//===-- LLParser.h - Parser Class -------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the parser class for .ll files. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_ASMPARSER_LLPARSER_H #define LLVM_LIB_ASMPARSER_LLPARSER_H #include "LLLexer.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/StringMap.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" #include "llvm/IR/ValueHandle.h" #include <map> namespace llvm { class Module; class OpaqueType; class Function; class Value; class BasicBlock; class Instruction; class Constant; class GlobalValue; class Comdat; class MDString; class MDNode; struct SlotMapping; class StructType; /// ValID - Represents a reference of a definition of some sort with no type. /// There are several cases where we have to parse the value but where the /// type can depend on later context. This may either be a numeric reference /// or a symbolic (%var) reference. This is just a discriminated union. struct ValID { enum { t_LocalID, t_GlobalID, // ID in UIntVal. t_LocalName, t_GlobalName, // Name in StrVal. t_APSInt, t_APFloat, // Value in APSIntVal/APFloatVal. t_Null, t_Undef, t_Zero, t_None, // No value. t_EmptyArray, // No value: [] t_Constant, // Value in ConstantVal. t_InlineAsm, // Value in FTy/StrVal/StrVal2/UIntVal. t_ConstantStruct, // Value in ConstantStructElts. t_PackedConstantStruct // Value in ConstantStructElts. } Kind = t_LocalID; LLLexer::LocTy Loc; unsigned UIntVal; FunctionType *FTy = nullptr; std::string StrVal, StrVal2; APSInt APSIntVal; APFloat APFloatVal{0.0}; Constant *ConstantVal; std::unique_ptr<Constant *[]> ConstantStructElts; ValID() = default; ValID(const ValID &RHS) : Kind(RHS.Kind), Loc(RHS.Loc), UIntVal(RHS.UIntVal), FTy(RHS.FTy), StrVal(RHS.StrVal), StrVal2(RHS.StrVal2), APSIntVal(RHS.APSIntVal), APFloatVal(RHS.APFloatVal), ConstantVal(RHS.ConstantVal) { assert(!RHS.ConstantStructElts); } bool operator<(const ValID &RHS) const { if (Kind == t_LocalID || Kind == t_GlobalID) return UIntVal < RHS.UIntVal; assert((Kind == t_LocalName || Kind == t_GlobalName || Kind == t_ConstantStruct || Kind == t_PackedConstantStruct) && "Ordering not defined for this ValID kind yet"); return StrVal < RHS.StrVal; } }; class LLParser { public: typedef LLLexer::LocTy LocTy; private: LLVMContext &Context; LLLexer Lex; Module *M; SlotMapping *Slots; // Instruction metadata resolution. Each instruction can have a list of // MDRef info associated with them. // // The simpler approach of just creating temporary MDNodes and then calling // RAUW on them when the definition is processed doesn't work because some // instruction metadata kinds, such as dbg, get stored in the IR in an // "optimized" format which doesn't participate in the normal value use // lists. This means that RAUW doesn't work, even on temporary MDNodes // which otherwise support RAUW. Instead, we defer resolving MDNode // references until the definitions have been processed. struct MDRef { SMLoc Loc; unsigned MDKind, MDSlot; }; SmallVector<Instruction*, 64> InstsWithTBAATag; // Type resolution handling data structures. The location is set when we // have processed a use of the type but not a definition yet. StringMap<std::pair<Type*, LocTy> > NamedTypes; std::map<unsigned, std::pair<Type*, LocTy> > NumberedTypes; std::map<unsigned, TrackingMDNodeRef> NumberedMetadata; std::map<unsigned, std::pair<TempMDTuple, LocTy>> ForwardRefMDNodes; // Global Value reference information. std::map<std::string, std::pair<GlobalValue*, LocTy> > ForwardRefVals; std::map<unsigned, std::pair<GlobalValue*, LocTy> > ForwardRefValIDs; std::vector<GlobalValue*> NumberedVals; // Comdat forward reference information. std::map<std::string, LocTy> ForwardRefComdats; // References to blockaddress. The key is the function ValID, the value is // a list of references to blocks in that function. std::map<ValID, std::map<ValID, GlobalValue *>> ForwardRefBlockAddresses; class PerFunctionState; /// Reference to per-function state to allow basic blocks to be /// forward-referenced by blockaddress instructions within the same /// function. PerFunctionState *BlockAddressPFS; // Attribute builder reference information. std::map<Value*, std::vector<unsigned> > ForwardRefAttrGroups; std::map<unsigned, AttrBuilder> NumberedAttrBuilders; public: LLParser(StringRef F, SourceMgr &SM, SMDiagnostic &Err, Module *M, SlotMapping *Slots = nullptr) : Context(M->getContext()), Lex(F, SM, Err, M->getContext()), M(M), Slots(Slots), BlockAddressPFS(nullptr) {} bool Run(); bool parseStandaloneConstantValue(Constant *&C, const SlotMapping *Slots); LLVMContext &getContext() { return Context; } private: bool Error(LocTy L, const Twine &Msg) const { return Lex.Error(L, Msg); } bool TokError(const Twine &Msg) const { return Error(Lex.getLoc(), Msg); } /// Restore the internal name and slot mappings using the mappings that /// were created at an earlier parsing stage. void restoreParsingState(const SlotMapping *Slots); /// GetGlobalVal - Get a value with the specified name or ID, creating a /// forward reference record if needed. This can return null if the value /// exists but does not have the right type. GlobalValue *GetGlobalVal(const std::string &N, Type *Ty, LocTy Loc); GlobalValue *GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc); /// Get a Comdat with the specified name, creating a forward reference /// record if needed. Comdat *getComdat(const std::string &N, LocTy Loc); // Helper Routines. bool ParseToken(lltok::Kind T, const char *ErrMsg); bool EatIfPresent(lltok::Kind T) { if (Lex.getKind() != T) return false; Lex.Lex(); return true; } FastMathFlags EatFastMathFlagsIfPresent() { FastMathFlags FMF; while (true) switch (Lex.getKind()) { case lltok::kw_fast: FMF.setUnsafeAlgebra(); Lex.Lex(); continue; case lltok::kw_nnan: FMF.setNoNaNs(); Lex.Lex(); continue; case lltok::kw_ninf: FMF.setNoInfs(); Lex.Lex(); continue; case lltok::kw_nsz: FMF.setNoSignedZeros(); Lex.Lex(); continue; case lltok::kw_arcp: FMF.setAllowReciprocal(); Lex.Lex(); continue; default: return FMF; } return FMF; } bool ParseOptionalToken(lltok::Kind T, bool &Present, LocTy *Loc = nullptr) { if (Lex.getKind() != T) { Present = false; } else { if (Loc) *Loc = Lex.getLoc(); Lex.Lex(); Present = true; } return false; } bool ParseStringConstant(std::string &Result); bool ParseUInt32(unsigned &Val); bool ParseUInt32(unsigned &Val, LocTy &Loc) { Loc = Lex.getLoc(); return ParseUInt32(Val); } bool ParseUInt64(uint64_t &Val); bool ParseUInt64(uint64_t &Val, LocTy &Loc) { Loc = Lex.getLoc(); return ParseUInt64(Val); } bool ParseStringAttribute(AttrBuilder &B); bool ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM); bool ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM); bool parseOptionalUnnamedAddr(bool &UnnamedAddr) { return ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr); } bool ParseOptionalAddrSpace(unsigned &AddrSpace); bool ParseOptionalParamAttrs(AttrBuilder &B); bool ParseOptionalReturnAttrs(AttrBuilder &B); bool ParseOptionalLinkage(unsigned &Linkage, bool &HasLinkage); bool ParseOptionalLinkage(unsigned &Linkage) { bool HasLinkage; return ParseOptionalLinkage(Linkage, HasLinkage); } bool ParseOptionalVisibility(unsigned &Visibility); bool ParseOptionalDLLStorageClass(unsigned &DLLStorageClass); bool ParseOptionalCallingConv(unsigned &CC); bool ParseOptionalAlignment(unsigned &Alignment); bool ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, uint64_t &Bytes); bool ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, AtomicOrdering &Ordering); bool ParseOrdering(AtomicOrdering &Ordering); bool ParseOptionalStackAlignment(unsigned &Alignment); bool ParseOptionalCommaAlign(unsigned &Alignment, bool &AteExtraComma); bool ParseOptionalCommaInAlloca(bool &IsInAlloca); bool ParseIndexList(SmallVectorImpl<unsigned> &Indices,bool &AteExtraComma); bool ParseIndexList(SmallVectorImpl<unsigned> &Indices) { bool AteExtraComma; if (ParseIndexList(Indices, AteExtraComma)) return true; if (AteExtraComma) return TokError("expected index"); return false; } // Top-Level Entities bool ParseTopLevelEntities(); bool ValidateEndOfModule(); bool ParseTargetDefinition(); bool ParseModuleAsm(); bool ParseDepLibs(); // FIXME: Remove in 4.0. bool ParseUnnamedType(); bool ParseNamedType(); bool ParseDeclare(); bool ParseDefine(); bool ParseGlobalType(bool &IsConstant); bool ParseUnnamedGlobal(); bool ParseNamedGlobal(); bool ParseGlobal(const std::string &Name, LocTy Loc, unsigned Linkage, bool HasLinkage, unsigned Visibility, unsigned DLLStorageClass, GlobalVariable::ThreadLocalMode TLM, bool UnnamedAddr); bool ParseAlias(const std::string &Name, LocTy Loc, unsigned Linkage, unsigned