// -*- C++ -*- //===------------------------ functional ----------------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef _LIBCPP_FUNCTIONAL #define _LIBCPP_FUNCTIONAL /* functional synopsis namespace std { template <class Arg, class Result> struct unary_function { typedef Arg argument_type; typedef Result result_type; }; template <class Arg1, class Arg2, class Result> struct binary_function { typedef Arg1 first_argument_type; typedef Arg2 second_argument_type; typedef Result result_type; }; template <class T> class reference_wrapper : public unary_function<T1, R> // if wrapping a unary functor : public binary_function<T1, T2, R> // if wraping a binary functor { public: // types typedef T type; typedef see below result_type; // Not always defined // construct/copy/destroy reference_wrapper(T&) noexcept; reference_wrapper(T&&) = delete; // do not bind to temps reference_wrapper(const reference_wrapper<T>& x) noexcept; // assignment reference_wrapper& operator=(const reference_wrapper<T>& x) noexcept; // access operator T& () const noexcept; T& get() const noexcept; // invoke template <class... ArgTypes> typename result_of<T&(ArgTypes&&...)>::type operator() (ArgTypes&&...) const; }; template <class T> reference_wrapper<T> ref(T& t) noexcept; template <class T> void ref(const T&& t) = delete; template <class T> reference_wrapper<T> ref(reference_wrapper<T>t) noexcept; template <class T> reference_wrapper<const T> cref(const T& t) noexcept; template <class T> void cref(const T&& t) = delete; template <class T> reference_wrapper<const T> cref(reference_wrapper<T> t) noexcept; template <class T> // <class T=void> in C++14 struct plus : binary_function<T, T, T> { T operator()(const T& x, const T& y) const; }; template <class T> // <class T=void> in C++14 struct minus : binary_function<T, T, T> { T operator()(const T& x, const T& y) const; }; template <class T> // <class T=void> in C++14 struct multiplies : binary_function<T, T, T> { T operator()(const T& x, const T& y) const; }; template <class T> // <class T=void> in C++14 struct divides : binary_function<T, T, T> { T operator()(const T& x, const T& y) const; }; template <class T> // <class T=void> in C++14 struct modulus : binary_function<T, T, T> { T operator()(const T& x, const T& y) const; }; template <class T> // <class T=void> in C++14 struct negate : unary_function<T, T> { T operator()(const T& x) const; }; template <class T> // <class T=void> in C++14 struct equal_to : binary_function<T, T, bool> { bool operator()(const T& x, const T& y) const; }; template <class T> // <class T=void> in C++14 struct not_equal_to : binary_function<T, T, bool> { bool operator()(const T& x, const T& y) const; }; template <class T> // <class T=void> in C++14 struct greater : binary_function<T, T, bool> { bool operator()(const T& x, const T& y) const; }; template <class T> // <class T=void> in C++14 struct less : binary_function<T, T, bool> { bool operator()(const T& x, const T& y) const; }; template <class T> // <class T=void> in C++14 struct greater_equal : binary_function<T, T, bool> { bool operator()(const T& x, const T& y) const; }; template <class T> // <class T=void> in C++14 struct less_equal : binary_function<T, T, bool> { bool operator()(const T& x, const T& y) const; }; template <class T> // <class T=void> in C++14 struct logical_and : binary_function<T, T, bool> { bool operator()(const T& x, const T& y) const; }; template <class T> // <class T=void> in C++14 struct logical_or : binary_function<T, T, bool> { bool operator()(const T& x, const T& y) const; }; template <class T> // <class T=void> in C++14 struct logical_not : unary_function<T, bool> { bool operator()(const T& x) const; }; template <class T> // <class T=void> in C++14 struct bit_and : unary_function<T, bool> { bool operator()(const T& x, const T& y) const; }; template <class T> // <class T=void> in C++14 struct bit_or : unary_function<T, bool> { bool operator()(const T& x, const T& y) const; }; template <class T> // <class T=void> in C++14 struct bit_xor : unary_function<T, bool> { bool operator()(const T& x, const T& y) const; }; template <class T=void> // C++14 struct bit_xor : unary_function<T, bool> { bool operator()(const T& x) const; }; template <class Predicate> class unary_negate : public unary_function<typename Predicate::argument_type, bool> { public: explicit unary_negate(const Predicate& pred); bool operator()(const typename Predicate::argument_type& x) const; }; template <class Predicate> unary_negate<Predicate> not1(const Predicate& pred); template <class Predicate> class binary_negate : public binary_function<typename Predicate::first_argument_type, typename Predicate::second_argument_type, bool> { public: explicit binary_negate(const Predicate& pred); bool operator()(const typename Predicate::first_argument_type& x, const typename Predicate::second_argument_type& y) const; }; template <class Predicate> binary_negate<Predicate> not2(const Predicate& pred); template<class T> struct is_bind_expression; template<class T> struct is_placeholder; template<class Fn, class... BoundArgs> unspecified bind(Fn&&, BoundArgs&&...); template<class R, class Fn, class... BoundArgs> unspecified bind(Fn&&, BoundArgs&&...); namespace placeholders { // M is the implementation-defined number of placeholders extern unspecified _1; extern unspecified _2; . . . extern unspecified _Mp; } template <class Operation> class binder1st : public unary_function<typename Operation::second_argument_type, typename Operation::result_type> { protected: Operation op; typename Operation::first_argument_type value; public: binder1st(const Operation& x, const typename Operation::first_argument_type y); typename Operation::result_type operator()( typename Operation::second_argument_type& x) const; typename Operation::result_type operator()(const typename Operation::second_argument_type& x) const; }; template <class Operation, class T> binder1st<Operation> bind1st(const Operation& op, const T& x); template <class Operation> class binder2nd : public unary_function<typename Operation::first_argument_type, typename Operation::result_type> { protected: Operation op; typename Operation::second_argument_type