//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveInterval analysis pass which is used // by the Linear Scan Register allocator. This pass linearizes the // basic blocks of the function in DFS order and uses the // LiveVariables pass to conservatively compute live intervals for // each virtual and physical register. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "LiveRangeCalc.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/VirtRegMap.h" #include "llvm/IR/Value.h" #include "llvm/Support/BlockFrequency.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include <algorithm> #include <cmath> #include <limits> using namespace llvm; #define DEBUG_TYPE "regalloc" char LiveIntervals::ID = 0; char &llvm::LiveIntervalsID = LiveIntervals::ID; INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals", "Live Interval Analysis", false, false) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_DEPENDENCY(LiveVariables) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(SlotIndexes) INITIALIZE_PASS_END(LiveIntervals, "liveintervals", "Live Interval Analysis", false, false) #ifndef NDEBUG static cl::opt<bool> EnablePrecomputePhysRegs( "precompute-phys-liveness", cl::Hidden, cl::desc("Eagerly compute live intervals for all physreg units.")); #else static bool EnablePrecomputePhysRegs = false; #endif // NDEBUG static cl::opt<bool> EnableSubRegLiveness( "enable-subreg-liveness", cl::Hidden, cl::init(true), cl::desc("Enable subregister liveness tracking.")); namespace llvm { cl::opt<bool> UseSegmentSetForPhysRegs( "use-segment-set-for-physregs", cl::Hidden, cl::init(true), cl::desc( "Use segment set for the computation of the live ranges of physregs.")); } void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired<AAResultsWrapperPass>(); AU.addPreserved<AAResultsWrapperPass>(); // LiveVariables isn't really required by this analysis, it is only required // here to make sure it is live during TwoAddressInstructionPass and // PHIElimination. This is temporary. AU.addRequired<LiveVariables>(); AU.addPreserved<LiveVariables>(); AU.addPreservedID(MachineLoopInfoID); AU.addRequiredTransitiveID(MachineDominatorsID); AU.addPreservedID(MachineDominatorsID); AU.addPreserved<SlotIndexes>(); AU.addRequiredTransitive<SlotIndexes>(); MachineFunctionPass::getAnalysisUsage(AU); } LiveIntervals::LiveIntervals() : MachineFunctionPass(ID), DomTree(nullptr), LRCalc(nullptr) { initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); } LiveIntervals::~LiveIntervals() { delete LRCalc; } void LiveIntervals::releaseMemory() { // Free the live intervals themselves. for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i) delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)]; VirtRegIntervals.clear(); RegMaskSlots.clear(); RegMaskBits.clear(); RegMaskBlocks.clear(); for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i) delete RegUnitRanges[i]; RegUnitRanges.clear(); // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd. VNInfoAllocator.Reset(); } /// runOnMachineFunction - calculates LiveIntervals /// bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { MF = &fn; MRI = &MF->getRegInfo(); TRI = MF->getSubtarget().getRegisterInfo(); TII = MF->getSubtarget().getInstrInfo(); AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); Indexes = &getAnalysis<SlotIndexes>(); DomTree = &getAnalysis<MachineDominatorTree>(); if (EnableSubRegLiveness && MF->getSubtarget().enableSubRegLiveness()) MRI->enableSubRegLiveness(true); if (!LRCalc) LRCalc = new LiveRangeCalc(); // Allocate space for all virtual registers. VirtRegIntervals.resize(MRI->getNumVirtRegs()); computeVirtRegs(); computeRegMasks(); computeLiveInRegUnits(); if (EnablePrecomputePhysRegs) { // For stress testing, precompute live ranges of all physical register // units, including reserved registers. for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) getRegUnit(i); } DEBUG(dump()); return true; } /// print - Implement the dump method. void LiveIntervals::print(raw_ostream &OS, const Module* ) const { OS << "********** INTERVALS **********\n"; // Dump the regunits. for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i) if (LiveRange *LR = RegUnitRanges[i]) OS << PrintRegUnit(i, TRI) << ' ' << *LR << '\n'; // Dump the virtregs. for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (hasInterval(Reg)) OS << getInterval(Reg) << '\n'; } OS << "RegMasks:"; for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i) OS << ' ' << RegMaskSlots[i]; OS << '\n'; printInstrs(OS); } void LiveIntervals::printInstrs(raw_ostream &OS) const { OS << "********** MACHINEINSTRS **********\n"; MF->print(OS, Indexes); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void LiveIntervals::dumpInstrs() const { printInstrs(dbgs()); } #endif LiveInterval* LiveIntervals::createInterval(unsigned reg) { float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? llvm::huge_valf : 0.0F; return new LiveInterval(reg, Weight); } /// computeVirtRegInterval - Compute the live interval of a virtual register, /// based on defs and uses. void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) { assert(LRCalc && "LRCalc not initialized."); assert(LI.empty() && "Should only compute empty intervals."); bool ShouldTrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(LI.reg); LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); LRCalc->calculate(LI, ShouldTrackSubRegLiveness); bool SeparatedComponents = computeDeadValues(LI, nullptr); if (SeparatedComponents) { assert(ShouldTrackSubRegLiveness && "Separated components should only occur for unused subreg