//===------ LiveDebugValues.cpp - Tracking Debug Value MIs ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// This pass implements a data flow analysis that propagates debug location /// information by inserting additional DBG_VALUE instructions into the machine /// instruction stream. The pass internally builds debug location liveness /// ranges to determine the points where additional DBG_VALUEs need to be /// inserted. /// /// This is a separate pass from DbgValueHistoryCalculator to facilitate /// testing and improve modularity. /// //===----------------------------------------------------------------------===// #include "llvm/ADT/Statistic.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include <queue> #include <list> using namespace llvm; #define DEBUG_TYPE "live-debug-values" STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); namespace { class LiveDebugValues : public MachineFunctionPass { private: const TargetRegisterInfo *TRI; const TargetInstrInfo *TII; typedef std::pair<const DILocalVariable *, const DILocation *> InlinedVariable; /// A potentially inlined instance of a variable. struct DebugVariable { const DILocalVariable *Var; const DILocation *InlinedAt; DebugVariable(const DILocalVariable *_var, const DILocation *_inlinedAt) : Var(_var), InlinedAt(_inlinedAt) {} bool operator==(const DebugVariable &DV) const { return (Var == DV.Var) && (InlinedAt == DV.InlinedAt); } }; /// Member variables and functions for Range Extension across basic blocks. struct VarLoc { DebugVariable Var; const MachineInstr *MI; // MachineInstr should be a DBG_VALUE instr. VarLoc(DebugVariable _var, const MachineInstr *_mi) : Var(_var), MI(_mi) {} bool operator==(const VarLoc &V) const; }; typedef std::list<VarLoc> VarLocList; typedef SmallDenseMap<const MachineBasicBlock *, VarLocList> VarLocInMBB; void transferDebugValue(MachineInstr &MI, VarLocList &OpenRanges); void transferRegisterDef(MachineInstr &MI, VarLocList &OpenRanges); bool transferTerminatorInst(MachineInstr &MI, VarLocList &OpenRanges, VarLocInMBB &OutLocs); bool transfer(MachineInstr &MI, VarLocList &OpenRanges, VarLocInMBB &OutLocs); bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs); bool ExtendRanges(MachineFunction &MF); public: static char ID; /// Default construct and initialize the pass. LiveDebugValues(); /// Tell the pass manager which passes we depend on and what /// information we preserve. void getAnalysisUsage(AnalysisUsage &AU) const override; /// Print to ostream with a message. void printVarLocInMBB(const VarLocInMBB &V, const char *msg, raw_ostream &Out) const; /// Calculate the liveness information for the given machine function. bool runOnMachineFunction(MachineFunction &MF) override; }; } // namespace //===----------------------------------------------------------------------===// // Implementation //===----------------------------------------------------------------------===// char LiveDebugValues::ID = 0; char &llvm::LiveDebugValuesID = LiveDebugValues::ID; INITIALIZE_PASS(LiveDebugValues, "livedebugvalues", "Live DEBUG_VALUE analysis", false, false) /// Default construct and initialize the pass. LiveDebugValues::LiveDebugValues() : MachineFunctionPass(ID) { initializeLiveDebugValuesPass(*PassRegistry::getPassRegistry()); } /// Tell the pass manager which passes we depend on and what information we /// preserve. void LiveDebugValues::getAnalysisUsage(AnalysisUsage &AU) const { MachineFunctionPass::getAnalysisUsage(AU); } // \brief If @MI is a DBG_VALUE with debug value described by a defined // register, returns the number of this register. In the other case, returns 0. static unsigned isDescribedByReg(const MachineInstr &MI) { assert(MI.isDebugValue()); assert(MI.getNumOperands() == 4); // If location of variable is described using a register (directly or // indirecltly), this register is always a first operand. return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : 0; } // \brief This function takes two DBG_VALUE instructions and returns true // if their offsets are equal; otherwise returns false. static bool areOffsetsEqual(const MachineInstr &MI1, const MachineInstr &MI2) { assert(MI1.isDebugValue()); assert(MI1.getNumOperands() == 4); assert(MI2.isDebugValue()); assert(MI2.getNumOperands() == 4); if (!MI1.isIndirectDebugValue() && !MI2.isIndirectDebugValue()) return