand(0).getNode(); else while (CallEnd->getOpcode() == ISD::CopyFromReg) CallEnd = CallEnd->getOperand(0).getNode(); } assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); // Export the result value if needed const Instruction *GCResult = ISP.getGCResult(); if (HasDef && GCResult) { if (GCResult->getParent() != CS.getParent()) { // Result value will be used in a different basic block so we need to // export it now. // Default exporting mechanism will not work here because statepoint call // has a different type than the actual call. It means that by default // llvm will create export register of the wrong type (always i32 in our // case). So instead we need to create export register with correct type // manually. // TODO: To eliminate this problem we can remove gc.result intrinsics // completely and make statepoint call to return a tuple. unsigned Reg = Builder.FuncInfo.CreateRegs(ISP.getActualReturnType()); RegsForValue RFV( *Builder.DAG.getContext(), Builder.DAG.getTargetLoweringInfo(), Builder.DAG.getDataLayout(), Reg, ISP.getActualReturnType()); SDValue Chain = Builder.DAG.getEntryNode(); RFV.getCopyToRegs(ReturnValue, Builder.DAG, Builder.getCurSDLoc(), Chain, nullptr); PendingExports.push_back(Chain); Builder.FuncInfo.ValueMap[CS.getInstruction()] = Reg; } else { // Result value will be used in a same basic block. Don't export it or // perform any explicit register copies. // We'll replace the actuall call node shortly. gc_result will grab // this value. Builder.setValue(CS.getInstruction(), ReturnValue); } } else { // The token value is never used from here on, just generate a poison value Builder.setValue(CS.getInstruction(), Builder.DAG.getIntPtrConstant(-1, Builder.getCurSDLoc())); } return CallEnd->getOperand(0).getNode(); } /// Callect all gc pointers coming into statepoint intrinsic, clean them up, /// and return two arrays: /// Bases - base pointers incoming to this statepoint /// Ptrs - derived pointers incoming to this statepoint /// Relocs - the gc_relocate corresponding to each base/ptr pair /// Elements of this arrays should be in one-to-one correspondence with each /// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call static void getIncomingStatepointGCValues( SmallVectorImpl<const Value *> &Bases, SmallVectorImpl<const Value *> &Ptrs, SmallVectorImpl<const Value *> &Relocs, ImmutableStatepoint StatepointSite, SelectionDAGBuilder &Builder) { for (GCRelocateOperands relocateOpers : StatepointSite.getRelocates()) { Relocs.push_back(relocateOpers.getUnderlyingCallSite().getInstruction()); Bases.push_back(relocateOpers.getBasePtr()); Ptrs.push_back(relocateOpers.getDerivedPtr()); } // Remove any redundant llvm::Values which map to the same SDValue as another // input. Also has the effect of removing duplicates in the original // llvm::Value input list as well. This is a useful optimization for // reducing the size of the StackMap section. It has no other impact. removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder); assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size()); } /// Spill a value incoming to the statepoint. It might be either part of /// vmstate /// or gcstate. In both cases unconditionally spill it on the stack unless it /// is a null constant. Return pair with first element being frame index /// containing saved value and second element with outgoing chain from the /// emitted store static std::pair<SDValue, SDValue> spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, SelectionDAGBuilder &Builder) { SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); // Emit new store if we didn't do it for this ptr before if (!Loc.getNode()) { Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), Builder); assert(isa<FrameIndexSDNode>(Loc)); int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); // We use TargetFrameIndex so that isel will not select it into LEA Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType()); // TODO: We can create TokenFactor node instead of // chaining stores one after another, this may allow // a bit more optimal scheduling for them Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, MachinePointerInfo::getFixedStack( Builder.DAG.getMachineFunction(), Index), false, false, 0); Builder.StatepointLowering.setLocation(Incoming, Loc); } assert(Loc.getNode()); return std::make_pair(Loc, Chain); } /// Lower a single value incoming to a statepoint node. This value can be /// either a deopt value or a gc value, the handling is the same. We special /// case constants and allocas, then fall back to spilling if required. static void lowerIncomingStatepointValue(SDValue Incoming, SmallVectorImpl<SDValue> &Ops, SelectionDAGBuilder &Builder) { SDValue Chain = Builder.getRoot(); if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { // If the original value was a constant, make sure it gets recorded as // such in the stackmap. This is required so that the consumer can // parse any internal format to the deopt state. It also handles null // pointers and other constant pointers in GC states pushStackMapConstant(Ops, Builder, C->getSExtValue()); } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { // This handles allocas as arguments to the statepoint (this is only // really meaningful for a deopt value. For GC, we'd be trying to // relocate the address of the alloca itself?) Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), Incoming.getValueType())); } else { // Otherwise, locate a spill slot and explicitly spill it so it // can be found by the runtime later. We currently do not support // tracking values through callee saved registers to their eventual // spill location. This would be a useful optimization, but would // need to be optional since it requires a lot of complexity on the // runtime side which not all would support. std::pair<SDValue, SDValue> Res = spillIncomingStatepointValue(Incoming, Chain, Builder); Ops.push_back(Res.first); Chain = Res.second; } Builder.DAG.setRoot(Chain); } /// Lower deopt state and gc pointer arguments of the statepoint. The actual /// lowering is described in lowerIncomingStatepointValue. This function is /// responsible for lowering everything in the right position and playing some /// tricks to avoid redundant stack manipulation where possible. On /// completion, 'Ops' will contain ready to use operands for machine code /// statepoint. The chain nodes will have already been created and the DAG root /// will be set to the last value spilled (if any were). static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, ImmutableStatepoint StatepointSite, SelectionDAGBuilder &Builder) { // Lower the deopt and gc arguments for this statepoint. Layout will // be: deopt argument length, deopt arguments.., gc arguments... SmallVector<const Value *, 64> Bases, Ptrs, Relocations; getIncomingStatepointGCValues(Bases, Ptrs, Relocations, StatepointSite, Builder); #ifndef NDEBUG // Check that each of the gc pointer and bases we've gotten out of the // safepoint is something the strategy thinks might be a pointer into the GC // heap. This is basically just here to help catch errors during statepoint // insertion. TODO: This should actually be in the Verifier, but we can't get // to the GCStrategy from there (yet). GCStrategy &S = Builder.GFI->getStrategy(); for (const Value *V : Bases) { auto Opt = S.isGCManagedPointer(V); if (Opt.hasValue()) { assert(Opt.getValue() && "non gc managed base pointer found in statepoint"); } } for (const Value *V : Ptrs) { auto Opt = S.isGCManagedPointer(V); if (Opt.hasValue()) { assert(Opt.getValue() && "non gc managed derived pointer found in statepoint"); } } for (const Value *V : Relocations) { auto Opt = S.isGCManagedPointer(V); if (Opt.hasValue()) { assert(Opt.getValue() && "non gc managed pointer relocated"); } } #endif // Before we actually start lowering (and allocating spill slots for values), // reserve any stack slots which we judge to be profitable to reuse for a // particular value. This is purely an optimization over the code below and // doesn't change semantics at all. It is important for performance that we // reserve slots for both deopt and gc values before lowering either. for (const Value *V : StatepointSite.vm_state_args()) { reservePreviousStackSlotForValue(V, Builder); } for (unsigned i = 0; i < Bases.size(); ++i) { reservePreviousStackSlotForValue(Bases[i], Builder); reservePreviousStackSlotForValue(Ptrs[i], Builder); } // First, prefix the list with the number of unique values to be // lowered. Note that this is the number of *Values* not the // number of SDValues required to lower them. const int NumVMSArgs = StatepointSite.getNumTotalVMSArgs(); pushStackMapConstant(Ops, Builder, NumVMSArgs); assert(NumVMSArgs == std::distance(StatepointSite.vm_state_begin(), StatepointSite.vm_state_end())); // The vm state arguments are lowered in an opaque manner. We do // not know what type of values are contained within. We skip the // first one since that happens to be the total number we lowered // explicitly just above. We could have left it in the loop and // not done it explicitly, but it's far easier to understand this // way. for (const Value *V : StatepointSite.vm_state_args()) { SDValue Incoming = Builder.getValue(V); lowerIncomingStatepointValue(Incoming, Ops, Builder); } // Finally, go ahead and lower all the gc arguments. There's no prefixed // length for this one. After lowering, we'll have the base and pointer // arrays interwoven with each (lowered) base pointer immediately followed by // it's (lowered) derived pointer. i.e // (base[0], ptr[0], base[1], ptr[1], ...) for (unsigned i = 0; i < Bases.size(); ++i) { const Value *Base = Bases[i]; lowerIncomingStatepointValue(Builder.getValue(Base), Ops, Builder); const Value *Ptr = Ptrs[i]; lowerIncomingStatepointValue(Builder.getValue(Ptr), Ops, Builder); } // If there are any explicit spill slots passed to the statepoint, record // them, but otherwise do not do anything special. These are user provided // allocas and give control over placement to the consumer. In this case, // it is the contents of the slot which may get updated, not the pointer to // the alloca for (Value *V : StatepointSite.gc_args()) { SDValue Incoming = Builder.getValue(V); if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { // This handles allocas as arguments to the statepoint Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), Incoming.getValueType())); } } // Record computed locations