defs"); SmallVector<LiveInterval*, 8> SplitLIs; splitSeparateComponents(LI, SplitLIs); } } void LiveIntervals::computeVirtRegs() { for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (MRI->reg_nodbg_empty(Reg)) continue; createAndComputeVirtRegInterval(Reg); } } void LiveIntervals::computeRegMasks() { RegMaskBlocks.resize(MF->getNumBlockIDs()); // Find all instructions with regmask operands. for (MachineBasicBlock &MBB : *MF) { std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()]; RMB.first = RegMaskSlots.size(); // Some block starts, such as EH funclets, create masks. if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) { RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB)); RegMaskBits.push_back(Mask); } for (MachineInstr &MI : MBB) { for (const MachineOperand &MO : MI.operands()) { if (!MO.isRegMask()) continue; RegMaskSlots.push_back(Indexes->getInstructionIndex(&MI).getRegSlot()); RegMaskBits.push_back(MO.getRegMask()); } } // Some block ends, such as funclet returns, create masks. if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) { RegMaskSlots.push_back(Indexes->getMBBEndIdx(&MBB)); RegMaskBits.push_back(Mask); } // Compute the number of register mask instructions in this block. RMB.second = RegMaskSlots.size() - RMB.first; } } //===----------------------------------------------------------------------===// // Register Unit Liveness //===----------------------------------------------------------------------===// // // Fixed interference typically comes from ABI boundaries: Function arguments // and return values are passed in fixed registers, and so are exception // pointers entering landing pads. Certain instructions require values to be // present in specific registers. That is also represented through fixed // interference. // /// computeRegUnitInterval - Compute the live range of a register unit, based /// on the uses and defs of aliasing registers. The range should be empty, /// or contain only dead phi-defs from ABI blocks. void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) { assert(LRCalc && "LRCalc not initialized."); LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); // The physregs aliasing Unit are the roots and their super-registers. // Create all values as dead defs before extending to uses. Note that roots // may share super-registers. That's OK because createDeadDefs() is // idempotent. It is very rare for a register unit to have multiple roots, so // uniquing super-registers is probably not worthwhile. for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) { for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true); Supers.isValid(); ++Supers) { if (!MRI->reg_empty(*Supers)) LRCalc->createDeadDefs(LR, *Supers); } } // Now extend LR to reach all uses. // Ignore uses of reserved registers. We only track defs of those. for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) { for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true); Supers.isValid(); ++Supers) { unsigned Reg = *Supers; if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg)) LRCalc->extendToUses(LR, Reg); } } // Flush the segment set to the segment vector. if (UseSegmentSetForPhysRegs) LR.flushSegmentSet(); } /// computeLiveInRegUnits - Precompute the live ranges of any register units /// that are live-in to an ABI block somewhere. Register values can appear /// without a corresponding def when entering the entry block or a landing pad. /// void LiveIntervals::computeLiveInRegUnits() { RegUnitRanges.resize(TRI->getNumRegUnits()); DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n"); // Keep track of the live range sets allocated. SmallVector<unsigned, 8> NewRanges; // Check all basic blocks for live-ins. for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); MFI != MFE; ++MFI) { const MachineBasicBlock *MBB = &*MFI; // We only care about ABI blocks: Entry + landing pads. if ((MFI != MF->begin() && !MBB->isEHPad()) || MBB->livein_empty()) continue; // Create phi-defs at Begin for all live-in registers. SlotIndex Begin = Indexes->getMBBStartIdx(MBB); DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber()); for (const auto &LI : MBB->liveins()) { for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) { unsigned Unit = *Units; LiveRange *LR = RegUnitRanges[Unit]; if (!LR) { // Use segment set to speed-up initial computation of the live range. LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs); NewRanges.push_back(Unit); } VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator()); (void)VNI; DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id); } } DEBUG(dbgs() << '\n'); } DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n"); // Compute the 'normal' part of the ranges. for (unsigned i = 0, e = NewRanges.size(); i != e; ++i) { unsigned Unit = NewRanges[i]; computeRegUnitRange(*RegUnitRanges[Unit], Unit); } } static void createSegmentsForValues(LiveRange &LR, iterator_range<LiveInterval::vni_iterator> VNIs) { for (auto VNI : VNIs) { if (VNI->isUnused()) continue; SlotIndex Def = VNI->def; LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI)); } } typedef SmallVector<std::pair<SlotIndex, VNInfo*>, 16> ShrinkToUsesWorkList; static void extendSegmentsToUses(LiveRange &LR, const SlotIndexes &Indexes, ShrinkToUsesWorkList &WorkList, const LiveRange &OldRange) { // Keep track of the PHIs that are in use. SmallPtrSet<VNInfo*, 8> UsedPHIs; // Blocks that have already been added to WorkList as live-out. SmallPtrSet<MachineBasicBlock*, 16> LiveOut; // Extend intervals to reach all uses in WorkList. while (!WorkList.empty()) { SlotIndex