; ; jidctfst.asm - fast integer IDCT (64-bit SSE2) ; ; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB ; Copyright 2009 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a fast, not so accurate integer implementation of ; the inverse DCT (Discrete Cosine Transform). The following code is ; based directly on the IJG's original jidctfst.c; see the jidctfst.c ; for more details. ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 8 ; 14 is also OK. %define PASS1_BITS 2 %if IFAST_SCALE_BITS != PASS1_BITS %error "'IFAST_SCALE_BITS' must be equal to 'PASS1_BITS'." %endif %if CONST_BITS == 8 F_1_082 equ 277 ; FIX(1.082392200) F_1_414 equ 362 ; FIX(1.414213562) F_1_847 equ 473 ; FIX(1.847759065) F_2_613 equ 669 ; FIX(2.613125930) F_1_613 equ (F_2_613 - 256) ; FIX(2.613125930) - FIX(1) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n)) F_1_082 equ DESCALE(1162209775,30-CONST_BITS) ; FIX(1.082392200) F_1_414 equ DESCALE(1518500249,30-CONST_BITS) ; FIX(1.414213562) F_1_847 equ DESCALE(1984016188,30-CONST_BITS) ; FIX(1.847759065) F_2_613 equ DESCALE(2805822602,30-CONST_BITS) ; FIX(2.613125930) F_1_613 equ (F_2_613 - (1 << CONST_BITS)) ; FIX(2.613125930) - FIX(1) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow) ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw) %define PRE_MULTIPLY_SCALE_BITS 2 %define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS) alignz 16 global EXTN(jconst_idct_ifast_sse2) EXTN(jconst_idct_ifast_sse2): PW_F1414 times 8 dw F_1_414 << CONST_SHIFT PW_F1847 times 8 dw F_1_847 << CONST_SHIFT PW_MF1613 times 8 dw -F_1_613 << CONST_SHIFT PW_F1082 times 8 dw F_1_082 << CONST_SHIFT PB_CENTERJSAMP times 16 db CENTERJSAMPLE alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_ifast_sse2 (void * dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; ; r10 = jpeg_component_info * compptr ; r11 = JCOEFPTR coef_block ; r12 = JSAMPARRAY output_buf ; r13 = JDIMENSION output_col %define original_rbp rbp+0 %define wk(i) rbp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 align 16 global EXTN(jsimd_idct_ifast_sse2) EXTN(jsimd_idct_ifast_sse2): push rbp mov rax,rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp],rax mov rbp,rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args ; ---- Pass 1: process columns from input. mov rdx, r10 ; quantptr mov rsi, r11 ; inptr %ifndef NO_ZERO_COLUMN_TEST_IFAST_SSE2 mov eax, DWORD [DWBLOCK(1,0,rsi,SIZEOF_JCOEF)] or eax, DWORD [DWBLOCK(2,0,rsi,SIZEOF_JCOEF)] jnz near .columnDCT movdqa xmm0, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(4,0,rsi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)] por xmm1,xmm0 packsswb xmm1,xmm1 packsswb xmm1,xmm1 movd eax,xmm1 test rax,rax jnz short .columnDCT ; -- AC terms all zero movdqa xmm0, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm7,xmm0 ; xmm0=in0=(00 01 02 03 04 05 06 07) punpcklwd xmm0,xmm0 ; xmm0=(00 00 01 01 02 02 03 03) punpckhwd xmm7,xmm7 ; xmm7=(04 04 05 05 