//===- ResourcePriorityQueue.cpp - A DFA-oriented priority queue -*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the ResourcePriorityQueue class, which is a // SchedulingPriorityQueue that prioritizes instructions using DFA state to // reduce the length of the critical path through the basic block // on VLIW platforms. // The scheduler is basically a top-down adaptable list scheduler with DFA // resource tracking added to the cost function. // DFA is queried as a state machine to model "packets/bundles" during // schedule. Currently packets/bundles are discarded at the end of // scheduling, affecting only order of instructions. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/ResourcePriorityQueue.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetSubtargetInfo.h" using namespace llvm; #define DEBUG_TYPE "scheduler" static cl::opt<bool> DisableDFASched("disable-dfa-sched", cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::desc("Disable use of DFA during scheduling")); static cl::opt<signed> RegPressureThreshold( "dfa-sched-reg-pressure-threshold", cl::Hidden, cl::ZeroOrMore, cl::init(5), cl::desc("Track reg pressure and switch priority to in-depth")); ResourcePriorityQueue::ResourcePriorityQueue(SelectionDAGISel *IS) : Picker(this), InstrItins(IS->MF->getSubtarget().getInstrItineraryData()) { const TargetSubtargetInfo &STI = IS->MF->getSubtarget(); TRI = STI.getRegisterInfo(); TLI = IS->TLI; TII = STI.getInstrInfo(); ResourcesModel.reset(TII->CreateTargetScheduleState(STI)); // This hard requirement could be relaxed, but for now // do not let it proceed. assert(ResourcesModel && "Unimplemented CreateTargetScheduleState."); unsigned NumRC = TRI->getNumRegClasses(); RegLimit.resize(NumRC); RegPressure.resize(NumRC); std::fill(RegLimit.begin(), RegLimit.end(), 0); std::fill(RegPressure.begin(), RegPressure.end(), 0); for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(), E = TRI->regclass_end(); I != E; ++I) RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, *IS->MF); ParallelLiveRanges = 0; HorizontalVerticalBalance = 0; } unsigned ResourcePriorityQueue::numberRCValPredInSU(SUnit *SU, unsigned RCId) { unsigned NumberDeps = 0; for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { if (I->isCtrl()) continue; SUnit *PredSU = I->getSUnit(); const SDNode *ScegN = PredSU->getNode(); if (!ScegN) continue; // If value is passed to CopyToReg, it is probably // live outside BB. switch (ScegN->getOpcode()) { default: break; case ISD::TokenFactor: break; case ISD::CopyFromReg: NumberDeps++; break; case ISD::CopyToReg: break; case ISD::INLINEASM: break; } if (!ScegN->isMachineOpcode()) continue; for (unsigned i = 0, e = ScegN->getNumValues(); i != e; ++i) { MVT VT = ScegN->getSimpleValueType(i); if (TLI->isTypeLegal(VT) && (TLI->getRegClassFor(VT)->getID() == RCId)) { NumberDeps++; break; } } } return NumberDeps; } unsigned ResourcePriorityQueue::numberRCValSuccInSU(SUnit *SU, unsigned RCId) { unsigned NumberDeps = 0; for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->isCtrl()) continue; SUnit *SuccSU = I->getSUnit(); const SDNode *ScegN = SuccSU->getNode(); if (!ScegN) continue; // If value is passed to CopyToReg, it is probably // live outside BB. switch (ScegN->getOpcode()) { default: break; case ISD::TokenFactor: break; case ISD::CopyFromReg: break; case ISD::CopyToReg: NumberDeps++; break; case ISD::INLINEASM: break; } if (!ScegN->isMachineOpcode()) continue; for (unsigned i = 0, e = ScegN->getNumOperands(); i != e; ++i) { const SDValue &Op = ScegN->getOperand(i); MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo()); if (TLI->isTypeLegal(VT) && (TLI->getRegClassFor(VT)->getID() == RCId)) { NumberDeps++; break; } } } return NumberDeps; } static unsigned numberCtrlDepsInSU(SUnit *SU) { unsigned NumberDeps = 0; for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) if (I->isCtrl()) NumberDeps++; return NumberDeps; } static unsigned numberCtrlPredInSU(SUnit *SU) { unsigned NumberDeps = 0; for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) if (I->isCtrl()) NumberDeps++; return NumberDeps; } /// /// Initialize nodes. /// void ResourcePriorityQueue::initNodes(std::vector<SUnit> &sunits) { SUnits = &sunits; NumNodesSolelyBlocking.resize(SUnits->size(), 0); for (unsigned i = 0, e = SUnits->size(); i != e; ++i) { SUnit *SU = &(*SUnits)[i]; initNumRegDefsLeft(SU); SU->NodeQueueId = 0; } } /// This heuristic is used if DFA scheduling is not desired /// for some VLIW platform. bool resource_sort::operator()(const SUnit *LHS, const SUnit *RHS) const { // The isScheduleHigh flag allows nodes with wraparound dependencies that // cannot easily be modeled as edges with latencies to be scheduled as // soon as possible in a top-down schedule. if (LHS->isScheduleHigh && !RHS->isScheduleHigh) return false; if (!LHS->isScheduleHigh && RHS->isScheduleHigh) return true; unsigned LHSNum = LHS->NodeNum; unsigned RHSNum = RHS->NodeNum; // The most important heuristic is scheduling the critical path. unsigned LHSLatency = PQ->getLatency(LHSNum); unsigned RHSLatency = PQ->getLatency(RHSNum); if (LHSLatency < RHSLatency) return true; if (LHSLatency > RHSLatency) return false; // After that, if two nodes have identical latencies, look to see if one will // unblock more other nodes than the other. unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum); unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum); if (LHSBlocked < RHSBlocked) return true; if (LHSBlocked > RHSBlocked) return false; // Finally, just to provide a stable ordering, use the node number as a // deciding factor. return LHSNum < RHSNum; } /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor /// of SU, return it, otherwise return null. SUnit *ResourcePriorityQueue::getSingleUnscheduledPred(SUnit *SU) { SUnit *OnlyAvailablePred = nullptr; for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { SUnit &Pred = *I->getSUnit(); if (!Pred.isScheduled) { // We found an available, but not scheduled, predecessor. If it's the // only one we have found, keep track of it... otherwise give up. if (OnlyAvailablePred && OnlyAvailablePred != &Pred) return nullptr; OnlyAvailablePred = &Pred; } } return OnlyAvailablePred; } void ResourcePriorityQueue::push(SUnit *SU) { // Look at all of the successors of this node. Count the number of nodes that // this node is the sole unscheduled node for. unsigned NumNodesBlocking = 0; for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) if (getSingleUnscheduledPred(I->getSUnit()) == SU) ++NumNodesBlocking; NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking; Queue.push_back(SU); } /// Check if scheduling of this SU is possible /// in the current packet. bool ResourcePriorityQueue::isResourceAvailable(SUnit *SU) { if (!SU || !SU->getNode()) return false; // If this is a compound instruction, // it is likely to be a call. Do not delay it. if (SU->getNode()->getGluedNode()) return true; // First see if the pipeline could receive this instruction // in the current cycle. if (SU->getNode()->isMachineOpcode()) switch (SU->getNode()->getMachineOpcode()) { default: if (!ResourcesModel->canReserveResources(&TII->get( SU->getNode()->getMachineOpcode()))) return false; case TargetOpcode::EXTRACT_SUBREG: case TargetOpcode::INSERT_SUBREG: case TargetOpcode::SUBREG_TO_REG: case TargetOpcode::REG_SEQUENCE: case TargetOpcode::IMPLICIT_DEF: break; } // Now see if there are no other dependencies // to instructions already in the packet. for (unsigned i = 0, e = Packet.size(); i != e; ++i) for (SUnit::const_succ_iterator I = Packet[i]->Succs.begin(), E = Packet[i]->Succs.end(); I != E; ++I) { // Since we do not add pseudos to packets, might as well // ignore order deps. if (I->isCtrl()) continue; if (I->getSUnit() == SU) return false; } return true; } /// Keep track of available resources. void ResourcePriorityQueue::reserveResources(SUnit *SU) { // If this SU does not fit in the packet // start a new one. if (!isResourceAvailable(SU) || SU->getNode()->getGluedNode()) { ResourcesModel->clearResources(); Packet.clear(); } if (SU->getNode() && SU->getNode()->isMachineOpcode()) { switch (SU->getNode()->getMachineOpcode()) { default: ResourcesModel->reserveResources(&TII->get( SU->getNode()->getMachineOpcode())); break; case TargetOpcode::EXTRACT_SUBREG: case TargetOpcode::INSERT_SUBREG: case TargetOpcode::SUBREG_TO_REG: case TargetOpcode::REG_SEQUENCE: case TargetOpcode::IMPLICIT_DEF: break; } Packet.push_back(SU); } // Forcefully end packet for PseudoOps. else { ResourcesModel->clearResources(); Packet.clear(); } // If packet is now full, reset the state so in the next cycle // we start fresh. if (Packet.size() >= InstrItins->SchedModel.IssueWidth) { ResourcesModel->clearResources(); Packet.clear(); } } signed