Visibility, unsigned DLLStorageClass, GlobalVariable::ThreadLocalMode TLM, bool UnnamedAddr); bool parseComdat(); bool ParseStandaloneMetadata(); bool ParseNamedMetadata(); bool ParseMDString(MDString *&Result); bool ParseMDNodeID(MDNode *&Result); bool ParseUnnamedAttrGrp(); bool ParseFnAttributeValuePairs(AttrBuilder &B, std::vector<unsigned> &FwdRefAttrGrps, bool inAttrGrp, LocTy &BuiltinLoc); // Type Parsing. bool ParseType(Type *&Result, const Twine &Msg, bool AllowVoid = false); bool ParseType(Type *&Result, bool AllowVoid = false) { return ParseType(Result, "expected type", AllowVoid); } bool ParseType(Type *&Result, const Twine &Msg, LocTy &Loc, bool AllowVoid = false) { Loc = Lex.getLoc(); return ParseType(Result, Msg, AllowVoid); } bool ParseType(Type *&Result, LocTy &Loc, bool AllowVoid = false) { Loc = Lex.getLoc(); return ParseType(Result, AllowVoid); } bool ParseAnonStructType(Type *&Result, bool Packed); bool ParseStructBody(SmallVectorImpl<Type*> &Body); bool ParseStructDefinition(SMLoc TypeLoc, StringRef Name, std::pair<Type*, LocTy> &Entry, Type *&ResultTy); bool ParseArrayVectorType(Type *&Result, bool isVector); bool ParseFunctionType(Type *&Result); // Function Semantic Analysis. class PerFunctionState { LLParser &P; Function &F; std::map<std::string, std::pair<Value*, LocTy> > ForwardRefVals; std::map<unsigned, std::pair<Value*, LocTy> > ForwardRefValIDs; std::vector<Value*> NumberedVals; /// FunctionNumber - If this is an unnamed function, this is the slot /// number of it, otherwise it is -1. int FunctionNumber; public: PerFunctionState(LLParser &p, Function &f, int FunctionNumber); ~PerFunctionState(); Function &getFunction() const { return F; } bool FinishFunction(); /// GetVal - Get a value with the specified name or ID, creating a /// forward reference record if needed. This can return null if the value /// exists but does not have the right type. Value *GetVal(const std::string &Name, Type *Ty, LocTy Loc); Value *GetVal(unsigned ID, Type *Ty, LocTy Loc); /// SetInstName - After an instruction is parsed and inserted into its /// basic block, this installs its name. bool SetInstName(int NameID, const std::string &NameStr, LocTy NameLoc, Instruction *Inst); /// GetBB - Get a basic block with the specified name or ID, creating a /// forward reference record if needed. This can return null if the value /// is not a BasicBlock. BasicBlock *GetBB(const std::string &Name, LocTy Loc); BasicBlock *GetBB(unsigned ID, LocTy Loc); /// DefineBB - Define the specified basic block, which is either named or /// unnamed. If there is an error, this returns null otherwise it returns /// the block being defined. BasicBlock *DefineBB(const std::string &Name, LocTy Loc); bool resolveForwardRefBlockAddresses(); }; bool ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, PerFunctionState *PFS); bool parseConstantValue(Type *Ty, Constant *&C); bool ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS); bool ParseValue(Type *Ty, Value *&V, PerFunctionState &PFS) { return ParseValue(Ty, V, &PFS); } bool ParseValue(Type *Ty, Value *&V, LocTy &Loc, PerFunctionState &PFS) { Loc = Lex.getLoc(); return ParseValue(Ty, V, &PFS); } bool ParseTypeAndValue(Value *&V, PerFunctionState *PFS); bool ParseTypeAndValue(Value *&V, PerFunctionState &PFS) { return ParseTypeAndValue(V, &PFS); } bool ParseTypeAndValue(Value *&V, LocTy &Loc, PerFunctionState &PFS) { Loc = Lex.getLoc(); return ParseTypeAndValue(V, PFS); } bool ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, PerFunctionState &PFS); bool ParseTypeAndBasicBlock(BasicBlock *&BB, PerFunctionState &PFS) { LocTy Loc; return ParseTypeAndBasicBlock(BB, Loc, PFS); } struct ParamInfo { LocTy Loc; Value *V; AttributeSet Attrs; ParamInfo(LocTy loc, Value *v, AttributeSet attrs) : Loc(loc), V(v), Attrs(attrs) {} }; bool ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, PerFunctionState &PFS, bool IsMustTailCall = false, bool InVarArgsFunc = false); bool ParseOptionalOperandBundles(SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS); bool ParseExceptionArgs(SmallVectorImpl<Value *> &Args, PerFunctionState &PFS); // Constant Parsing. bool ParseValID(ValID &ID, PerFunctionState *PFS = nullptr); bool ParseGlobalValue(Type *Ty, Constant *&V); bool ParseGlobalTypeAndValue(Constant *&V); bool ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts); bool parseOptionalComdat(StringRef GlobalName, Comdat *&C); bool ParseMetadataAsValue(Value *&V, PerFunctionState &PFS); bool ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, PerFunctionState *PFS); bool ParseMetadata(Metadata *&MD, PerFunctionState *PFS); bool ParseMDTuple(MDNode *&MD, bool IsDistinct = false); bool ParseMDNode(MDNode *&MD); bool ParseMDNodeTail(MDNode *&MD); bool ParseMDNodeVector(SmallVectorImpl<Metadata *> &MDs); bool ParseMetadataAttachment(unsigned &Kind, MDNode *&MD); bool ParseInstructionMetadata(Instruction &Inst); bool ParseOptionalFunctionMetadata(Function &F); template <class FieldTy> bool ParseMDField(LocTy Loc, StringRef Name, FieldTy &Result); template <class FieldTy> bool ParseMDField(StringRef Name, FieldTy &Result); template <class ParserTy> bool ParseMDFieldsImplBody(ParserTy parseField); template <class ParserTy> bool ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc); bool ParseSpecializedMDNode(MDNode *&N, bool IsDistinct = false); #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ bool Parse##CLASS(MDNode *&Result, bool IsDistinct); #include "llvm/IR/Metadata.def" // Function Parsing. struct ArgInfo { LocTy Loc; Type *Ty; AttributeSet Attrs; std::string Name; ArgInfo(LocTy L, Type *ty, AttributeSet Attr, const std::string &N) : Loc(L), Ty(ty), Attrs(Attr), Name(N) {} }; bool ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, bool &isVarArg); bool ParseFunctionHeader(Function *&Fn, bool isDefine); bool ParseFunctionBody(Function &Fn); bool ParseBasicBlock(PerFunctionState &PFS); enum TailCallType { TCT_None, TCT_Tail, TCT_MustTail }; // Instruction Parsing. Each instruction parsing routine can return with a // normal result, an error result, or return having eaten an extra comma. enum InstResult { InstNormal = 0, InstError = 1, InstExtraComma = 2 }; int ParseInstruction(Instruction *&Inst, BasicBlock *BB, PerFunctionState &PFS); bool ParseCmpPredicate(unsigned &Pred, unsigned Opc); bool ParseRet(Instruction *&Inst, BasicBlock *BB, PerFunctionState &PFS); bool ParseBr(Instruction *&Inst, PerFunctionState &PFS); bool ParseSwitch(Instruction *&Inst, PerFunctionState &PFS); bool ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS); bool ParseInvoke(Instruction *&Inst, PerFunctionState &PFS); bool ParseResume(Instruction *&Inst, PerFunctionState &PFS); bool ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS); bool ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS); bool ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS); bool ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS); bool ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS); bool ParseArithmetic(Instruction *&I, PerFunctionState &PFS, unsigned Opc, unsigned OperandType); bool ParseLogical(Instruction *&I, PerFunctionState &PFS, unsigned Opc); bool ParseCompare(Instruction *&I, PerFunctionState &PFS, unsigned Opc); bool ParseCast(Instruction *&I, PerFunctionState &PFS, unsigned Opc); bool ParseSelect(Instruction *&I, PerFunctionState &PFS); bool ParseVA_Arg(Instruction *&I, PerFunctionState &PFS); bool ParseExtractElement(Instruction *&I, PerFunctionState &PFS); bool ParseInsertElement(Instruction *&I, PerFunctionState &PFS); bool ParseShuffleVector(Instruction *&I, PerFunctionState &PFS); int ParsePHI(Instruction *&I, PerFunctionState &PFS); bool ParseLandingPad(Instruction *&I, PerFunctionState &PFS); bool ParseCall(Instruction *&I, PerFunctionState &PFS, CallInst::TailCallKind IsTail); int ParseAlloc(Instruction *&I, PerFunctionState &PFS); int ParseLoad(Instruction *&I, PerFunctionState &PFS); int ParseStore(Instruction *&I, PerFunctionState &PFS); int ParseCmpXchg(Instruction *&I, PerFunctionState &PFS); int ParseAtomicRMW(Instruction *&I, PerFunctionState &PFS); int ParseFence(Instruction *&I, PerFunctionState &PFS); int ParseGetElementPtr(Instruction *&I, PerFunctionState &PFS); int ParseExtractValue(Instruction *&I, PerFunctionState &PFS); int ParseInsertValue(Instruction *&I, PerFunctionState &PFS); // Use-list order directives. bool ParseUseListOrder(PerFunctionState *PFS = nullptr); bool ParseUseListOrderBB(); bool ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes); bool sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, SMLoc Loc); }; } // End llvm namespace #endif