06 06 07 07) pshufd xmm6,xmm0,0x00 ; xmm6=col0=(00 00 00 00 00 00 00 00) pshufd xmm2,xmm0,0x55 ; xmm2=col1=(01 01 01 01 01 01 01 01) pshufd xmm5,xmm0,0xAA ; xmm5=col2=(02 02 02 02 02 02 02 02) pshufd xmm0,xmm0,0xFF ; xmm0=col3=(03 03 03 03 03 03 03 03) pshufd xmm1,xmm7,0x00 ; xmm1=col4=(04 04 04 04 04 04 04 04) pshufd xmm4,xmm7,0x55 ; xmm4=col5=(05 05 05 05 05 05 05 05) pshufd xmm3,xmm7,0xAA ; xmm3=col6=(06 06 06 06 06 06 06 06) pshufd xmm7,xmm7,0xFF ; xmm7=col7=(07 07 07 07 07 07 07 07) movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=col1 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=col3 jmp near .column_end %endif .columnDCT: ; -- Even part movdqa xmm0, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_IFAST_MULT_TYPE)] pmullw xmm1, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_IFAST_MULT_TYPE)] movdqa xmm2, XMMWORD [XMMBLOCK(4,0,rsi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_JCOEF)] pmullw xmm2, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_IFAST_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_IFAST_MULT_TYPE)] movdqa xmm4,xmm0 movdqa xmm5,xmm1 psubw xmm0,xmm2 ; xmm0=tmp11 psubw xmm1,xmm3 paddw xmm4,xmm2 ; xmm4=tmp10 paddw xmm5,xmm3 ; xmm5=tmp13 psllw xmm1,PRE_MULTIPLY_SCALE_BITS pmulhw xmm1,[rel PW_F1414] psubw xmm1,xmm5 ; xmm1=tmp12 movdqa xmm6,xmm4 movdqa xmm7,xmm0 psubw xmm4,xmm5 ; xmm4=tmp3 psubw xmm0,xmm1 ; xmm0=tmp2 paddw xmm6,xmm5 ; xmm6=tmp0 paddw xmm7,xmm1 ; xmm7=tmp1 movdqa XMMWORD [wk(1)], xmm4 ; wk(1)=tmp3 movdqa XMMWORD [wk(0)], xmm0 ; wk(0)=tmp2 ; -- Odd part movdqa xmm2, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)] pmullw xmm2, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_IFAST_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_IFAST_MULT_TYPE)] movdqa xmm5, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)] pmullw xmm5, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_IFAST_MULT_TYPE)] pmullw xmm1, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_IFAST_MULT_TYPE)] movdqa xmm4,xmm2 movdqa xmm0,xmm5 psubw xmm2,xmm1 ; xmm2=z12 psubw xmm5,xmm3 ; xmm5=z10 paddw xmm4,xmm1 ; xmm4=z11 paddw xmm0,xmm3 ; xmm0=z13 movdqa xmm1,xmm5 ; xmm1=z10(unscaled) psllw xmm2,PRE_MULTIPLY_SCALE_BITS psllw xmm5,PRE_MULTIPLY_SCALE_BITS movdqa xmm3,xmm4 psubw xmm4,xmm0 paddw xmm3,xmm0 ; xmm3=tmp7 psllw xmm4,PRE_MULTIPLY_SCALE_BITS pmulhw xmm4,[rel PW_F1414] ; xmm4=tmp11 ; To avoid overflow... ; ; (Original) ; tmp12 = -2.613125930 * z10 + z5; ; ; (This implementation) ; tmp12 = (-1.613125930 - 1) * z10 + z5; ; = -1.613125930 * z10 - z10 + z5; movdqa xmm0,xmm5 paddw xmm5,xmm2 pmulhw xmm5,[rel PW_F1847] ; xmm5=z5 pmulhw xmm0,[rel PW_MF1613] pmulhw xmm2,[rel PW_F1082] psubw xmm0,xmm1 psubw xmm2,xmm5 ; xmm2=tmp10 paddw xmm0,xmm5 ; xmm0=tmp12 ; -- Final output stage psubw xmm0,xmm3 ; xmm0=tmp6 movdqa xmm1,xmm6 movdqa xmm5,xmm7 paddw xmm6,xmm3 ; xmm6=data0=(00 01 02 03 04 05 06 07) paddw xmm7,xmm0 ; xmm7=data1=(10 11 12 13 14 15 