Idx = WorkList.back().first; VNInfo *VNI = WorkList.back().second; WorkList.pop_back(); const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Idx.getPrevSlot()); SlotIndex BlockStart = Indexes.getMBBStartIdx(MBB); // Extend the live range for VNI to be live at Idx. if (VNInfo *ExtVNI = LR.extendInBlock(BlockStart, Idx)) { assert(ExtVNI == VNI && "Unexpected existing value number"); (void)ExtVNI; // Is this a PHIDef we haven't seen before? if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI).second) continue; // The PHI is live, make sure the predecessors are live-out. for (auto &Pred : MBB->predecessors()) { if (!LiveOut.insert(Pred).second) continue; SlotIndex Stop = Indexes.getMBBEndIdx(Pred); // A predecessor is not required to have a live-out value for a PHI. if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop)) WorkList.push_back(std::make_pair(Stop, PVNI)); } continue; } // VNI is live-in to MBB. DEBUG(dbgs() << " live-in at " << BlockStart << '\n'); LR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI)); // Make sure VNI is live-out from the predecessors. for (auto &Pred : MBB->predecessors()) { if (!LiveOut.insert(Pred).second) continue; SlotIndex Stop = Indexes.getMBBEndIdx(Pred); assert(OldRange.getVNInfoBefore(Stop) == VNI && "Wrong value out of predecessor"); WorkList.push_back(std::make_pair(Stop, VNI)); } } } bool LiveIntervals::shrinkToUses(LiveInterval *li, SmallVectorImpl<MachineInstr*> *dead) { DEBUG(dbgs() << "Shrink: " << *li << '\n'); assert(TargetRegisterInfo::isVirtualRegister(li->reg) && "Can only shrink virtual registers"); // Shrink subregister live ranges. bool NeedsCleanup = false; for (LiveInterval::SubRange &S : li->subranges()) { shrinkToUses(S, li->reg); if (S.empty()) NeedsCleanup = true; } if (NeedsCleanup) li->removeEmptySubRanges(); // Find all the values used, including PHI kills. ShrinkToUsesWorkList WorkList; // Visit all instructions reading li->reg. for (MachineRegisterInfo::reg_instr_iterator I = MRI->reg_instr_begin(li->reg), E = MRI->reg_instr_end(); I != E; ) { MachineInstr *UseMI = &*(I++); if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg)) continue; SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot(); LiveQueryResult LRQ = li->Query(Idx); VNInfo *VNI = LRQ.valueIn(); if (!VNI) { // This shouldn't happen: readsVirtualRegister returns true, but there is // no live value. It is likely caused by a target getting <undef> flags // wrong. DEBUG(dbgs() << Idx << '\t' << *UseMI << "Warning: Instr claims to read non-existent value in " << *li << '\n'); continue; } // Special case: An early-clobber tied operand reads and writes the // register one slot early. if (VNInfo *DefVNI = LRQ.valueDefined()) Idx = DefVNI->def; WorkList.push_back(std::make_pair(Idx, VNI)); } // Create new live ranges with only minimal live segments per def. LiveRange NewLR; createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end())); extendSegmentsToUses(NewLR, *Indexes, WorkList, *li); // Move the trimmed segments back. li->segments.swap(NewLR.segments); // Handle dead values. bool CanSeparate = computeDeadValues(*li, dead); DEBUG(dbgs() << "Shrunk: " << *li << '\n'); return CanSeparate; } bool LiveIntervals::computeDeadValues(LiveInterval &LI, SmallVectorImpl<MachineInstr*> *dead) { bool MayHaveSplitComponents = false; for (auto VNI : LI.valnos) { if (VNI->isUnused()) continue; SlotIndex Def = VNI->def; LiveRange::iterator I = LI.FindSegmentContaining(Def); assert(I != LI.end() && "Missing segment for VNI"); // Is the register live before? Otherwise we may have to add a read-undef // flag for subregister defs. bool DeadBeforeDef = false; unsigned VReg = LI.reg; if (MRI->shouldTrackSubRegLiveness(VReg)) { if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) { MachineInstr *MI = getInstructionFromIndex(Def); MI->setRegisterDefReadUndef(VReg); DeadBeforeDef = true; } } if (I->end != Def.getDeadSlot()) continue; if (VNI->isPHIDef()) { // This is a dead PHI. Remove it. VNI->markUnused(); LI.removeSegment(I); DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n"); MayHaveSplitComponents = true; } else { // This is a dead def. Make sure the instruction knows. MachineInstr *MI = getInstructionFromIndex(Def); assert(MI && "No instruction defining live value"); MI->addRegisterDead(VReg, TRI); // If we have a dead def that is completely separate from the rest of // the liverange then we rewrite it to use a different VReg to not violate // the rule that the liveness of a virtual register forms a connected // component. This should only happen if subregister liveness is tracked. if (DeadBeforeDef) MayHaveSplitComponents = true; if (dead && MI->allDefsAreDead()) { DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI); dead->push_back(MI); } } } return MayHaveSplitComponents; } void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg) { DEBUG(dbgs() << "Shrink: " << SR << '\n'); assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Can only shrink virtual registers"); // Find all the values used, including PHI kills. ShrinkToUsesWorkList WorkList; // Visit all instructions reading Reg. SlotIndex LastIdx; for (MachineOperand &MO : MRI->reg_operands(Reg)) { MachineInstr *UseMI = MO.getParent(); if (UseMI->isDebugValue()) continue; // Maybe the operand is for a subregister we don't care about. unsigned SubReg = MO.getSubReg(); if (SubReg != 0) { LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg); if ((LaneMask & SR.LaneMask) == 0) continue; } // We only need to visit each instruction once. SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot(); if (Idx == LastIdx) continue; LastIdx = Idx; LiveQueryResult LRQ = SR.Query(Idx); VNInfo *VNI = LRQ.valueIn(); // For Subranges it is possible that only undef values are left in that // part of the subregister, so there is no real liverange at the use if (!VNI) continue; // Special case: An early-clobber tied operand reads and writes the // register one slot early. if (VNInfo *DefVNI = LRQ.valueDefined()) Idx = DefVNI->def; WorkList.push_back(std::make_pair(Idx, VNI)); } // Create a new live ranges with only minimal live segments per def. LiveRange NewLR; createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end())); extendSegmentsToUses(NewLR, *Indexes, WorkList, SR); // Move the trimmed ranges back. SR.segments.swap(NewLR.segments); // Remove dead PHI value numbers for (auto VNI : SR.valnos) { if (VNI->isUnused()) continue; const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def); assert(Segment != nullptr && "Missing segment for VNI"); if (Segment->end != VNI->def.getDeadSlot()) continue; if (VNI->isPHIDef()) { // This is a dead PHI. Remove it. VNI->markUnused(); SR.removeSegment(*Segment); DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n"); } } DEBUG(dbgs() << "Shrunk: " << SR << '\n'); } void LiveIntervals::extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices) { assert(LRCalc && "LRCalc not initialized."); LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); for (unsigned i = 0, e = Indices.size(); i != e; ++i) LRCalc->extend(LR, Indices[i]); } void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill, SmallVectorImpl<SlotIndex> *EndPoints) { LiveQueryResult LRQ = LR.Query(Kill); VNInfo *VNI = LRQ.valueOutOrDead(); if (!VNI) return; MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill); SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB); // If VNI isn't live out from KillMBB, the value is trivially pruned. if (LRQ.endPoint() < MBBEnd) { LR.removeSegment(Kill, LRQ.endPoint()); if (EndPoints) EndPoints->push_back(LRQ.endPoint()); return; } // VNI is live out of KillMBB. LR.removeSegment(Kill, MBBEnd); if (EndPoints) EndPoints->push_back(MBBEnd); // Find all blocks that are reachable from KillMBB without leaving VNI's live // range. It is possible that KillMBB itself is reachable, so start a DFS // from each successor. typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy; VisitedTy Visited; for (MachineBasicBlock::succ_iterator SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end(); SuccI != SuccE; ++SuccI) { for (df_ext_iterator<MachineBasicBlock*, VisitedTy> I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited); I != E;) { MachineBasicBlock *MBB = *I; // Check if VNI is live in to MBB. SlotIndex MBBStart, MBBEnd; std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB); LiveQueryResult LRQ = LR.Query(MBBStart); if (LRQ.valueIn() != VNI) { // This block isn't part of the VNI segment. Prune the search. I.skipChildren(); continue; } // Prune the search if VNI is killed in MBB. if (LRQ.endPoint() < MBBEnd) { LR.removeSegment(MBBStart, LRQ.endPoint()); if (EndPoints) EndPoints->push_back(LRQ.endPoint()); I.skipChildren(); continue; } // VNI is live through MBB. LR.removeSegment(MBBStart, MBBEnd); if (EndPoints) EndPoints->push_back(MBBEnd); ++I; } } } //===----------------------------------------------------------------------===// // Register allocator hooks. // void LiveIntervals::addKillFlags(const VirtRegMap *VRM) { // Keep track of regunit ranges. SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU; // Keep track of subregister ranges. SmallVector<std::pair<const LiveInterval::SubRange*, LiveRange::const_iterator>, 4> SRs; for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (MRI->reg_nodbg_empty(Reg)) continue; const LiveInterval &LI = getInterval(Reg); if (LI.empty()) continue; // Find the regunit intervals for the assigned register. They may overlap // the virtual register live range, cancelling any kills. RU.clear(); for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid(); ++Units) { const LiveRange &RURange = getRegUnit(*Units); if (RURange.empty()) continue; RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end))); } if (MRI->subRegLivenessEnabled()) { SRs.clear(); for (const LiveInterval::SubRange &SR : LI.subranges()) { SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end))); } } // Every instruction that kills Reg corresponds to a segment range end // point. for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE; ++RI) { // A block index indicates an MBB edge. if (RI->end.isBlock()) continue; MachineInstr *MI = getInstructionFromIndex(RI->end); if (!MI) continue; // Check if any of the regunits are live beyond the end of RI. That could // happen when a physreg is defined as a copy of a virtreg: // // %EAX = COPY %vreg5 // FOO %vreg5 <--- MI, cancel kill because %EAX is live. // BAR %EAX<kill> // // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX. for (auto &RUP : RU) { const LiveRange &RURange = *RUP.first; LiveRange::const_iterator &I = RUP.second; if (I == RURange.end()) continue; I = RURange.advanceTo(I, RI->end); if (I == RURange.end() || I->start >= RI->end) continue; // I is overlapping RI. goto CancelKill; } if (MRI->subRegLivenessEnabled()) { // When reading a partial undefined value we must not add a kill flag. // The regalloc might have used the undef lane for something else. // Example: // %vreg1 = ... ; R32: %vreg1 // %vreg2:high16 = ... ; R64: %vreg2 // = read %vreg2<kill> ; R64: %vreg2 // = read %vreg1 ; R32: %vreg1 // The <kill> flag is correct for %vreg2, but