ResourcePriorityQueue::rawRegPressureDelta(SUnit *SU, unsigned RCId) { signed RegBalance = 0; if (!SU || !SU->getNode() || !SU->getNode()->isMachineOpcode()) return RegBalance; // Gen estimate. for (unsigned i = 0, e = SU->getNode()->getNumValues(); i != e; ++i) { MVT VT = SU->getNode()->getSimpleValueType(i); if (TLI->isTypeLegal(VT) && TLI->getRegClassFor(VT) && TLI->getRegClassFor(VT)->getID() == RCId) RegBalance += numberRCValSuccInSU(SU, RCId); } // Kill estimate. for (unsigned i = 0, e = SU->getNode()->getNumOperands(); i != e; ++i) { const SDValue &Op = SU->getNode()->getOperand(i); MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo()); if (isa<ConstantSDNode>(Op.getNode())) continue; if (TLI->isTypeLegal(VT) && TLI->getRegClassFor(VT) && TLI->getRegClassFor(VT)->getID() == RCId) RegBalance -= numberRCValPredInSU(SU, RCId); } return RegBalance; } /// Estimates change in reg pressure from this SU. /// It is achieved by trivial tracking of defined /// and used vregs in dependent instructions. /// The RawPressure flag makes this function to ignore /// existing reg file sizes, and report raw def/use /// balance. signed ResourcePriorityQueue::regPressureDelta(SUnit *SU, bool RawPressure) { signed RegBalance = 0; if (!SU || !SU->getNode() || !SU->getNode()->isMachineOpcode()) return RegBalance; if (RawPressure) { for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(), E = TRI->regclass_end(); I != E; ++I) { const TargetRegisterClass *RC = *I; RegBalance += rawRegPressureDelta(SU, RC->getID()); } } else { for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(), E = TRI->regclass_end(); I != E; ++I) { const TargetRegisterClass *RC = *I; if ((RegPressure[RC->getID()] + rawRegPressureDelta(SU, RC->getID()) > 0) && (RegPressure[RC->getID()] + rawRegPressureDelta(SU, RC->getID()) >= RegLimit[RC->getID()])) RegBalance += rawRegPressureDelta(SU, RC->getID()); } } return RegBalance; } // Constants used to denote relative importance of // heuristic components for cost computation. static const unsigned PriorityOne = 200; static const unsigned PriorityTwo = 50; static const unsigned PriorityThree = 15; static const unsigned PriorityFour = 5; static const unsigned ScaleOne = 20; static const unsigned ScaleTwo = 10; static const unsigned ScaleThree = 5; static const unsigned FactorOne = 2; /// Returns single number reflecting benefit of scheduling SU /// in the current cycle. signed ResourcePriorityQueue::SUSchedulingCost(SUnit *SU) { // Initial trivial priority. signed ResCount = 1; // Do not waste time on a node that is already scheduled. if (SU->isScheduled) return ResCount; // Forced priority is high. if (SU->isScheduleHigh) ResCount += PriorityOne; // Adaptable scheduling // A small, but very parallel // region, where reg pressure is an issue. if (HorizontalVerticalBalance > RegPressureThreshold) { // Critical path first ResCount += (SU->getHeight() * ScaleTwo); // If resources are available for it, multiply the // chance of scheduling. if (isResourceAvailable(SU)) ResCount <<= FactorOne; // Consider change to reg pressure from scheduling // this SU. ResCount -= (regPressureDelta(SU,true) * ScaleOne); } // Default heuristic, greeady and // critical path driven. else { // Critical path first. ResCount += (SU->getHeight() * ScaleTwo); // Now see how many instructions is blocked by this SU. ResCount += (NumNodesSolelyBlocking[SU->NodeNum] * ScaleTwo); // If resources are available for it, multiply the // chance of scheduling. if (isResourceAvailable(SU)) ResCount <<= FactorOne; ResCount -= (regPressureDelta(SU) * ScaleTwo); } // These are platform-specific things. // Will need to go into the back end // and accessed from here via a hook. for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) { if (N->isMachineOpcode()) { const MCInstrDesc &TID = TII->get(N->getMachineOpcode()); if (TID.isCall()) ResCount += (PriorityTwo + (ScaleThree*N->getNumValues())); } else switch (N->getOpcode()) { default: break; case ISD::TokenFactor: case ISD::CopyFromReg: case ISD::CopyToReg: ResCount += PriorityFour; break; case ISD::INLINEASM: ResCount += PriorityThree; break; } } return ResCount; } /// Main resource tracking point. void ResourcePriorityQueue::scheduledNode(SUnit *SU) { // Use NULL entry as an event marker to reset // the DFA state. if (!SU) { ResourcesModel->clearResources(); Packet.clear(); return; } const