value; public: binder2nd(const Operation& x, const typename Operation::second_argument_type y); typename Operation::result_type operator()( typename Operation::first_argument_type& x) const; typename Operation::result_type operator()(const typename Operation::first_argument_type& x) const; }; template <class Operation, class T> binder2nd<Operation> bind2nd(const Operation& op, const T& x); template <class Arg, class Result> class pointer_to_unary_function : public unary_function<Arg, Result> { public: explicit pointer_to_unary_function(Result (*f)(Arg)); Result operator()(Arg x) const; }; template <class Arg, class Result> pointer_to_unary_function<Arg,Result> ptr_fun(Result (*f)(Arg)); template <class Arg1, class Arg2, class Result> class pointer_to_binary_function : public binary_function<Arg1, Arg2, Result> { public: explicit pointer_to_binary_function(Result (*f)(Arg1, Arg2)); Result operator()(Arg1 x, Arg2 y) const; }; template <class Arg1, class Arg2, class Result> pointer_to_binary_function<Arg1,Arg2,Result> ptr_fun(Result (*f)(Arg1,Arg2)); template<class S, class T> class mem_fun_t : public unary_function<T*, S> { public: explicit mem_fun_t(S (T::*p)()); S operator()(T* p) const; }; template<class S, class T, class A> class mem_fun1_t : public binary_function<T*, A, S> { public: explicit mem_fun1_t(S (T::*p)(A)); S operator()(T* p, A x) const; }; template<class S, class T> mem_fun_t<S,T> mem_fun(S (T::*f)()); template<class S, class T, class A> mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A)); template<class S, class T> class mem_fun_ref_t : public unary_function<T, S> { public: explicit mem_fun_ref_t(S (T::*p)()); S operator()(T& p) const; }; template<class S, class T, class A> class mem_fun1_ref_t : public binary_function<T, A, S> { public: explicit mem_fun1_ref_t(S (T::*p)(A)); S operator()(T& p, A x) const; }; template<class S, class T> mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)()); template<class S, class T, class A> mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A)); template <class S, class T> class const_mem_fun_t : public unary_function<const T*, S> { public: explicit const_mem_fun_t(S (T::*p)() const); S operator()(const T* p) const; }; template <class S, class T, class A> class const_mem_fun1_t : public binary_function<const T*, A, S> { public: explicit const_mem_fun1_t(S (T::*p)(A) const); S operator()(const T* p, A x) const; }; template <class S, class T> const_mem_fun_t<S,T> mem_fun(S (T::*f)() const); template <class S, class T, class A> const_mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A) const); template <class S, class T> class const_mem_fun_ref_t : public unary_function<T, S> { public: explicit const_mem_fun_ref_t(S (T::*p)() const); S operator()(const T& p) const; }; template <class S, class T, class A> class const_mem_fun1_ref_t : public binary_function<T, A, S> { public: explicit const_mem_fun1_ref_t(S (T::*p)(A) const); S operator()(const T& p, A x) const; }; template <class S, class T> const_mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)() const); template <class S, class T, class A> const_mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A) const); template<class R, class T> unspecified mem_fn(R T::*); class bad_function_call : public exception { }; template<class> class function; // undefined template<class R, class... ArgTypes> class function<R(ArgTypes...)> : public unary_function<T1, R> // iff sizeof...(ArgTypes) == 1 and // ArgTypes contains T1 : public binary_function<T1, T2, R> // iff sizeof...(ArgTypes) == 2 and // ArgTypes contains T1 and T2 { public: typedef R result_type; // construct/copy/destroy: function() noexcept; function(nullptr_t) noexcept; function(const function&); function(function&&) noexcept; template<class F> function(F); template<Allocator Alloc> function(allocator_arg_t, const Alloc&) noexcept; template<Allocator Alloc> function(allocator_arg_t, const Alloc&, nullptr_t) noexcept; template<Allocator Alloc> function(allocator_arg_t, const Alloc&, const function&); template<Allocator Alloc> function(allocator_arg_t, const Alloc&, function&&); template<class F, Allocator Alloc> function(allocator_arg_t, const Alloc&, F); function& operator=(const function&); function& operator=(function&&) noexcept; function& operator=(nullptr_t) noexcept; template<class F> function& operator=(F&&); template<class F> function& operator=(reference_wrapper<F>) noexcept; ~function(); // function modifiers: void swap(function&) noexcept; template<class F, class Alloc> void assign(F&&, const Alloc&); // function capacity: explicit operator bool() const noexcept; // function invocation: R operator()(ArgTypes...) const; // function target access: const std::type_info& target_type() const noexcept; template <typename T> T* target() noexcept; template <typename T> const T* target() const noexcept; }; // Null pointer comparisons: template <class R, class ... ArgTypes> bool operator==(const function<R(ArgTypes...)>&, nullptr_t) noexcept; template <class R, class ... ArgTypes> bool operator==(nullptr_t, const function<R(ArgTypes...)>&) noexcept; template <class R, class ... ArgTypes> bool operator!=(const function<R(ArgTypes...)>&, nullptr_t) noexcept; template <class R, class ... ArgTypes> bool operator!=(nullptr_t, const function<R(ArgTypes...)>&) noexcept; // specialized algorithms: template <class R, class ... ArgTypes> void swap(function<R(ArgTypes...)>&, function<R(ArgTypes...)