for all lowered values. // This can not be embedded in lowering loops as we need to record *all* // values, while previous loops account only values with unique SDValues. const Instruction *StatepointInstr = StatepointSite.getCallSite().getInstruction(); FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap = Builder.FuncInfo.StatepointRelocatedValues[StatepointInstr]; for (GCRelocateOperands RelocateOpers : StatepointSite.getRelocates()) { const Value *V = RelocateOpers.getDerivedPtr(); SDValue SDV = Builder.getValue(V); SDValue Loc = Builder.StatepointLowering.getLocation(SDV); if (Loc.getNode()) { SpillMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); } else { // Record value as visited, but not spilled. This is case for allocas // and constants. For this values we can avoid emitting spill load while // visiting corresponding gc_relocate. // Actually we do not need to record them in this map at all. // We do this only to check that we are not relocating any unvisited // value. SpillMap[V] = None; // Default llvm mechanisms for exporting values which are used in // different basic blocks does not work for gc relocates. // Note that it would be incorrect to teach llvm that all relocates are // uses of the corresponding values so that it would automatically // export them. Relocates of the spilled values does not use original // value. if (RelocateOpers.getUnderlyingCallSite().getParent() != StatepointInstr->getParent()) Builder.ExportFromCurrentBlock(V); } } } void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) { // Check some preconditions for sanity assert(isStatepoint(&CI) && "function called must be the statepoint function"); LowerStatepoint(ImmutableStatepoint(&CI)); } void SelectionDAGBuilder::LowerStatepoint( ImmutableStatepoint ISP, const BasicBlock *EHPadBB /*= nullptr*/) { // The basic scheme here is that information about both the original call and // the safepoint is encoded in the CallInst. We create a temporary call and // lower it, then reverse engineer the calling sequence. NumOfStatepoints++; // Clear state StatepointLowering.startNewStatepoint(*this); ImmutableCallSite CS(ISP.getCallSite()); #ifndef NDEBUG // Consistency check. Check only relocates in the same basic block as thier // statepoint. for (const User *U : CS->users()) { const CallInst *Call = cast<CallInst>(U); if (isGCRelocate(Call) && Call->getParent() == CS.getParent()) StatepointLowering.scheduleRelocCall(*Call); } #endif #ifndef NDEBUG // If this is a malformed statepoint, report it early to simplify debugging. // This should catch any IR level mistake that's made when constructing or // transforming statepoints. ISP.verify(); // Check that the associated GCStrategy expects to encounter statepoints. assert(GFI->getStrategy().useStatepoints() && "GCStrategy does not expect to encounter statepoints"); #endif // Lower statepoint vmstate and gcstate arguments SmallVector<SDValue, 10> LoweredMetaArgs; lowerStatepointMetaArgs(LoweredMetaArgs, ISP, *this); // Get call node, we will replace it later with statepoint SDNode *CallNode = lowerCallFromStatepoint(ISP, EHPadBB, *this, PendingExports); // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END // nodes with all the appropriate arguments and return values. // Call Node: Chain, Target, {Args}, RegMask, [Glue] SDValue Chain = CallNode->getOperand(0); SDValue Glue; bool CallHasIncomingGlue = CallNode->getGluedNode(); if (CallHasIncomingGlue) { // Glue is always last operand Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); } // Build the GC_TRANSITION_START node if necessary. // // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the // order in which they appear in the call to the statepoint intrinsic. If // any of the operands is a pointer-typed, that operand is immediately // followed by a SRCVALUE for the pointer that may be used during lowering // (e.g. to form MachinePointerInfo values for loads/stores). const bool IsGCTransition = (ISP.getFlags() & (uint64_t)StatepointFlags::GCTransition) == (uint64_t)StatepointFlags::GCTransition; if (IsGCTransition) { SmallVector<SDValue, 8> TSOps; // Add chain TSOps.push_back(Chain); // Add GC transition arguments for (const Value *V : ISP.gc_transition_args()) { TSOps.push_back(getValue(V)); if (V->getType()->isPointerTy()) TSOps.push_back(DAG.getSrcValue(V)); } // Add glue if necessary if (CallHasIncomingGlue) TSOps.push_back(Glue); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SDValue GCTransitionStart = DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); Chain = GCTransitionStart.getValue(0); Glue = GCTransitionStart.getValue(1); } // TODO: Currently, all of these operands are being marked as read/write in // PrologEpilougeInserter.cpp, we should special case the VMState arguments // and flags to be read-only. SmallVector<SDValue, 40> Ops; // Add the <id> and <numBytes> constants. Ops.push_back(DAG.getTargetConstant(ISP.getID(), getCurSDLoc(), MVT::i64)); Ops.push_back( DAG.getTargetConstant(ISP.getNumPatchBytes(), getCurSDLoc(), MVT::i32)); // Calculate and push starting position of vmstate arguments // Get number of arguments incoming directly into call node unsigned NumCallRegArgs = CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); // Add