16 17) psubw xmm1,xmm3 ; xmm1=data7=(70 71 72 73 74 75 76 77) psubw xmm5,xmm0 ; xmm5=data6=(60 61 62 63 64 65 66 67) psubw xmm4,xmm0 ; xmm4=tmp5 movdqa xmm3,xmm6 ; transpose coefficients(phase 1) punpcklwd xmm6,xmm7 ; xmm6=(00 10 01 11 02 12 03 13) punpckhwd xmm3,xmm7 ; xmm3=(04 14 05 15 06 16 07 17) movdqa xmm0,xmm5 ; transpose coefficients(phase 1) punpcklwd xmm5,xmm1 ; xmm5=(60 70 61 71 62 72 63 73) punpckhwd xmm0,xmm1 ; xmm0=(64 74 65 75 66 76 67 77) movdqa xmm7, XMMWORD [wk(0)] ; xmm7=tmp2 movdqa xmm1, XMMWORD [wk(1)] ; xmm1=tmp3 movdqa XMMWORD [wk(0)], xmm5 ; wk(0)=(60 70 61 71 62 72 63 73) movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(64 74 65 75 66 76 67 77) paddw xmm2,xmm4 ; xmm2=tmp4 movdqa xmm5,xmm7 movdqa xmm0,xmm1 paddw xmm7,xmm4 ; xmm7=data2=(20 21 22 23 24 25 26 27) paddw xmm1,xmm2 ; xmm1=data4=(40 41 42 43 44 45 46 47) psubw xmm5,xmm4 ; xmm5=data5=(50 51 52 53 54 55 56 57) psubw xmm0,xmm2 ; xmm0=data3=(30 31 32 33 34 35 36 37) movdqa xmm4,xmm7 ; transpose coefficients(phase 1) punpcklwd xmm7,xmm0 ; xmm7=(20 30 21 31 22 32 23 33) punpckhwd xmm4,xmm0 ; xmm4=(24 34 25 35 26 36 27 37) movdqa xmm2,xmm1 ; transpose coefficients(phase 1) punpcklwd xmm1,xmm5 ; xmm1=(40 50 41 51 42 52 43 53) punpckhwd xmm2,xmm5 ; xmm2=(44 54 45 55 46 56 47 57) movdqa xmm0,xmm3 ; transpose coefficients(phase 2) punpckldq xmm3,xmm4 ; xmm3=(04 14 24 34 05 15 25 35) punpckhdq xmm0,xmm4 ; xmm0=(06 16 26 36 07 17 27 37) movdqa xmm5,xmm6 ; transpose coefficients(phase 2) punpckldq xmm6,xmm7 ; xmm6=(00 10 20 30 01 11 21 31) punpckhdq xmm5,xmm7 ; xmm5=(02 12 22 32 03 13 23 33) movdqa xmm4, XMMWORD [wk(0)] ; xmm4=(60 70 61 71 62 72 63 73) movdqa xmm7, XMMWORD [wk(1)] ; xmm7=(64 74 65 75 66 76 67 77) movdqa XMMWORD [wk(0)], xmm3 ; wk(0)=(04 14 24 34 05 15 25 35) movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(06 16 26 36 07 17 27 37) movdqa xmm3,xmm1 ; transpose coefficients(phase 2) punpckldq xmm1,xmm4 ; xmm1=(40 50 60 70 41 51 61 71) punpckhdq xmm3,xmm4 ; xmm3=(42 52 62 72 43 53 63 73) movdqa xmm0,xmm2 ; transpose coefficients(phase 2) punpckldq xmm2,xmm7 ; xmm2=(44 54 64 74 45 55 65 75) punpckhdq xmm0,xmm7 ; xmm0=(46 56 66 76 47 57 67 77) movdqa xmm4,xmm6 ; transpose coefficients(phase 3) punpcklqdq xmm6,xmm1 ; xmm6=col0=(00 10 20 30 40 50 60 70) punpckhqdq xmm4,xmm1 ; xmm4=col1=(01 11 21 31 41 51 61 71) movdqa xmm7,xmm5 ; transpose coefficients(phase 3) punpcklqdq xmm5,xmm3 ; xmm5=col2=(02 12 22 32 42 52 62 72) punpckhqdq xmm7,xmm3 ; xmm7=col3=(03 13 23 33 43 53 63 73) movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(04 14 24 34 05 15 25 35) movdqa xmm3, XMMWORD [wk(1)] ; xmm3=(06 16 26 36 07 17 27 37) movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=col1 movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=col3 movdqa xmm4,xmm1 ; transpose coefficients(phase 3) punpcklqdq xmm1,xmm2 ; xmm1=col4=(04 14 24 34 44 54 64 74) punpckhqdq xmm4,xmm2 ; xmm4=col5=(05 15 25 35 45 55 65 