>&) noexcept; template <class T> struct hash; template <> struct hash<bool>; template <> struct hash<char>; template <> struct hash<signed char>; template <> struct hash<unsigned char>; template <> struct hash<char16_t>; template <> struct hash<char32_t>; template <> struct hash<wchar_t>; template <> struct hash<short>; template <> struct hash<unsigned short>; template <> struct hash<int>; template <> struct hash<unsigned int>; template <> struct hash<long>; template <> struct hash<long long>; template <> struct hash<unsigned long>; template <> struct hash<unsigned long long>; template <> struct hash<float>; template <> struct hash<double>; template <> struct hash<long double>; template<class T> struct hash<T*>; } // std POLICY: For non-variadic implementations, the number of arguments is limited to 3. It is hoped that the need for non-variadic implementations will be minimal. */ #include <__config> #include <type_traits> #include <typeinfo> #include <exception> #include <memory> #include <tuple> #include <__functional_base> #if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER) #pragma GCC system_header #endif _LIBCPP_BEGIN_NAMESPACE_STD #if _LIBCPP_STD_VER > 11 template <class _Tp = void> #else template <class _Tp> #endif struct _LIBCPP_TYPE_VIS_ONLY plus : binary_function<_Tp, _Tp, _Tp> { _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x, const _Tp& __y) const {return __x + __y;} }; #if _LIBCPP_STD_VER > 11 template <> struct _LIBCPP_TYPE_VIS_ONLY plus<void> { template <class _T1, class _T2> _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY auto operator()(_T1&& __t, _T2&& __u) const _NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) + _VSTD::forward<_T2>(__u))) -> decltype (_VSTD::forward<_T1>(__t) + _VSTD::forward<_T2>(__u)) { return _VSTD::forward<_T1>(__t) + _VSTD::forward<_T2>(__u); } typedef void is_transparent; }; #endif #if _LIBCPP_STD_VER > 11 template <class _Tp = void> #else template <class _Tp> #endif struct _LIBCPP_TYPE_VIS_ONLY minus : binary_function<_Tp, _Tp, _Tp> { _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x, const _Tp& __y) const {return __x - __y;} }; #if _LIBCPP_STD_VER > 11 template <> struct _LIBCPP_TYPE_VIS_ONLY minus<void> { template <class _T1, class _T2> _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY auto operator()(_T1&& __t, _T2&& __u) const _NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) - _VSTD::forward<_T2>(__u))) -> decltype (_VSTD::forward<_T1>(__t) - _VSTD::forward<_T2>(__u)) { return _VSTD::forward<_T1>(__t) - _VSTD::forward<_T2>(__u); } typedef void is_transparent; }; #endif #if _LIBCPP_STD_VER > 11 template <class _Tp = void> #else template <class _Tp> #endif struct _LIBCPP_TYPE_VIS_ONLY multiplies : binary_function<_Tp, _Tp, _Tp> { _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x, const _Tp& __y) const {return __x * __y;} }; #if _LIBCPP_STD_VER > 11 template <> struct _LIBCPP_TYPE_VIS_ONLY multiplies<void> { template <class _T1, class _T2> _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY auto operator()(_T1&& __t, _T2&& __u) const _NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) * _VSTD::forward<_T2>(__u))) -> decltype (_VSTD::forward<_T1>(__t) * _VSTD::forward<_T2>(__u)) { return _VSTD::forward<_T1>(__t) * _VSTD::forward<_T2>(__u); } typedef void is_transparent; }; #endif #if _LIBCPP_STD_VER > 11 template <class _Tp = void> #else template <class _Tp> #endif struct _LIBCPP_TYPE_VIS_ONLY divides : binary_function<_Tp, _Tp, _Tp> { _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x, const _Tp& __y) const {return __x / __y;} }; #if _LIBCPP_STD_VER > 11 template <> struct _LIBCPP_TYPE_VIS_ONLY divides<void> { template <class _T1, class _T2> _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY auto operator()(_T1&& __t, _T2&& __u) const _NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) / _VSTD::forward<_T2>(__u))) -> decltype (_VSTD::forward<_T1>(__t) / _VSTD::forward<_T2>(__u)) { return _VSTD::forward<_T1>(__t) / _VSTD::forward<_T2>(__u); } typedef void is_transparent; }; #endif #if _LIBCPP_STD_VER > 11 template <class _Tp = void> #else template <class _Tp> #endif struct _LIBCPP_TYPE_VIS_ONLY modulus : binary_function<_Tp, _Tp, _Tp> { _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x, const _Tp& __y) const {return __x % __y;} }; #if _LIBCPP_STD_VER > 11 template <> struct _LIBCPP_TYPE_VIS_ONLY modulus<void> { template <class _T1, class _T2> _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY auto operator()(_T1&& __t, _T2&& __u) const _NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) % _VSTD::forward<_T2>(__u))) -> decltype (_VSTD::forward<_T1>(__t) % _VSTD::forward<_T2>(__u)) { return _VSTD::forward<_T1>(__t) % _VSTD::forward<_T2>(__u); } typedef void is_transparent; }; #endif #if _LIBCPP_STD_VER > 11 template <class _Tp = void> #else template <class _Tp> #endif struct _LIBCPP_TYPE_VIS_ONLY negate : unary_function<_Tp, _Tp> { _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x) const {return -__x;} }; #if _LIBCPP_STD_VER > 11 template <> struct _LIBCPP_TYPE_VIS_ONLY negate<void> { template <class _Tp> _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY auto operator()(_Tp&& __x) const _NOEXCEPT_(noexcept(- _VSTD::forward<_Tp>(__x))) -> decltype (- _VSTD::forward<_Tp>(__x)) { return - _VSTD::forward<_Tp>(__x); } typedef void is_transparent; }; #endif #if _LIBCPP_STD_VER > 11 template <class _Tp = void> #else template <class _Tp> #endif struct _LIBCPP_TYPE_VIS_ONLY equal_to : binary_function<_Tp, _Tp, bool> { _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x, const _Tp& __y) const {return __x == __y;} }; #if _LIBCPP_STD_VER > 11 template <> struct _LIBCPP_TYPE_VIS_ONLY equal_to<void> { template <class _T1, class _T2> _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY auto operator()(_T1&& __t, _T2&& __u) const _NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) == _VSTD::forward<_T2>(__u))) -> decltype (_VSTD::forward<_T1>(__t) == _VSTD::forward<_T2>(__u)) { return _VSTD::forward<_T1>(__t) == _VSTD::forward<_T2>(__u); } typedef void is_transparent; }; #endif #if _LIBCPP_STD_VER > 11 template <class _Tp = void> #else template <class _Tp> #endif struct _LIBCPP_TYPE_VIS_ONLY not_equal_to : binary_function<_Tp, _Tp, bool> { _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x, const _Tp& __y) const {return __x != __y;} }; #if _LIBCPP_STD_VER > 11 template <> struct _LIBCPP_TYPE_VIS_ONLY not_equal_to<void> { template <class _T1, class _T2> _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY auto operator()(_T1&& __t, _T2&& __u) const _NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) != _VSTD::forward<_T2>(__u))) -> decltype (_VSTD::forward<_T1>(__t) != _VSTD::forward<_T2>(__u)) { return _VSTD::forward<_T1>(__t) != _VSTD::forward<_T2>(__u); } typedef void is_transparent; }; #endif #if _LIBCPP_STD_VER > 11 template <class _Tp = void> #else template <class _Tp> #endif struct _LIBCPP_TYPE_VIS_ONLY greater : binary_function<_Tp, _Tp, bool> { _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x, const _Tp& __y) const {return __x > __y;} }; #if _LIBCPP_STD_VER > 11 template <> struct _LIBCPP_TYPE_VIS_ONLY greater<void> { template <class _T1, class _T2> _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY auto operator()(_T1&& __t, _T2&& __u) const _NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) > _VSTD::forward<_T2>(__u))) -> decltype (_VSTD::forward<_T1>(__t) > _VSTD::forward<_T2>(__u)) { return _VSTD::forward<_T1>(__t) > _VSTD::forward<_T2>(__u); } typedef void is_transparent; }; #endif // less in <__functional_base> #if _LIBCPP_STD_VER > 11 template <class _Tp = void> #else template <class _Tp> #endif struct _LIBCPP_TYPE_VIS_ONLY greater_equal : binary_function<_Tp, _Tp, bool> { _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x, const _Tp& __y) const {return __x >= __y;} }; #if _LIBCPP_STD_VER > 11 template <> struct _LIBCPP_TYPE_VIS_ONLY greater_equal<void> { template <class _T1, class _T2> _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY auto operator()(_T1&& __t, _T2&& __u) const _NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) >= _VSTD::forward<_T2>(__u))) -> decltype (_VSTD::forward<_T1>(__t) >= _VSTD::forward<_T2>(__u)) { return _VSTD::forward<_T1>(__t) >= _VSTD::forward<_T2>(__u); } typedef void is_transparent; }; #endif #if _LIBCPP_STD_VER > 11 template <class _Tp = void> #else template <class _Tp> #endif struct _LIBCPP_TYPE_VIS_ONLY less_equal : binary_function<_Tp, _Tp, bool> { _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x, const _Tp& __y) const {return __x <= __y;} }; #if _LIBCPP_STD_VER > 11 template <> struct _LIBCPP_TYPE_VIS_ONLY less_equal<void> { template <class _T1, class _T2> _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY auto operator()(_T1&& __t, _T2&& __u) const _NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) <= _VSTD::forward<_T2>(__u))) -> decltype (_VSTD::forward<_T1>(__t) <= _VSTD::forward<_T2>(__u)) { return _VSTD::forward<_T1>(__t) <= _VSTD::forward<_T2>(__u); } typedef void is_transparent; }; #endif #if _LIBCPP_STD_VER > 11 template <class _Tp = void> #else template <class _Tp> #endif struct _LIBCPP_TYPE_VIS_ONLY logical_and : binary_function<_Tp, _Tp, bool> { _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x, const _Tp& __y) const {return __x && __y;} }; #if _LIBCPP_STD_VER > 11 template <> struct _LIBCPP_TYPE_VIS_ONLY logical_and<void> { template <class _T1, class _T2> _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY auto operator()(_T1&& __t, _T2&& __u) const _NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) && _VSTD::forward<_T2>(__u))) -> decltype (_VSTD::forward<_T1>(__t) && _VSTD::forward<_T2>(__u)) { return _VSTD::forward<_T1>(__t) && _VSTD::forward<_T2>(__u); } typedef void is_transparent; }; #endif #if _LIBCPP_STD_VER > 11 template <class _Tp = void> #else template <class _Tp> #endif struct _LIBCPP_TYPE_VIS_ONLY logical_or : binary_function<_Tp, _Tp, bool> { _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x, const _Tp& __y) const {return __x || __y;} }; #if _LIBCPP_STD_VER > 11 template <> struct _LIBCPP_TYPE_VIS_ONLY logical_or<void> { template <class _T1, class _T2> _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY auto operator()(_T1&& __t, _T2&& __u) const _NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) || _VSTD::forward<_T2>(__u))) -> decltype (_VSTD::forward<_T1>(__t) || _VSTD::forward<_T2>(__u)) { return _VSTD::forward<_T1>(__t) || _VSTD::forward<_T2>(__u); } typedef void is_transparent; }; #endif #if _LIBCPP_STD_VER > 11 template <class _Tp = void> #else template <class _Tp> #endif struct _LIBCPP_TYPE_VIS_ONLY logical_not : unary_function<_Tp, bool> { _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x) const {return !__x;} }; #if _LIBCPP_STD_VER > 11 template <> struct _LIBCPP_TYPE_VIS_ONLY logical_not<void> { template <class _Tp> _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY auto operator()(_Tp&& __x) const _NOEXCEPT_(noexcept(!_VSTD::forward<_Tp>(__x))) -> decltype (!_VSTD::forward<_Tp>(__x)) { return !_VSTD::forward<_Tp>(__x); } typedef void is_transparent; }; #endif #if _LIBCPP_STD_VER > 11 template <class _Tp = void> #else template <class _Tp> #endif struct _LIBCPP_TYPE_VIS_ONLY bit_and : binary_function<_Tp, _Tp, _Tp> { _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x, const _Tp& __y) const {return __x & __y;} }; #if _LIBCPP_STD_VER > 11 template <> struct _LIBCPP_TYPE_VIS_ONLY bit_and<void> { template <class _T1, class _T2> _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY auto operator()(_T1&& __t, _T2&& __u) const _NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) & _VSTD::forward<_T2>(__u))) -> decltype (_VSTD::forward<_T1>(__t) & _VSTD::forward<_T2>(__u)) { return _VSTD::forward<_T1>(__t) & _VSTD::forward<_T2>(__u); } typedef void is_transparent; }; #endif #if _LIBCPP_STD_VER > 11 template <class _Tp = void> #else template <class _Tp> #endif struct _LIBCPP_TYPE_VIS_ONLY bit_or : binary_function<_Tp, _Tp, _Tp> { _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x, const _Tp& __y) const {return __x | __y;} }; #if _LIBCPP_STD_VER > 11 template <> struct _LIBCPP_TYPE_VIS_ONLY bit_or<void> { template <class _T1, class _T2> _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY auto operator()(_T1&& __t, _T2&& __u) const _NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) | _VSTD::forward<_T2>(__u))) -> decltype (_VSTD::forward<_T1>(__t) | _VSTD::forward<_T2>(__u)) { return _VSTD::forward<_T1>(__t) | _VSTD::forward<_T2>(__u); } typedef void is_transparent; }; #endif #if _LIBCPP_STD_VER > 11 template <class _Tp = void> #else template <class _Tp> #endif struct _LIBCPP_TYPE_VIS_ONLY bit_xor : binary_function<_Tp, _Tp, _Tp> { _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x, const _Tp& __y) const {return __x ^ __y;} }; #if _LIBCPP_STD_VER > 11 template <> struct _LIBCPP_TYPE_VIS_ONLY bit_xor<void> { template <class _T1, class _T2> _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY auto operator()(_T1&& __t, _T2&& __u) const _NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) ^ _VSTD::forward<_T2>(__u))) -> decltype (_VSTD::forward<_T1>(__t) ^ _VSTD::forward<_T2>(__u)) { return _VSTD::forward<_T1>(__t) ^ _VSTD::forward<_T2>(__u); } typedef void is_transparent; }; #endif #if _LIBCPP_STD_VER > 11 template <class _Tp = void> struct _LIBCPP_TYPE_VIS_ONLY bit_not : unary_function<_Tp, _Tp> { _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x) const {return ~__x;} }; template <> struct _LIBCPP_TYPE_VIS_ONLY bit_not<void> { template <class _Tp> _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY auto operator()(_Tp&& __x) const _NOEXCEPT_(noexcept(~_VSTD::forward<_Tp>(__x))) -> decltype (~_VSTD::forward<_Tp>(__x)) { return ~_VSTD::forward<_Tp>(__x); } typedef void is_transparent; }; #endif template <class _Predicate> class _LIBCPP_TYPE_VIS_ONLY unary_negate : public unary_function<typename _Predicate::argument_type, bool> { _Predicate __pred_; public: _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY explicit unary_negate(const _Predicate& __pred) : __pred_(__pred) {} _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY bool operator()(const typename _Predicate::argument_type& __x) const {return !__pred_(__x);} }; template <class _Predicate> inline _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY unary_negate<_Predicate> not1(const _Predicate& __pred) {return unary_negate<_Predicate>(__pred);} template <class _Predicate> class _LIBCPP_TYPE_VIS_ONLY binary_negate : public binary_function<typename _Predicate::first_argument_type, typename _Predicate::second_argument_type, bool> { _Predicate __pred_; public: _LIBCPP_INLINE_VISIBILITY explicit _LIBCPP_CONSTEXPR_AFTER_CXX11 binary_negate(const _Predicate& __pred) : __pred_(__pred) {} _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY bool operator()(const typename _Predicate::first_argument_type& __x, const typename _Predicate::second_argument_type& __y) const {return !__pred_(__x, __y);} }; template <class _Predicate> inline _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY binary_negate<_Predicate> not2(const _Predicate& __pred) {return binary_negate<_Predicate>(__pred);} template <class __Operation> class _LIBCPP_TYPE_VIS_ONLY binder1st : public unary_function<typename __Operation::second_argument_type, typename __Operation::result_type> { protected: __Operation op; typename __Operation::first_argument_type value; public: _LIBCPP_INLINE_VISIBILITY binder1st(const __Operation& __x, const typename __Operation::first_argument_type __y) : op(__x), value(__y) {} _LIBCPP_INLINE_VISIBILITY typename __Operation::result_type operator() (typename __Operation::second_argument_type& __x) const {return op(value, __x);} _LIBCPP_INLINE_VISIBILITY typename __Operation::result_type operator() (const typename __Operation::second_argument_type& __x) const {return op(value, __x);} }; template <class __Operation, class _Tp> inline _LIBCPP_INLINE_VISIBILITY binder1st<__Operation> bind1st(const __Operation& __op, const _Tp& __x) {return binder1st<__Operation>(__op, __x);} template <class __Operation> class _LIBCPP_TYPE_VIS_ONLY binder2nd : public unary_function<typename __Operation::first_argument_type, typename __Operation::result_type> { protected: __Operation op; typename __Operation::second_argument_type value; public: _LIBCPP_INLINE_VISIBILITY binder2nd(const __Operation& __x, const typename __Operation::second_argument_type __y) : op(__x), value(__y) {} _LIBCPP_INLINE_VISIBILITY typename __Operation::result_type operator() ( typename __Operation::first_argument_type& __x) const {return op(__x, value);} _LIBCPP_INLINE_VISIBILITY typename __Operation::result_type operator() (const typename __Operation::first_argument_type& __x) const {return op(__x, value);} }; template <class __Operation, class _Tp> inline _LIBCPP_INLINE_VISIBILITY binder2nd<__Operation> bind2nd(const __Operation& __op, const _Tp& __x) {return binder2nd<__Operation>(__op, __x);} template <class _Arg, class _Result> class _LIBCPP_TYPE_VIS_ONLY pointer_to_unary_function : public unary_function<_Arg, _Result> { _Result (*__f_)(_Arg); public: _LIBCPP_INLINE_VISIBILITY explicit pointer_to_unary_function(_Result (*__f)(_Arg)) : __f_(__f) {} _LIBCPP_INLINE_VISIBILITY _Result operator()(_Arg __x) const {return __f_(__x);} }; template <class _Arg, class _Result> inline _LIBCPP_INLINE_VISIBILITY pointer_to_unary_function<_Arg,_Result> ptr_fun(_Result (*__f)(_Arg)) {return pointer_to_unary_function<_Arg,_Result>(__f);} template <class _Arg1, class _Arg2, class _Result> class _LIBCPP_TYPE_VIS_ONLY pointer_to_binary_function : public binary_function<_Arg1, _Arg2, _Result> { _Result (*__f_)(_Arg1, _Arg2); public: _LIBCPP_INLINE_VISIBILITY explicit pointer_to_binary_function(_Result (*__f)(_Arg1, _Arg2)) : __f_(__f) {} _LIBCPP_INLINE_VISIBILITY _Result operator()(_Arg1 __x, _Arg2 __y) const {return __f_(__x, __y);} }; template <class _Arg1, class _Arg2, class _Result> inline _LIBCPP_INLINE_VISIBILITY pointer_to_binary_function<_Arg1,_Arg2,_Result> ptr_fun(_Result (*__f)(_Arg1,_Arg2)) {return pointer_to_binary_function<_Arg1,_Arg2,_Result>(__f);} template<class _Sp, class _Tp> class _LIBCPP_TYPE_VIS_ONLY mem_fun_t : public unary_function<_Tp*, _Sp> { _Sp (_Tp::*__p_)(); public: _LIBCPP_INLINE_VISIBILITY explicit mem_fun_t(_Sp (_Tp::*__p)()) : __p_(__p) {} _LIBCPP_INLINE_VISIBILITY _Sp operator()(_Tp* __p) const {return (__p->*__p_)();} }; template<class _Sp, class _Tp, class _Ap> class _LIBCPP_TYPE_VIS_ONLY mem_fun1_t : public binary_function<_Tp*, _Ap, _Sp> { _Sp (_Tp::*__p_)(_Ap); public: _LIBCPP_INLINE_VISIBILITY explicit mem_fun1_t(_Sp (_Tp::*__p)(_Ap)) : __p_(__p) {} _LIBCPP_INLINE_VISIBILITY _Sp operator()(_Tp* __p, _Ap __x) const {return (__p->*__p_)(__x);} }; template<class _Sp, class _Tp> inline _LIBCPP_INLINE_VISIBILITY mem_fun_t<_Sp,_Tp> mem_fun(_Sp (_Tp::*__f)()) {return mem_fun_t<_Sp,_Tp>(__f);} template<class _Sp, class _Tp, class _Ap> inline _LIBCPP_INLINE_VISIBILITY mem_fun1_t<_Sp,_Tp,_Ap> mem_fun(_Sp (_Tp::*__f)(_Ap)) {return mem_fun1_t<_Sp,_Tp,_Ap>(__f);} template<class _Sp, class _Tp> class _LIBCPP_TYPE_VIS_ONLY mem_fun_ref_t : public unary_function<_Tp, _Sp> { _Sp (_Tp::*__p_)(); public: _LIBCPP_INLINE_VISIBILITY explicit mem_fun_ref_t(_Sp (_Tp::*__p)()) : __p_(__p) {} _LIBCPP_INLINE_VISIBILITY _Sp operator()(_Tp& __p) const {return (__p.