SDNode *ScegN = SU->getNode(); // Update reg pressure tracking. // First update current node. if (ScegN->isMachineOpcode()) { // Estimate generated regs. for (unsigned i = 0, e = ScegN->getNumValues(); i != e; ++i) { MVT VT = ScegN->getSimpleValueType(i); if (TLI->isTypeLegal(VT)) { const TargetRegisterClass *RC = TLI->getRegClassFor(VT); if (RC) RegPressure[RC->getID()] += numberRCValSuccInSU(SU, RC->getID()); } } // Estimate killed regs. for (unsigned i = 0, e = ScegN->getNumOperands(); i != e; ++i) { const SDValue &Op = ScegN->getOperand(i); MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo()); if (TLI->isTypeLegal(VT)) { const TargetRegisterClass *RC = TLI->getRegClassFor(VT); if (RC) { if (RegPressure[RC->getID()] > (numberRCValPredInSU(SU, RC->getID()))) RegPressure[RC->getID()] -= numberRCValPredInSU(SU, RC->getID()); else RegPressure[RC->getID()] = 0; } } } for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { if (I->isCtrl() || (I->getSUnit()->NumRegDefsLeft == 0)) continue; --I->getSUnit()->NumRegDefsLeft; } } // Reserve resources for this SU. reserveResources(SU); // Adjust number of parallel live ranges. // Heuristic is simple - node with no data successors reduces // number of live ranges. All others, increase it. unsigned NumberNonControlDeps = 0; for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { adjustPriorityOfUnscheduledPreds(I->getSUnit()); if (!I->isCtrl()) NumberNonControlDeps++; } if (!NumberNonControlDeps) { if (ParallelLiveRanges >= SU->NumPreds) ParallelLiveRanges -= SU->NumPreds; else ParallelLiveRanges = 0; } else ParallelLiveRanges += SU->NumRegDefsLeft; // Track parallel live chains. HorizontalVerticalBalance += (SU->Succs.size() - numberCtrlDepsInSU(SU)); HorizontalVerticalBalance -= (SU->Preds.size() - numberCtrlPredInSU(SU)); } void ResourcePriorityQueue::initNumRegDefsLeft(SUnit *SU) { unsigned NodeNumDefs = 0; for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) if (N->isMachineOpcode()) { const MCInstrDesc &TID = TII->get(N->getMachineOpcode()); // No register need be allocated for this. if (N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) { NodeNumDefs = 0; break; } NodeNumDefs = std::min(N->getNumValues(), TID.getNumDefs()); } else switch(N->getOpcode()) { default: break; case ISD::CopyFromReg: NodeNumDefs++; break; case ISD::INLINEASM: NodeNumDefs++; break; } SU->NumRegDefsLeft = NodeNumDefs; } /// adjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just /// scheduled. If SU is not itself available, then there is at least one /// predecessor node that has not been scheduled yet. If SU has exactly ONE /// unscheduled predecessor, we want to increase its priority: it getting /// scheduled will make this node available, so it is better than some other /// node of the same priority that will not make a node available. void ResourcePriorityQueue::adjustPriorityOfUnscheduledPreds(SUnit *SU) { if (SU->isAvailable) return; // All preds scheduled. SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU); if (!OnlyAvailablePred || !OnlyAvailablePred->isAvailable) return; // Okay, we found a single predecessor that is available, but not scheduled. // Since it is available, it must be in the priority queue. First remove it. remove(OnlyAvailablePred); // Reinsert the node into the priority queue, which recomputes its // NumNodesSolelyBlocking value. push(OnlyAvailablePred); } /// Main access point - returns next instructions /// to be placed in scheduling sequence. SUnit *ResourcePriorityQueue::pop() { if (empty()) return nullptr; std::vector<SUnit *>::iterator Best = Queue.begin(); if (!DisableDFASched) { signed BestCost = SUSchedulingCost(*Best); for (std::vector<SUnit *>::iterator I = std::next(Queue.begin()), E = Queue.end(); I != E; ++I) { if (SUSchedulingCost(*I) > BestCost) { BestCost = SUSchedulingCost(*I); Best = I; } } } // Use default TD scheduling mechanism. else { for (std::vector<SUnit *>::iterator I = std::next(Queue.begin()), E = Queue.end(); I != E; ++I) if (Picker(*Best, *I)) Best = I; } SUnit *V = *Best; if (Best != std::prev(Queue.end())) std::swap(*Best, Queue.back()); Queue.pop_back(); return V; } void ResourcePriorityQueue::remove(SUnit *SU) { assert(!Queue.empty() && "Queue is empty!"); std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(), SU); if (I != std::prev(Queue.end())) std::swap(*I, Queue.back()); Queue.pop_back(); }