75) movdqa xmm7,xmm3 ; transpose coefficients(phase 3) punpcklqdq xmm3,xmm0 ; xmm3=col6=(06 16 26 36 46 56 66 76) punpckhqdq xmm7,xmm0 ; xmm7=col7=(07 17 27 37 47 57 67 77) .column_end: ; -- Prefetch the next coefficient block prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 0*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 1*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 2*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows from work array, store into output array. mov rax, [original_rbp] mov rdi, r12 ; (JSAMPROW *) mov eax, r13d ; -- Even part ; xmm6=col0, xmm5=col2, xmm1=col4, xmm3=col6 movdqa xmm2,xmm6 movdqa xmm0,xmm5 psubw xmm6,xmm1 ; xmm6=tmp11 psubw xmm5,xmm3 paddw xmm2,xmm1 ; xmm2=tmp10 paddw xmm0,xmm3 ; xmm0=tmp13 psllw xmm5,PRE_MULTIPLY_SCALE_BITS pmulhw xmm5,[rel PW_F1414] psubw xmm5,xmm0 ; xmm5=tmp12 movdqa xmm1,xmm2 movdqa xmm3,xmm6 psubw xmm2,xmm0 ; xmm2=tmp3 psubw xmm6,xmm5 ; xmm6=tmp2 paddw xmm1,xmm0 ; xmm1=tmp0 paddw xmm3,xmm5 ; xmm3=tmp1 movdqa xmm0, XMMWORD [wk(0)] ; xmm0=col1 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=col3 movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=tmp3 movdqa XMMWORD [wk(1)], xmm6 ; wk(1)=tmp2 ; -- Odd part ; xmm0=col1, xmm5=col3, xmm4=col5, xmm7=col7 movdqa xmm2,xmm0 movdqa xmm6,xmm4 psubw xmm0,xmm7 ; xmm0=z12 psubw xmm4,xmm5 ; xmm4=z10 paddw xmm2,xmm7 ; xmm2=z11 paddw xmm6,xmm5 ; xmm6=z13 movdqa xmm7,xmm4 ; xmm7=z10(unscaled) psllw xmm0,PRE_MULTIPLY_SCALE_BITS psllw xmm4,PRE_MULTIPLY_SCALE_BITS movdqa xmm5,xmm2 psubw xmm2,xmm6 paddw xmm5,xmm6 ; xmm5=tmp7 psllw xmm2,PRE_MULTIPLY_SCALE_BITS pmulhw xmm2,[rel PW_F1414] ; xmm2=tmp11 ; To avoid overflow... ; ; (Original) ; tmp12 = -2.613125930 * z10 + z5; ; ; (This implementation) ; tmp12 = (-1.613125930 - 1) * z10 + z5; ; = -1.613125930 * z10 - z10 + z5; movdqa xmm6,xmm4 paddw xmm4,xmm0 pmulhw xmm4,[rel PW_F1847] ; xmm4=z5 pmulhw xmm6,[rel PW_MF1613] pmulhw xmm0,[rel PW_F1082] psubw xmm6,xmm7 psubw xmm0,xmm4 ; xmm0=tmp10 paddw xmm6,xmm4 ; xmm6=tmp12 ; -- Final output stage psubw xmm6,xmm5 ; xmm6=tmp6 movdqa xmm7,xmm1 movdqa xmm4,xmm3 paddw xmm1,xmm5 ; xmm1=data0=(00 10 20 30 40 50 60 70) paddw xmm3,xmm6 ; xmm3=data1=(01 11 21 31 41 51 61 71) psraw xmm1,(PASS1_BITS+3) ; descale psraw xmm3,(PASS1_BITS+3) ; descale psubw xmm7,xmm5 ; xmm7=data7=(07 17 27 37 47 57 67 77) psubw xmm4,xmm6 ; xmm4=data6=(06 16 26 36 46 56 66 76) psraw xmm7,(PASS1_BITS+3) ; descale psraw xmm4,(PASS1_BITS+3) ; descale psubw xmm2,xmm6 ; xmm2=tmp5 packsswb xmm1,xmm4 ; xmm1=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76) packsswb xmm3,xmm7 ; xmm3=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77) movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp2 movdqa xmm6, XMMWORD [wk(0)] ; xmm6=tmp3 paddw xmm0,xmm2 ; xmm0=tmp4 movdqa xmm4,xmm5 movdqa xmm7,xmm6 paddw xmm5,xmm2 ; xmm5=data2=(02 12 22 32 42 52 62 72) paddw xmm6,xmm0 ; xmm6=data4=(04 14 24 34 44 54 64 74) psraw