*__p_)();} }; template<class _Sp, class _Tp, class _Ap> class _LIBCPP_TYPE_VIS_ONLY mem_fun1_ref_t : public binary_function<_Tp, _Ap, _Sp> { _Sp (_Tp::*__p_)(_Ap); public: _LIBCPP_INLINE_VISIBILITY explicit mem_fun1_ref_t(_Sp (_Tp::*__p)(_Ap)) : __p_(__p) {} _LIBCPP_INLINE_VISIBILITY _Sp operator()(_Tp& __p, _Ap __x) const {return (__p.*__p_)(__x);} }; template<class _Sp, class _Tp> inline _LIBCPP_INLINE_VISIBILITY mem_fun_ref_t<_Sp,_Tp> mem_fun_ref(_Sp (_Tp::*__f)()) {return mem_fun_ref_t<_Sp,_Tp>(__f);} template<class _Sp, class _Tp, class _Ap> inline _LIBCPP_INLINE_VISIBILITY mem_fun1_ref_t<_Sp,_Tp,_Ap> mem_fun_ref(_Sp (_Tp::*__f)(_Ap)) {return mem_fun1_ref_t<_Sp,_Tp,_Ap>(__f);} template <class _Sp, class _Tp> class _LIBCPP_TYPE_VIS_ONLY const_mem_fun_t : public unary_function<const _Tp*, _Sp> { _Sp (_Tp::*__p_)() const; public: _LIBCPP_INLINE_VISIBILITY explicit const_mem_fun_t(_Sp (_Tp::*__p)() const) : __p_(__p) {} _LIBCPP_INLINE_VISIBILITY _Sp operator()(const _Tp* __p) const {return (__p->*__p_)();} }; template <class _Sp, class _Tp, class _Ap> class _LIBCPP_TYPE_VIS_ONLY const_mem_fun1_t : public binary_function<const _Tp*, _Ap, _Sp> { _Sp (_Tp::*__p_)(_Ap) const; public: _LIBCPP_INLINE_VISIBILITY explicit const_mem_fun1_t(_Sp (_Tp::*__p)(_Ap) const) : __p_(__p) {} _LIBCPP_INLINE_VISIBILITY _Sp operator()(const _Tp* __p, _Ap __x) const {return (__p->*__p_)(__x);} }; template <class _Sp, class _Tp> inline _LIBCPP_INLINE_VISIBILITY const_mem_fun_t<_Sp,_Tp> mem_fun(_Sp (_Tp::*__f)() const) {return const_mem_fun_t<_Sp,_Tp>(__f);} template <class _Sp, class _Tp, class _Ap> inline _LIBCPP_INLINE_VISIBILITY const_mem_fun1_t<_Sp,_Tp,_Ap> mem_fun(_Sp (_Tp::*__f)(_Ap) const) {return const_mem_fun1_t<_Sp,_Tp,_Ap>(__f);} template <class _Sp, class _Tp> class _LIBCPP_TYPE_VIS_ONLY const_mem_fun_ref_t : public unary_function<_Tp, _Sp> { _Sp (_Tp::*__p_)() const; public: _LIBCPP_INLINE_VISIBILITY explicit const_mem_fun_ref_t(_Sp (_Tp::*__p)() const) : __p_(__p) {} _LIBCPP_INLINE_VISIBILITY _Sp operator()(const _Tp& __p) const {return (__p.*__p_)();} }; template <class _Sp, class _Tp, class _Ap> class _LIBCPP_TYPE_VIS_ONLY const_mem_fun1_ref_t : public binary_function<_Tp, _Ap, _Sp> { _Sp (_Tp::*__p_)(_Ap) const; public: _LIBCPP_INLINE_VISIBILITY explicit const_mem_fun1_ref_t(_Sp (_Tp::*__p)(_Ap) const) : __p_(__p) {} _LIBCPP_INLINE_VISIBILITY _Sp operator()(const _Tp& __p, _Ap __x) const {return (__p.*__p_)(__x);} }; template <class _Sp, class _Tp> inline _LIBCPP_INLINE_VISIBILITY const_mem_fun_ref_t<_Sp,_Tp> mem_fun_ref(_Sp (_Tp::*__f)() const) {return const_mem_fun_ref_t<_Sp,_Tp>(__f);} template <class _Sp, class _Tp, class _Ap> inline _LIBCPP_INLINE_VISIBILITY const_mem_fun1_ref_t<_Sp,_Tp,_Ap> mem_fun_ref(_Sp (_Tp::*__f)(_Ap) const) {return const_mem_fun1_ref_t<_Sp,_Tp,_Ap>(__f);} //////////////////////////////////////////////////////////////////////////////// // MEMFUN //============================================================================== template <class _Tp> class __mem_fn : public __weak_result_type<_Tp> { public: // types typedef _Tp type; private: type __f_; public: _LIBCPP_INLINE_VISIBILITY __mem_fn(type __f) : __f_(__f) {} #ifndef _LIBCPP_HAS_NO_VARIADICS // invoke template <class... _ArgTypes> _LIBCPP_INLINE_VISIBILITY typename __invoke_return<type, _ArgTypes...>::type operator() (_ArgTypes&&... __args) const { return __invoke(__f_, _VSTD::forward<_ArgTypes>(__args)...); } #else template <class _A0> typename __invoke_return0<type, _A0>::type operator() (_A0& __a0) const { return __invoke(__f_, __a0); } template <class _A0, class _A1> typename __invoke_return1<type, _A0, _A1>::type operator() (_A0& __a0, _A1& __a1) const { return __invoke(__f_, __a0, __a1); } template <class _A0, class _A1, class _A2> typename __invoke_return2<type, _A0, _A1, _A2>::type operator() (_A0& __a0, _A1& __a1, _A2& __a2) const { return __invoke(__f_, __a0, __a1, __a2); } #endif }; template<class _Rp, class _Tp> inline _LIBCPP_INLINE_VISIBILITY __mem_fn<_Rp _Tp::*> mem_fn(_Rp _Tp::* __pm) { return __mem_fn<_Rp _Tp::*>(__pm); } //////////////////////////////////////////////////////////////////////////////// // FUNCTION //============================================================================== // bad_function_call class _LIBCPP_EXCEPTION_ABI bad_function_call : public exception { }; template<class _Fp> class _LIBCPP_TYPE_VIS_ONLY function; // undefined namespace __function { template<class _Rp> struct __maybe_derive_from_unary_function { }; template<class _Rp, class _A1> struct __maybe_derive_from_unary_function<_Rp(_A1)> : public unary_function<_A1, _Rp> { }; template<class _Rp> struct __maybe_derive_from_binary_function { }; template<class _Rp, class _A1, class _A2> struct __maybe_derive_from_binary_function<_Rp(_A1, _A2)> : public binary_function<_A1, _A2, _Rp> { }; } // namespace __function #ifndef _LIBCPP_HAS_NO_VARIADICS namespace __function { template<class _Fp> class __base; template<class _Rp, class ..._ArgTypes> class __base<_Rp(_ArgTypes...)> { __base(const __base&); __base& operator=(const __base&); public: _LIBCPP_INLINE_VISIBILITY __base() {} _LIBCPP_INLINE_VISIBILITY virtual ~__base() {} virtual __base* __clone() const = 0; virtual void __clone(__base*) const = 0; virtual void destroy() _NOEXCEPT = 0; virtual void destroy_deallocate() _NOEXCEPT = 0; virtual _Rp operator()(_ArgTypes&& ...) = 0; #ifndef _LIBCPP_NO_RTTI virtual const void* target(const type_info&) const _NOEXCEPT = 0; virtual const std::type_info& target_type() const _NOEXCEPT = 0; #endif // _LIBCPP_NO_RTTI }; template<class _FD, class _Alloc, class _FB> class __func; template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes> class __func<_Fp, _Alloc, _Rp(_ArgTypes...)> : public __base<_Rp(_ArgTypes...)