call target SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); Ops.push_back(CallTarget); // Add call arguments // Get position of register mask in the call SDNode::op_iterator RegMaskIt; if (CallHasIncomingGlue) RegMaskIt = CallNode->op_end() - 2; else RegMaskIt = CallNode->op_end() - 1; Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); // Add a constant argument for the calling convention pushStackMapConstant(Ops, *this, CS.getCallingConv()); // Add a constant argument for the flags uint64_t Flags = ISP.getFlags(); assert( ((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && "unknown flag used"); pushStackMapConstant(Ops, *this, Flags); // Insert all vmstate and gcstate arguments Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); // Add register mask from call node Ops.push_back(*RegMaskIt); // Add chain Ops.push_back(Chain); // Same for the glue, but we add it only if original call had it if (Glue.getNode()) Ops.push_back(Glue); // Compute return values. Provide a glue output since we consume one as // input. This allows someone else to chain off us as needed. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SDNode *StatepointMCNode = DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); SDNode *SinkNode = StatepointMCNode; // Build the GC_TRANSITION_END node if necessary. // // See the comment above regarding GC_TRANSITION_START for the layout of // the operands to the GC_TRANSITION_END node. if (IsGCTransition) { SmallVector<SDValue, 8> TEOps; // Add chain TEOps.push_back(SDValue(StatepointMCNode, 0)); // Add GC transition arguments for (const Value *V : ISP.gc_transition_args()) { TEOps.push_back(getValue(V)); if (V->getType()->isPointerTy()) TEOps.push_back(DAG.getSrcValue(V)); } // Add glue TEOps.push_back(SDValue(StatepointMCNode, 1)); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SDValue GCTransitionStart = DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); SinkNode = GCTransitionStart.getNode(); } // Replace original call DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root // Remove original call node DAG.DeleteNode(CallNode); // DON'T set the root - under the assumption that it's already set past the // inserted node we created. // TODO: A better future implementation would be to emit a single variable // argument, variable return value STATEPOINT node here and then hookup the // return value of each gc.relocate to the respective output of the // previously emitted STATEPOINT value. Unfortunately, this doesn't appear // to actually be possible today. } void SelectionDAGBuilder::visitGCResult(const CallInst &CI) { // The result value of the gc_result is simply the result of the actual // call. We've already emitted this, so just grab the value. Instruction *I = cast<Instruction>(CI.getArgOperand(0)); assert(isStatepoint(I) && "first argument must be a statepoint token"); if (I->getParent() != CI.getParent()) { // Statepoint is in different basic block so we should have stored call // result in a virtual register. // We can not use default getValue() functionality to copy value from this // register because statepoint and actuall call return types can be // different, and getValue() will use CopyFromReg of the wrong type, // which is always i32 in our case. PointerType *CalleeType = cast<PointerType>( ImmutableStatepoint(I).getCalledValue()->getType()); Type *RetTy = cast<FunctionType>(CalleeType->getElementType())->getReturnType(); SDValue CopyFromReg = getCopyFromRegs(I, RetTy); assert(CopyFromReg.getNode()); setValue(&CI, CopyFromReg); } else { setValue(&CI, getValue(I)); } } void SelectionDAGBuilder::visitGCRelocate(const CallInst &CI) { GCRelocateOperands RelocateOpers(&CI); #ifndef NDEBUG // Consistency check // We skip this check for relocates not in the same basic block as thier // statepoint. It would be too expensive to preserve validation info through // different basic blocks. if (RelocateOpers.getStatepoint()->getParent() == CI.getParent()) { StatepointLowering.relocCallVisited(CI); } #endif const Value *DerivedPtr = RelocateOpers.getDerivedPtr(); SDValue SD = getValue(DerivedPtr); FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap = FuncInfo.StatepointRelocatedValues[RelocateOpers.getStatepoint()]; // We should have recorded location for this pointer assert(SpillMap.count(DerivedPtr) && "Relocating not lowered gc value"); Optional<int> DerivedPtrLocation = SpillMap[DerivedPtr]; // We didn't need to spill these special cases (constants and allocas). // See the handling in spillIncomingValueForStatepoint for detail. if (!DerivedPtrLocation) { setValue(&CI, SD); return; } SDValue SpillSlot = DAG.getTargetFrameIndex(*DerivedPtrLocation, SD.getValueType()); // Be conservative: flush all pending loads // TODO: Probably we can be less restrictive on this, // it may allow more scheduling opportunities. SDValue Chain = getRoot(); SDValue SpillLoad = DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, SpillSlot, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), *DerivedPtrLocation), false, false, false, 0); // Again, be conservative, don't emit pending loads DAG.setRoot(SpillLoad.getValue(1)); assert(SpillLoad.getNode()); setValue(&CI, SpillLoad); }