true; // Check if both MIs are indirect and they are equal. if (MI1.isIndirectDebugValue() && MI2.isIndirectDebugValue()) return MI1.getOperand(1).getImm() == MI2.getOperand(1).getImm(); return false; } //===----------------------------------------------------------------------===// // Debug Range Extension Implementation //===----------------------------------------------------------------------===// void LiveDebugValues::printVarLocInMBB(const VarLocInMBB &V, const char *msg, raw_ostream &Out) const { Out << "Printing " << msg << ":\n"; for (const auto &L : V) { Out << "MBB: " << L.first->getName() << ":\n"; for (const auto &VLL : L.second) { Out << " Var: " << VLL.Var.Var->getName(); Out << " MI: "; (*VLL.MI).dump(); Out << "\n"; } } Out << "\n"; } bool LiveDebugValues::VarLoc::operator==(const VarLoc &V) const { return (Var == V.Var) && (isDescribedByReg(*MI) == isDescribedByReg(*V.MI)) && (areOffsetsEqual(*MI, *V.MI)); } /// End all previous ranges related to @MI and start a new range from @MI /// if it is a DBG_VALUE instr. void LiveDebugValues::transferDebugValue(MachineInstr &MI, VarLocList &OpenRanges) { if (!MI.isDebugValue()) return; const DILocalVariable *RawVar = MI.getDebugVariable(); assert(RawVar->isValidLocationForIntrinsic(MI.getDebugLoc()) && "Expected inlined-at fields to agree"); DebugVariable Var(RawVar, MI.getDebugLoc()->getInlinedAt()); // End all previous ranges of Var. OpenRanges.erase( std::remove_if(OpenRanges.begin(), OpenRanges.end(), [&](const VarLoc &V) { return (Var == V.Var); }), OpenRanges.end()); // Add Var to OpenRanges from this DBG_VALUE. // TODO: Currently handles DBG_VALUE which has only reg as location. if (isDescribedByReg(MI)) { VarLoc V(Var, &MI); OpenRanges.push_back(std::move(V)); } } /// A definition of a register may mark the end of a range. void LiveDebugValues::transferRegisterDef(MachineInstr &MI, VarLocList &OpenRanges) { for (const MachineOperand &MO : MI.operands()) { if (!(MO.isReg() && MO.isDef() && MO.getReg() && TRI->isPhysicalRegister(MO.getReg()))) continue; // Remove ranges of all aliased registers. for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) OpenRanges.erase(std::remove_if(OpenRanges.begin(), OpenRanges.end(), [&](const VarLoc &V) { return (*RAI == isDescribedByReg(*V.MI)); }), OpenRanges.end()); } } /// Terminate all open ranges at the end of the current basic block. bool LiveDebugValues::transferTerminatorInst(MachineInstr &MI, VarLocList &OpenRanges, VarLocInMBB &OutLocs) { bool Changed = false; const MachineBasicBlock *CurMBB = MI.getParent(); if (!(MI.isTerminator() || (&MI == &CurMBB->instr_back()))) return false; if (OpenRanges.empty()) return false; if (OutLocs.find(CurMBB) == OutLocs.end()) { // Create space for new Outgoing locs entries. VarLocList VLL; OutLocs.insert(std::make_pair(CurMBB, std::move(VLL))); } auto OL = OutLocs.find(CurMBB); assert(OL != OutLocs.end()); VarLocList &VLL = OL->second; for (auto OR : OpenRanges) { // Copy OpenRanges to OutLocs, if not already present. assert(OR.MI->isDebugValue()); DEBUG(dbgs() << "Add to OutLocs: "; OR.MI->dump();); if (std::find_if(VLL.begin(), VLL.end(), [&](const VarLoc &V) { return (OR == V); }) == VLL.end()) { VLL.push_back(std::move(OR)); Changed = true; } } OpenRanges.clear(); return Changed; } /// This routine creates OpenRanges and OutLocs. bool LiveDebugValues::transfer(MachineInstr &MI, VarLocList &OpenRanges, VarLocInMBB &OutLocs) { bool Changed = false; transferDebugValue(MI, OpenRanges); transferRegisterDef(MI, OpenRanges); Changed = transferTerminatorInst(MI, OpenRanges, OutLocs); return Changed; } /// This routine joins the analysis results of all incoming edges in @MBB by /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same /// source variable in all the predecessors of @MBB reside in the same location. bool LiveDebugValues::join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs) { DEBUG(dbgs() << "join MBB: " << MBB.getName() << "\n"); bool Changed = false; VarLocList InLocsT; // Temporary incoming locations. // For all predecessors of this MBB, find the set of VarLocs that can be // joined. for (auto p : MBB.predecessors()) { auto OL = OutLocs.find(p); // Join is null in case of empty OutLocs from any of the pred. if (OL == OutLocs.end()) return false; // Just copy