> { __compressed_pair<_Fp, _Alloc> __f_; public: _LIBCPP_INLINE_VISIBILITY explicit __func(_Fp&& __f) : __f_(piecewise_construct, _VSTD::forward_as_tuple(_VSTD::move(__f)), _VSTD::forward_as_tuple()) {} _LIBCPP_INLINE_VISIBILITY explicit __func(const _Fp& __f, const _Alloc& __a) : __f_(piecewise_construct, _VSTD::forward_as_tuple(__f), _VSTD::forward_as_tuple(__a)) {} _LIBCPP_INLINE_VISIBILITY explicit __func(const _Fp& __f, _Alloc&& __a) : __f_(piecewise_construct, _VSTD::forward_as_tuple(__f), _VSTD::forward_as_tuple(_VSTD::move(__a))) {} _LIBCPP_INLINE_VISIBILITY explicit __func(_Fp&& __f, _Alloc&& __a) : __f_(piecewise_construct, _VSTD::forward_as_tuple(_VSTD::move(__f)), _VSTD::forward_as_tuple(_VSTD::move(__a))) {} virtual __base<_Rp(_ArgTypes...)>* __clone() const; virtual void __clone(__base<_Rp(_ArgTypes...)>*) const; virtual void destroy() _NOEXCEPT; virtual void destroy_deallocate() _NOEXCEPT; virtual _Rp operator()(_ArgTypes&& ... __arg); #ifndef _LIBCPP_NO_RTTI virtual const void* target(const type_info&) const _NOEXCEPT; virtual const std::type_info& target_type() const _NOEXCEPT; #endif // _LIBCPP_NO_RTTI }; template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes> __base<_Rp(_ArgTypes...)>* __func<_Fp, _Alloc, _Rp(_ArgTypes...)>::__clone() const { typedef allocator_traits<_Alloc> __alloc_traits; typedef typename __rebind_alloc_helper<__alloc_traits, __func>::type _Ap; _Ap __a(__f_.second()); typedef __allocator_destructor<_Ap> _Dp; unique_ptr<__func, _Dp> __hold(__a.allocate(1), _Dp(__a, 1)); ::new (__hold.get()) __func(__f_.first(), _Alloc(__a)); return __hold.release(); } template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes> void __func<_Fp, _Alloc, _Rp(_ArgTypes...)>::__clone(__base<_Rp(_ArgTypes...)>* __p) const { ::new (__p) __func(__f_.first(), __f_.second()); } template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes> void __func<_Fp, _Alloc, _Rp(_ArgTypes...)>::destroy() _NOEXCEPT { __f_.~__compressed_pair<_Fp, _Alloc>(); } template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes> void __func<_Fp, _Alloc, _Rp(_ArgTypes...)>::destroy_deallocate() _NOEXCEPT { typedef allocator_traits<_Alloc> __alloc_traits; typedef typename __rebind_alloc_helper<__alloc_traits, __func>::type _Ap; _Ap __a(__f_.second()); __f_.~__compressed_pair<_Fp, _Alloc>(); __a.deallocate(this, 1); } template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes> _Rp __func<_Fp, _Alloc, _Rp(_ArgTypes...)>::operator()(_ArgTypes&& ... __arg) { typedef __invoke_void_return_wrapper<_Rp> _Invoker; return _Invoker::__call(__f_.first(), _VSTD::forward<_ArgTypes>(__arg)...); } #ifndef _LIBCPP_NO_RTTI template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes> const void* __func<_Fp, _Alloc, _Rp(_ArgTypes...)>::target(const type_info& __ti) const _NOEXCEPT { if (__ti == typeid(_Fp)) return &__f_.first(); return (const void*)0; } template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes> const std::type_info& __func<_Fp, _Alloc, _Rp(_ArgTypes...)>::target_type() const _NOEXCEPT { return typeid(_Fp); } #endif // _LIBCPP_NO_RTTI } // __function template<class _Rp, class ..._ArgTypes> class _LIBCPP_TYPE_VIS_ONLY function<_Rp(_ArgTypes...)> : public __function::__maybe_derive_from_unary_function<_Rp(_ArgTypes...)>, public __function::__maybe_derive_from_binary_function<_Rp(_ArgTypes...)> { typedef __function::__base<_Rp(_ArgTypes...)> __base; typename aligned_storage<3*sizeof(void*)>::type __buf_; __base* __f_; template <class _Fp> _LIBCPP_INLINE_VISIBILITY static bool __not_null(const _Fp&) {return true;} template <class _R2, class ..._Ap> _LIBCPP_INLINE_VISIBILITY static bool __not_null(_R2 (*__p)(_Ap...)) {return __p;} template <class _R2, class _Cp, class ..._Ap> _LIBCPP_INLINE_VISIBILITY static bool __not_null(_R2 (_Cp::*__p)(_Ap...)) {return __p;} template <class _R2, class _Cp, class ..._Ap> _LIBCPP_INLINE_VISIBILITY static bool __not_null(_R2 (_Cp::*__p)(_Ap...) const) {return __p;} template <class _R2, class _Cp, class ..._Ap> _LIBCPP_INLINE_VISIBILITY static bool __not_null(_R2 (_Cp::*__p)(_Ap...) volatile) {return __p;} template <class _R2, class _Cp, class ..._Ap> _LIBCPP_INLINE_VISIBILITY static bool __not_null(_R2 (_Cp::*__p)(_Ap...) const volatile) {return __p;} template <class _R2, class ..._Ap> _LIBCPP_INLINE_VISIBILITY static bool __not_null(const function<_R2(_Ap...)>& __p) {return !!__p;} template <class _Fp, bool = !is_same<_Fp, function>::value && __invokable<_Fp&, _ArgTypes...>::value> struct __callable; template <class _Fp> struct __callable<_Fp, true> { static const bool value = is_same<void, _Rp>::value || is_convertible<typename __invoke_of<_Fp&, _ArgTypes...>::type, _Rp>::value; }; template <class _Fp> struct __callable<_Fp, false> { static const bool value = false; }; public: typedef _Rp result_type; // construct/copy/destroy: _LIBCPP_INLINE_VISIBILITY function() _NOEXCEPT : __f_(0) {} _LIBCPP_INLINE_VISIBILITY function(nullptr_t) _NOEXCEPT : __f_(0) {} function(const function&); function(function&&) _NOEXCEPT; template<class _Fp> function(_Fp, typename enable_if < __callable<_Fp>::value && !is_same<_Fp, function>::value >::type* = 0); template<class _Alloc> _LIBCPP_INLINE_VISIBILITY function(allocator_arg_t, const _Alloc&) _NOEXCEPT : __f_(0) {} template<class _Alloc> _LIBCPP_INLINE_VISIBILITY function(allocator_arg_t, const _Alloc&, nullptr_t) _NOEXCEPT : __f_(0) {} template<class _Alloc> function(allocator_arg_t, const _Alloc&, const function&); template<class _Alloc> function(allocator_arg_t, const _Alloc&, function&&); template<class _Fp, class _Alloc> function(allocator_arg_t, const _Alloc& __a, _Fp __f, typename enable_if<__callable<_Fp>::value>::type* = 0); function& operator=(const function&); function& operator=(function&&) _NOEXCEPT; function& operator=(nullptr_t) _NOEXCEPT; template<class _Fp> typename enable_if < __callable<typename decay<_Fp>::type>::value && !is_same<typename remove_reference<_Fp>::type, function>::value, function& >::type operator=(_Fp&&); ~function(); // function modifiers: void swap(function&) _NOEXCEPT; template<class _Fp, class _Alloc> _LIBCPP_INLINE_VISIBILITY void assign(_Fp&& __f, const _Alloc& __a) {function(allocator_arg, __a, _VSTD::forward<_Fp>(__f)).swap(*this);} // function capacity: _LIBCPP_INLINE_VISIBILITY _LIBCPP_EXPLICIT operator bool() const _NOEXCEPT {return __f_;} // deleted overloads close possible hole in the type system template<class _R2, class... _ArgTypes2> bool operator==(const function<_R2(_ArgTypes2...)