the register allocator may // assign R0L to %vreg1, and R0 to %vreg2 because the low 32bits of R0 // are actually never written by %vreg2. After assignment the <kill> // flag at the read instruction is invalid. LaneBitmask DefinedLanesMask; if (!SRs.empty()) { // Compute a mask of lanes that are defined. DefinedLanesMask = 0; for (auto &SRP : SRs) { const LiveInterval::SubRange &SR = *SRP.first; LiveRange::const_iterator &I = SRP.second; if (I == SR.end()) continue; I = SR.advanceTo(I, RI->end); if (I == SR.end() || I->start >= RI->end) continue; // I is overlapping RI DefinedLanesMask |= SR.LaneMask; } } else DefinedLanesMask = ~0u; bool IsFullWrite = false; for (const MachineOperand &MO : MI->operands()) { if (!MO.isReg() || MO.getReg() != Reg) continue; if (MO.isUse()) { // Reading any undefined lanes? LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); if ((UseMask & ~DefinedLanesMask) != 0) goto CancelKill; } else if (MO.getSubReg() == 0) { // Writing to the full register? assert(MO.isDef()); IsFullWrite = true; } } // If an instruction writes to a subregister, a new segment starts in // the LiveInterval. But as this is only overriding part of the register // adding kill-flags is not correct here after registers have been // assigned. if (!IsFullWrite) { // Next segment has to be adjacent in the subregister write case. LiveRange::const_iterator N = std::next(RI); if (N != LI.end() && N->start == RI->end) goto CancelKill; } } MI->addRegisterKilled(Reg, nullptr); continue; CancelKill: MI->clearRegisterKills(Reg, nullptr); } } } MachineBasicBlock* LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const { // A local live range must be fully contained inside the block, meaning it is // defined and killed at instructions, not at block boundaries. It is not // live in or or out of any block. // // It is technically possible to have a PHI-defined live range identical to a // single block, but we are going to return false in that case. SlotIndex Start = LI.beginIndex(); if (Start.isBlock()) return nullptr; SlotIndex Stop = LI.endIndex(); if (Stop.isBlock()) return nullptr; // getMBBFromIndex doesn't need to search the MBB table when both indexes // belong to proper instructions. MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start); MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop); return MBB1 == MBB2 ? MBB1 : nullptr; } bool LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const { for (const VNInfo *PHI : LI.valnos) { if (PHI->isUnused() || !PHI->isPHIDef()) continue; const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def); // Conservatively return true instead of scanning huge predecessor lists. if (PHIMBB->pred_size() > 100) return true; for (MachineBasicBlock::const_pred_iterator PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI) if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI))) return true; } return false; } float LiveIntervals::getSpillWeight(bool isDef, bool isUse, const MachineBlockFrequencyInfo *MBFI, const MachineInstr *MI) { BlockFrequency Freq = MBFI->getBlockFreq(MI->getParent()); const float Scale = 1.0f / MBFI->getEntryFreq(); return (isDef + isUse) * (Freq.getFrequency() * Scale); } LiveRange::Segment LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr* startInst) { LiveInterval& Interval = createEmptyInterval(reg); VNInfo* VN = Interval.getNextValue( SlotIndex(getInstructionIndex(startInst).getRegSlot()), getVNInfoAllocator()); LiveRange::Segment S( SlotIndex(getInstructionIndex(startInst).getRegSlot()), getMBBEndIdx(startInst->getParent()), VN); Interval.addSegment(S); return S; } //===----------------------------------------------------------------------===// // Register mask functions //===----------------------------------------------------------------------===// bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI, BitVector &UsableRegs) { if (LI.empty()) return false; LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end(); // Use a smaller arrays for local live ranges. ArrayRef<SlotIndex> Slots; ArrayRef<const uint32_t*> Bits; if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) { Slots = getRegMaskSlotsInBlock(MBB->getNumber()); Bits = getRegMaskBitsInBlock(MBB->getNumber()); } else { Slots = getRegMaskSlots(); Bits = getRegMaskBits(); } // We are going to enumerate all the register mask slots contained in LI. // Start with a binary search of RegMaskSlots to find a starting point. ArrayRef<SlotIndex>::iterator SlotI = std::lower_bound(Slots.begin(), Slots.end(), LiveI->start); ArrayRef<SlotIndex>::iterator SlotE = Slots.end(); // No slots in range, LI begins after the last call. if (SlotI == SlotE) return false; bool Found = false; for (;;) { assert(*SlotI >= LiveI->start); // Loop over all slots overlapping this segment. while (*SlotI < LiveI->end) { // *SlotI overlaps LI. Collect mask bits. if (!Found) { // This is the first overlap. Initialize UsableRegs to all ones. UsableRegs.clear(); UsableRegs.resize(TRI->getNumRegs(), true); Found = true; } // Remove usable registers clobbered by this mask. UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]); if (++SlotI == SlotE) return Found; } // *SlotI is beyond the current LI segment. LiveI = LI.advanceTo(LiveI, *SlotI); if (LiveI == LiveE) return Found; // Advance SlotI until it overlaps. while (*SlotI < LiveI->start) if (++SlotI == SlotE) return Found; } } //===----------------------------------------------------------------------===// // IntervalUpdate class. //===----------------------------------------------------------------------===// // HMEditor