xmm5,(PASS1_BITS+3) ; descale psraw xmm6,(PASS1_BITS+3) ; descale psubw xmm4,xmm2 ; xmm4=data5=(05 15 25 35 45 55 65 75) psubw xmm7,xmm0 ; xmm7=data3=(03 13 23 33 43 53 63 73) psraw xmm4,(PASS1_BITS+3) ; descale psraw xmm7,(PASS1_BITS+3) ; descale movdqa xmm2,[rel PB_CENTERJSAMP] ; xmm2=[rel PB_CENTERJSAMP] packsswb xmm5,xmm6 ; xmm5=(02 12 22 32 42 52 62 72 04 14 24 34 44 54 64 74) packsswb xmm7,xmm4 ; xmm7=(03 13 23 33 43 53 63 73 05 15 25 35 45 55 65 75) paddb xmm1,xmm2 paddb xmm3,xmm2 paddb xmm5,xmm2 paddb xmm7,xmm2 movdqa xmm0,xmm1 ; transpose coefficients(phase 1) punpcklbw xmm1,xmm3 ; xmm1=(00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71) punpckhbw xmm0,xmm3 ; xmm0=(06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77) movdqa xmm6,xmm5 ; transpose coefficients(phase 1) punpcklbw xmm5,xmm7 ; xmm5=(02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73) punpckhbw xmm6,xmm7 ; xmm6=(04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75) movdqa xmm4,xmm1 ; transpose coefficients(phase 2) punpcklwd xmm1,xmm5 ; xmm1=(00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33) punpckhwd xmm4,xmm5 ; xmm4=(40 41 42 43 50 51 52 53 60 61 62 63 70 71 72 73) movdqa xmm2,xmm6 ; transpose coefficients(phase 2) punpcklwd xmm6,xmm0 ; xmm6=(04 05 06 07 14 15 16 17 24 25 26 27 34 35 36 37) punpckhwd xmm2,xmm0 ; xmm2=(44 45 46 47 54 55 56 57 64 65 66 67 74 75 76 77) movdqa xmm3,xmm1 ; transpose coefficients(phase 3) punpckldq xmm1,xmm6 ; xmm1=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17) punpckhdq xmm3,xmm6 ; xmm3=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37) movdqa xmm7,xmm4 ; transpose coefficients(phase 3) punpckldq xmm4,xmm2 ; xmm4=(40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57) punpckhdq xmm7,xmm2 ; xmm7=(60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77) pshufd xmm5,xmm1,0x4E ; xmm5=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07) pshufd xmm0,xmm3,0x4E ; xmm0=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27) pshufd xmm6,xmm4,0x4E ; xmm6=(50 51 52 53 54 55 56 57 40 41 42 43 44 45 46 47) pshufd xmm2,xmm7,0x4E ; xmm2=(70 71 72 73 74 75 76 77 60 61 62 63 64 65 66 67) mov rdx, JSAMPROW [rdi+0*SIZEOF_JSAMPROW] mov rsi, JSAMPROW [rdi+2*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm1 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm3 mov rdx, JSAMPROW [rdi+4*SIZEOF_JSAMPROW] mov rsi, JSAMPROW [rdi+6*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm4 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm7 mov rdx, JSAMPROW [rdi+1*SIZEOF_JSAMPROW] mov rsi, JSAMPROW [rdi+3*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm5 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm0 mov rdx, JSAMPROW [rdi+5*SIZEOF_JSAMPROW] mov rsi, JSAMPROW [rdi+7*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm6 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm2 uncollect_args mov rsp,rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16