over the Out locs to incoming locs for the first predecessor. if (p == *MBB.pred_begin()) { InLocsT = OL->second; continue; } // Join with this predecessor. VarLocList &VLL = OL->second; InLocsT.erase( std::remove_if(InLocsT.begin(), InLocsT.end(), [&](VarLoc &ILT) { return (std::find_if(VLL.begin(), VLL.end(), [&](const VarLoc &V) { return (ILT == V); }) == VLL.end()); }), InLocsT.end()); } if (InLocsT.empty()) return false; if (InLocs.find(&MBB) == InLocs.end()) { // Create space for new Incoming locs entries. VarLocList VLL; InLocs.insert(std::make_pair(&MBB, std::move(VLL))); } auto IL = InLocs.find(&MBB); assert(IL != InLocs.end()); VarLocList &ILL = IL->second; // Insert DBG_VALUE instructions, if not already inserted. for (auto ILT : InLocsT) { if (std::find_if(ILL.begin(), ILL.end(), [&](const VarLoc &I) { return (ILT == I); }) == ILL.end()) { // This VarLoc is not found in InLocs i.e. it is not yet inserted. So, a // new range is started for the var from the mbb's beginning by inserting // a new DBG_VALUE. transfer() will end this range however appropriate. const MachineInstr *DMI = ILT.MI; MachineInstr *MI = BuildMI(MBB, MBB.instr_begin(), DMI->getDebugLoc(), DMI->getDesc(), DMI->isIndirectDebugValue(), DMI->getOperand(0).getReg(), 0, DMI->getDebugVariable(), DMI->getDebugExpression()); if (DMI->isIndirectDebugValue()) MI->getOperand(1).setImm(DMI->getOperand(1).getImm()); DEBUG(dbgs() << "Inserted: "; MI->dump();); ++NumInserted; Changed = true; VarLoc V(ILT.Var, MI); ILL.push_back(std::move(V)); } } return Changed; } /// Calculate the liveness information for the given machine function and /// extend ranges across basic blocks. bool LiveDebugValues::ExtendRanges(MachineFunction &MF) { DEBUG(dbgs() << "\nDebug Range Extension\n"); bool Changed = false; bool OLChanged = false; bool MBBJoined = false; VarLocList OpenRanges; // Ranges that are open until end of bb. VarLocInMBB OutLocs; // Ranges that exist beyond bb. VarLocInMBB InLocs; // Ranges that are incoming after joining. DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; DenseMap<MachineBasicBlock *, unsigned int> BBToOrder; std::priority_queue<unsigned int, std::vector<unsigned int>, std::greater<unsigned int>> Worklist; std::priority_queue<unsigned int, std::vector<unsigned int>, std::greater<unsigned int>> Pending; // Initialize every mbb with OutLocs. for (auto &MBB : MF) for (auto &MI : MBB) transfer(MI, OpenRanges, OutLocs); DEBUG(printVarLocInMBB(OutLocs, "OutLocs after initialization", dbgs())); ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); unsigned int RPONumber = 0; for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { OrderToBB[RPONumber] = *RI; BBToOrder[*RI] = RPONumber; Worklist.push(RPONumber); ++RPONumber; } // This is a standard "union of predecessor outs" dataflow problem. // To solve it, we perform join() and transfer() using the two worklist method // until the ranges converge. // Ranges have converged when both worklists are empty. while (!Worklist.empty() || !Pending.empty()) { // We track what is on the pending worklist to avoid inserting the same // thing twice. We could avoid this with a custom priority queue, but this // is probably not worth it. SmallPtrSet<MachineBasicBlock *, 16> OnPending; while (!Worklist.empty()) { MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; Worklist.pop(); MBBJoined = join(*MBB, OutLocs, InLocs); if (MBBJoined) { MBBJoined = false; Changed = true; for (auto &MI : *MBB) OLChanged |= transfer(MI, OpenRanges, OutLocs); DEBUG(printVarLocInMBB(OutLocs, "OutLocs after propagating", dbgs())); DEBUG(printVarLocInMBB(InLocs, "InLocs after propagating", dbgs())); if (OLChanged) { OLChanged = false; for (auto s : MBB->successors()) if (!OnPending.count(s)) { OnPending.insert(s); Pending.push(BBToOrder[s]); } } } } Worklist.swap(Pending); // At this point, pending must be empty, since it was just the empty // worklist assert(Pending.empty() && "Pending should be empty"); } DEBUG(printVarLocInMBB(OutLocs, "Final OutLocs", dbgs())); DEBUG(printVarLocInMBB(InLocs, "Final InLocs", dbgs())); return Changed; } bool LiveDebugValues::runOnMachineFunction(MachineFunction &MF) { TRI = MF.getSubtarget().getRegisterInfo(); TII = MF.getSubtarget().getInstrInfo(); bool Changed = false; Changed |= ExtendRanges(MF); return Changed; }