is a toolkit used by handleMove to trim or extend live intervals. class LiveIntervals::HMEditor { private: LiveIntervals& LIS; const MachineRegisterInfo& MRI; const TargetRegisterInfo& TRI; SlotIndex OldIdx; SlotIndex NewIdx; SmallPtrSet<LiveRange*, 8> Updated; bool UpdateFlags; public: HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI, const TargetRegisterInfo& TRI, SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags) : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx), UpdateFlags(UpdateFlags) {} // FIXME: UpdateFlags is a workaround that creates live intervals for all // physregs, even those that aren't needed for regalloc, in order to update // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill // flags, and postRA passes will use a live register utility instead. LiveRange *getRegUnitLI(unsigned Unit) { if (UpdateFlags) return &LIS.getRegUnit(Unit); return LIS.getCachedRegUnit(Unit); } /// Update all live ranges touched by MI, assuming a move from OldIdx to /// NewIdx. void updateAllRanges(MachineInstr *MI) { DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI); bool hasRegMask = false; for (MachineOperand &MO : MI->operands()) { if (MO.isRegMask()) hasRegMask = true; if (!MO.isReg()) continue; // Aggressively clear all kill flags. // They are reinserted by VirtRegRewriter. if (MO.isUse()) MO.setIsKill(false); unsigned Reg = MO.getReg(); if (!Reg) continue; if (TargetRegisterInfo::isVirtualRegister(Reg)) { LiveInterval &LI = LIS.getInterval(Reg); if (LI.hasSubRanges()) { unsigned SubReg = MO.getSubReg(); LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg); for (LiveInterval::SubRange &S : LI.subranges()) { if ((S.LaneMask & LaneMask) == 0) continue; updateRange(S, Reg, S.LaneMask); } } updateRange(LI, Reg, 0); continue; } // For physregs, only update the regunits that actually have a // precomputed live range. for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units) if (LiveRange *LR = getRegUnitLI(*Units)) updateRange(*LR, *Units, 0); } if (hasRegMask) updateRegMaskSlots(); } private: /// Update a single live range, assuming an instruction has been moved from /// OldIdx to NewIdx. void updateRange(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) { if (!Updated.insert(&LR).second) return; DEBUG({ dbgs() << " "; if (TargetRegisterInfo::isVirtualRegister(Reg)) { dbgs() << PrintReg(Reg); if (LaneMask != 0) dbgs() << " L" << PrintLaneMask(LaneMask); } else { dbgs() << PrintRegUnit(Reg, &TRI); } dbgs() << ":\t" << LR << '\n'; }); if (SlotIndex::isEarlierInstr(OldIdx, NewIdx)) handleMoveDown(LR); else handleMoveUp(LR, Reg, LaneMask); DEBUG(dbgs() << " -->\t" << LR << '\n'); LR.verify(); } /// Update LR to reflect an instruction has been moved downwards from OldIdx /// to NewIdx. /// /// 1. Live def at OldIdx: /// Move def to NewIdx, assert endpoint after NewIdx. /// /// 2. Live def at OldIdx, killed at NewIdx: /// Change to dead def at NewIdx. /// (Happens when bundling def+kill together). /// /// 3. Dead def at OldIdx: /// Move def to NewIdx, possibly across another live value. /// /// 4. Def at OldIdx AND at NewIdx: /// Remove segment [OldIdx;NewIdx) and value defined at OldIdx. /// (Happens when bundling multiple defs together). /// /// 5. Value read at OldIdx, killed before NewIdx: /// Extend kill to NewIdx. /// void handleMoveDown(LiveRange &LR) { // First look for a kill at OldIdx. LiveRange::iterator I = LR.find(OldIdx.getBaseIndex()); LiveRange::iterator E = LR.end(); // Is LR even live at OldIdx? if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start)) return; // Handle a live-in value. if (!SlotIndex::isSameInstr(I->start, OldIdx)) { bool isKill = SlotIndex::isSameInstr(OldIdx, I->end); // If the live-in value already extends to NewIdx, there is nothing to do. if (!SlotIndex::isEarlierInstr(I->end, NewIdx)) return; // Aggressively remove all kill flags from the old kill point. // Kill flags shouldn't be used while live intervals exist, they will be // reinserted by VirtRegRewriter. if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end)) for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO) if (MO->isReg() && MO->isUse()) MO->setIsKill(false); // Adjust I->end to reach NewIdx. This may temporarily make LR invalid by // overlapping ranges. Case 5 above. I->end = NewIdx.getRegSlot(I->end.isEarlyClobber()); // If this was a kill, there may also be a def. Otherwise we're done. if (!isKill) return; ++I; } // Check for a def at OldIdx. if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start)) return; // We have a def at OldIdx. VNInfo *DefVNI = I->valno; assert(DefVNI->def == I->start && "Inconsistent def"); DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber()); // If the defined value extends beyond NewIdx, just move the def down. // This is case 1 above. if (SlotIndex::isEarlierInstr(NewIdx, I->end)) { I->start = DefVNI->def; return; } // The remaining possibilities are now: // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx). // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot(). // In either case, it is possible that there is an existing def at NewIdx. assert((I->end == OldIdx.getDeadSlot() || SlotIndex::isSameInstr(I->end, NewIdx)) && "Cannot move def below kill"); LiveRange::iterator NewI = LR.advanceTo(I, NewIdx.getRegSlot()); if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) { // There is an existing def at NewIdx, case 4 above. The def at OldIdx is // coalesced into that value. assert(NewI->valno != DefVNI && "Multiple defs of value?"); LR.removeValNo(DefVNI); return; } // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx. // If the def at OldIdx was dead, we allow it to be moved across other LR // values. The new range should be placed immediately before NewI, move any // intermediate ranges up. assert(NewI != I && "Inconsistent iterators"); std::copy(std::next(I), NewI, I); *std::prev(NewI) = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI); } /// Update LR to reflect an instruction has been moved upwards from OldIdx /// to NewIdx. /// /// 1. Live def at OldIdx: /// Hoist def to NewIdx. /// /// 2. Dead def at OldIdx: /// Hoist def+end to NewIdx, possibly move across other values. /// /// 3. Dead def at OldIdx AND existing def at NewIdx: /// Remove value defined at OldIdx, coalescing it with existing value. /// /// 4. Live def at OldIdx AND existing def at NewIdx: /// Remove value defined at NewIdx, hoist OldIdx def to NewIdx. /// (Happens when bundling multiple defs together). /// /// 5. Value killed at OldIdx: /// Hoist kill to NewIdx, then scan for last kill between NewIdx and /// OldIdx. /// void handleMoveUp(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) { // First look for a kill at OldIdx. LiveRange::iterator I = LR.find(OldIdx.getBaseIndex()); LiveRange::iterator E = LR.end(); // Is LR even live at OldIdx? if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start)) return; // Handle a live-in value. if (!SlotIndex::isSameInstr(I->start, OldIdx)) { // If the live-in value isn't killed here, there is nothing to do. if (!SlotIndex::isSameInstr(OldIdx, I->end)) return; // Adjust I->end to end at NewIdx. If we are hoisting a kill above // another use, we need to search for that use. Case 5 above. I->end = NewIdx.getRegSlot(I->end.isEarlyClobber()); ++I; // If OldIdx also defines a value, there couldn't have been another use. if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) { // No def, search for the new kill. // This can never be an early clobber kill since there is no def. std::prev(I)->end = findLastUseBefore(Reg, LaneMask).getRegSlot(); return; } } // Now deal with the def at OldIdx. assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?"); VNInfo *DefVNI = I->valno; assert(DefVNI->def == I->start && "Inconsistent def"); DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber()); // Check for an existing def at NewIdx. LiveRange::iterator NewI = LR.find(NewIdx.getRegSlot()); if (SlotIndex::isSameInstr(NewI->start, NewIdx)) { assert(NewI->valno != DefVNI && "Same value defined more than once?"); // There is an existing def at NewIdx. if (I->end.isDead()) { // Case 3: Remove the dead def at OldIdx. LR.removeValNo(DefVNI); return; } // Case 4: Replace def at NewIdx with live def at OldIdx. I->start = DefVNI->def; LR.removeValNo(NewI->valno); return; } // There is no existing def at NewIdx. Hoist DefVNI. if (!I->end.isDead()) { // Leave the end point of a live def. I->start = DefVNI->def; return; } // DefVNI is a dead def. It may have been moved across other values in LR, // so move I up to NewI. Slide [NewI;I) down one position. std::copy_backward(NewI, I, std::next(I)); *NewI = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI); } void updateRegMaskSlots() { SmallVectorImpl<SlotIndex>::iterator RI = std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(), OldIdx); assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() && "No RegMask at OldIdx."); *RI = NewIdx.getRegSlot(); assert((RI == LIS.RegMaskSlots.begin() || SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) && "Cannot move regmask instruction above another call"); assert((std::next(RI) == LIS.RegMaskSlots.end() || SlotIndex::isEarlierInstr(*RI, *std::next(RI))) && "Cannot move regmask instruction below another call"); } // Return the last use of reg between NewIdx and OldIdx. SlotIndex findLastUseBefore(unsigned Reg, LaneBitmask LaneMask) { if (TargetRegisterInfo::isVirtualRegister(Reg)) { SlotIndex LastUse = NewIdx; for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) { unsigned SubReg = MO.getSubReg(); if (SubReg != 0 && LaneMask != 0 && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask) == 0) continue; const MachineInstr *MI = MO.getParent(); SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI); if (InstSlot > LastUse && InstSlot < OldIdx) LastUse = InstSlot; } return LastUse; } // This is a regunit interval, so scanning the use list could be very // expensive. Scan upwards from OldIdx instead. assert(NewIdx < OldIdx && "Expected upwards move"); SlotIndexes *Indexes = LIS.getSlotIndexes(); MachineBasicBlock *MBB = Indexes->getMBBFromIndex(NewIdx); // OldIdx may not correspond to an instruction any longer, so set MII to // point to the next instruction after OldIdx, or MBB->end(). MachineBasicBlock::iterator MII = MBB->end(); if (MachineInstr *MI = Indexes->getInstructionFromIndex( Indexes->getNextNonNullIndex(OldIdx))) if (MI->getParent() == MBB) MII = MI; MachineBasicBlock::iterator Begin = MBB->begin(); while (MII != Begin) { if ((--MII)->isDebugValue()) continue; SlotIndex Idx = Indexes->getInstructionIndex(MII); // Stop searching when NewIdx is reached. if (!SlotIndex::isEarlierInstr(NewIdx, Idx)) return NewIdx; // Check if MII uses Reg. for (MIBundleOperands MO(MII); MO.isValid(); ++MO) if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg()) && TRI.hasRegUnit(MO->getReg(), Reg)) return Idx; } // Didn't reach NewIdx. It must be the first instruction in the block. return NewIdx; } }; void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) { assert(!MI->isBundled() && "Can't handle bundled instructions yet."); SlotIndex OldIndex = Indexes->getInstructionIndex(MI); Indexes->removeMachineInstrFromMaps(MI); SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI); assert(getMBBStartIdx(MI->getParent()) <= OldIndex && OldIndex < getMBBEndIdx(MI->getParent()) && "Cannot handle moves across basic block boundaries."); HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); HME.updateAllRanges(MI); } void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart, bool UpdateFlags) { SlotIndex OldIndex = Indexes->getInstructionIndex(MI); SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart); HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); HME.updateAllRanges(MI); } void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin, const MachineBasicBlock::iterator End, const SlotIndex endIdx, LiveRange &LR, const unsigned Reg, LaneBitmask LaneMask) { LiveInterval::iterator LII = LR.find(endIdx); SlotIndex lastUseIdx; if (LII != LR.end() && LII->start < endIdx) lastUseIdx = LII->end; else --LII; for (MachineBasicBlock::iterator I = End; I != Begin;) { --I; MachineInstr *MI = I; if (MI->isDebugValue()) continue; SlotIndex instrIdx = getInstructionIndex(MI); bool isStartValid = getInstructionFromIndex(LII->start); bool isEndValid = getInstructionFromIndex(LII->end); // FIXME: This doesn't currently handle early-clobber or multiple removed // defs inside of the region to repair. for (MachineInstr::mop_iterator OI = MI->operands_begin(), OE = MI->operands_end(); OI != OE; ++OI) { const MachineOperand &MO = *OI; if (!MO.isReg() || MO.getReg() != Reg) continue; unsigned SubReg = MO.getSubReg(); LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg); if ((Mask & LaneMask) == 0) continue; if (MO.isDef()) { if (!isStartValid) { if (LII->end.isDead()) { SlotIndex prevStart; if (LII != LR.begin()) prevStart = std::prev(LII)->start; // FIXME: This could be more efficient if there was a // removeSegment method that returned an iterator. LR.removeSegment(*LII, true); if (prevStart.isValid()) LII = LR.find(prevStart); else LII = LR.begin(); } else { LII->start = instrIdx.getRegSlot(); LII->valno->def = instrIdx.getRegSlot(); if (MO.getSubReg() && !MO.isUndef()) lastUseIdx = instrIdx.getRegSlot(); else lastUseIdx = SlotIndex(); continue; } } if (!lastUseIdx.isValid()) { VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator); LiveRange::Segment S(instrIdx.getRegSlot(), instrIdx.getDeadSlot(), VNI); LII = LR.addSegment(S); } else if (LII->start != instrIdx.getRegSlot()) { VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator); LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI); LII = LR.addSegment(S); } if (MO.getSubReg() && !MO.isUndef()) lastUseIdx = instrIdx.getRegSlot(); else lastUseIdx = SlotIndex(); } else if (MO.isUse()) { // FIXME: This should probably be handled outside of this branch, // either as part of the def case (for defs inside of the region) or // after the loop over the region. if (!isEndValid && !LII->end.isBlock()) LII->end = instrIdx.getRegSlot(); if (!lastUseIdx.isValid()) lastUseIdx = instrIdx.getRegSlot(); } } } } void LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB, MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End, ArrayRef<unsigned> OrigRegs) { // Find anchor points, which are at the beginning/end of blocks or at // instructions that already have indexes. while (Begin != MBB->begin() && !Indexes->hasIndex(Begin)) --Begin; while (End != MBB->end() && !Indexes->hasIndex(End)) ++End; SlotIndex endIdx; if (End == MBB->end()) endIdx = getMBBEndIdx(MBB).getPrevSlot(); else endIdx = getInstructionIndex(End); Indexes->repairIndexesInRange(MBB, Begin, End); for (MachineBasicBlock::iterator I = End; I != Begin;) { --I; MachineInstr *MI = I; if (MI->isDebugValue()) continue; for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(), MOE = MI->operands_end(); MOI != MOE; ++MOI) { if (MOI->isReg() && TargetRegisterInfo::isVirtualRegister(MOI->getReg()) && !hasInterval(MOI->getReg())) { createAndComputeVirtRegInterval(MOI->getReg()); } } } for (unsigned i = 0, e = OrigRegs.size(); i != e; ++i) { unsigned Reg = OrigRegs[i]; if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; LiveInterval &LI = getInterval(Reg); // FIXME: Should we support undefs that gain defs? if (!LI.hasAtLeastOneValue()) continue; for (LiveInterval::SubRange &S : LI.subranges()) { repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask); } repairOldRegInRange(Begin, End, endIdx, LI, Reg); } } void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) { for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { if (LiveRange *LR = getCachedRegUnit(*Units)) if (VNInfo *VNI = LR->getVNInfoAt(Pos)) LR->removeValNo(VNI); } } void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) { VNInfo *VNI = LI.getVNInfoAt(Pos); if (VNI == nullptr) return; LI.removeValNo(VNI); // Also remove the value in subranges. for (LiveInterval::SubRange &S : LI.subranges()) { if (VNInfo *SVNI = S.getVNInfoAt(Pos)) S.removeValNo(SVNI); } LI.removeEmptySubRanges(); } void LiveIntervals::splitSeparateComponents(LiveInterval &LI, SmallVectorImpl<LiveInterval*> &SplitLIs) { ConnectedVNInfoEqClasses ConEQ(*this); unsigned NumComp = ConEQ.Classify(&LI); if (NumComp <= 1) return; DEBUG(dbgs() << " Split " << NumComp << " components: " << LI << '\n'); unsigned Reg = LI.reg; const TargetRegisterClass *RegClass = MRI->getRegClass(Reg); for (unsigned I = 1; I < NumComp; ++I) { unsigned NewVReg = MRI->createVirtualRegister(RegClass); LiveInterval &NewLI = createEmptyInterval(NewVReg); SplitLIs.push_back(&NewLI); } ConEQ.Distribute(LI, SplitLIs.data(), *MRI); }