>&) const = delete; template<class _R2, class... _ArgTypes2> bool operator!=(const function<_R2(_ArgTypes2...)>&) const = delete; public: // function invocation: _Rp operator()(_ArgTypes...) const; #ifndef _LIBCPP_NO_RTTI // function target access: const std::type_info& target_type() const _NOEXCEPT; template <typename _Tp> _Tp* target() _NOEXCEPT; template <typename _Tp> const _Tp* target() const _NOEXCEPT; #endif // _LIBCPP_NO_RTTI }; template<class _Rp, class ..._ArgTypes> function<_Rp(_ArgTypes...)>::function(const function& __f) { if (__f.__f_ == 0) __f_ = 0; else if (__f.__f_ == (const __base*)&__f.__buf_) { __f_ = (__base*)&__buf_; __f.__f_->__clone(__f_); } else __f_ = __f.__f_->__clone(); } template<class _Rp, class ..._ArgTypes> template <class _Alloc> function<_Rp(_ArgTypes...)>::function(allocator_arg_t, const _Alloc&, const function& __f) { if (__f.__f_ == 0) __f_ = 0; else if (__f.__f_ == (const __base*)&__f.__buf_) { __f_ = (__base*)&__buf_; __f.__f_->__clone(__f_); } else __f_ = __f.__f_->__clone(); } template<class _Rp, class ..._ArgTypes> function<_Rp(_ArgTypes...)>::function(function&& __f) _NOEXCEPT { if (__f.__f_ == 0) __f_ = 0; else if (__f.__f_ == (__base*)&__f.__buf_) { __f_ = (__base*)&__buf_; __f.__f_->__clone(__f_); } else { __f_ = __f.__f_; __f.__f_ = 0; } } template<class _Rp, class ..._ArgTypes> template <class _Alloc> function<_Rp(_ArgTypes...)>::function(allocator_arg_t, const _Alloc&, function&& __f) { if (__f.__f_ == 0) __f_ = 0; else if (__f.__f_ == (__base*)&__f.__buf_) { __f_ = (__base*)&__buf_; __f.__f_->__clone(__f_); } else { __f_ = __f.__f_; __f.__f_ = 0; } } template<class _Rp, class ..._ArgTypes> template <class _Fp> function<_Rp(_ArgTypes...)>::function(_Fp __f, typename enable_if < __callable<_Fp>::value && !is_same<_Fp, function>::value >::type*) : __f_(0) { if (__not_null(__f)) { typedef __function::__func<_Fp, allocator<_Fp>, _Rp(_ArgTypes...)> _FF; if (sizeof(_FF) <= sizeof(__buf_) && is_nothrow_copy_constructible<_Fp>::value) { __f_ = (__base*)&__buf_; ::new (__f_) _FF(_VSTD::move(__f)); } else { typedef allocator<_FF> _Ap; _Ap __a; typedef __allocator_destructor<_Ap> _Dp; unique_ptr<__base, _Dp> __hold(__a.allocate(1), _Dp(__a, 1)); ::new (__hold.get()) _FF(_VSTD::move(__f), allocator<_Fp>(__a)); __f_ = __hold.release(); } } } template<class _Rp, class ..._ArgTypes> template <class _Fp, class _Alloc> function<_Rp(_ArgTypes...)>::function(allocator_arg_t, const _Alloc& __a0, _Fp __f, typename enable_if<__callable<_Fp>::value>::type*) : __f_(0) { typedef allocator_traits<_Alloc> __alloc_traits; if (__not_null(__f)) { typedef __function::__func<_Fp, _Alloc, _Rp(_ArgTypes...)> _FF; typedef typename __rebind_alloc_helper<__alloc_traits, _FF>::type _Ap; _Ap __a(__a0); if (sizeof(_FF) <= sizeof(__buf_) && is_nothrow_copy_constructible<_Fp>::value && is_nothrow_copy_constructible<_Ap>::value) { __f_ = (__base*)&__buf_; ::new (__f_) _FF(_VSTD::move(__f), _Alloc(__a)); } else { typedef __allocator_destructor<_Ap> _Dp; unique_ptr<__base, _Dp> __hold(__a.allocate(1), _Dp(__a, 1)); ::new (__hold.get()) _FF(_VSTD::move(__f), _Alloc(__a)); __f_ = __hold.release(); } } } template<class _Rp, class ..._ArgTypes> function<_Rp(_ArgTypes...)>& function<_Rp(_ArgTypes...)>::operator=(const function& __f) { function(__f).swap(*this); return *this; } template<class _Rp, class ..._ArgTypes> function<_Rp(_ArgTypes...)>& function<_Rp(_ArgTypes...)>::operator=(function&& __f) _NOEXCEPT { if (__f_ == (__base*)&__buf_) __f_->destroy(); else if (__f_) __f_->destroy_deallocate(); __f_ = 0; if (__f.__f_ == 0) __f_ = 0; else if (__f.__f_ == (__base*)&__f.__buf_) { __f_ = (__base*)&__buf_; __f.__f_->__clone(__f_); } else { __f_ = __f.__f_; __f.__f_ = 0; } return *this; } template<class _Rp, class ..._ArgTypes> function<_Rp(_ArgTypes...)>& function<_Rp(_ArgTypes...)>::operator=(nullptr_t) _NOEXCEPT { if (__f_ == (__base*)&__buf_) __f_->destroy(); else if (__f_) __f_->destroy_deallocate(); __f_ = 0; return *this; } template<class _Rp, class ..._ArgTypes> template <class _Fp> typename enable_if < function<_Rp(_ArgTypes...)>::template __callable<typename decay<_Fp>::type>::value && !is_same<typename remove_reference<_Fp>::type, function<_Rp(_ArgTypes...)>>::value, function<_Rp(_ArgTypes...)>& >::type function<_Rp(_ArgTypes...)>::operator=(_Fp&& __f) { function(_VSTD::forward<_Fp>(__f)).swap(*this); return *this; } template<class _Rp, class ..._ArgTypes> function<_Rp(_ArgTypes...)>::~function() { if (__f_ == (__base*)&__buf_) __f_->destroy(); else if (__f_) __f_->destroy_deallocate(); } template<class _Rp, class ..._ArgTypes> void function<_Rp(_ArgTypes...)>::swap(function& __f) _NOEXCEPT { if (__f_ == (__base*)&__buf_ && __f.__f_ == (__base*)&__f.__buf_) { typename aligned_storage<sizeof(__buf_)>::type __tempbuf; __base* __t = (__base*)&__tempbuf; __f_->__clone(__t); __f_->destroy(); __f_ = 0; __f.__f_->__clone((__base*)&__buf_); __f.__f_->destroy(); __f.__f_ = 0; __f_ = (__base*)&__buf_; __t->__clone((__base*)&__f.__buf_); __t->destroy(); __f.__f_ = (__base*)&__f.__buf_; } else if (__f_ == (__base*)&__buf_) { __f_->__clone((__base*)&__f.__buf_); __f_->destroy(); __f_ = __f.__f_; __f.__f_ = (__base*)&__f.__buf_; } else if (__f.__f_ == (__base*)&__f.__buf_) { __f.__f_->__clone((__base*)&__buf_); __f.__f_->destroy(); __f.__f_ = __f_; __f_ = (__base*)&__buf_; } else _VSTD::swap(__f_, __f.__f_); } template<class _Rp, class ..._ArgTypes> _Rp function<_Rp(_ArgTypes...)>::operator()(_ArgTypes... __arg) const { #ifndef _LIBCPP_NO_EXCEPTIONS if (__f_ == 0) throw bad_function_call(); #endif // _LIBCPP_NO_EXCEPTIONS return (*__f_)(_VSTD::forward<_ArgTypes>(__arg)...); } #ifndef _LIBCPP_NO_RTTI template<class _Rp, class ..._ArgTypes> const std::type_info& function<_Rp(_ArgTypes...)>::target_type() const _NOEXCEPT { if (__f_ == 0) return typeid(void); return __f_->target_type(); } template<class _Rp, class ..._ArgTypes> template <typename _Tp> _Tp* function<_Rp(_ArgTypes...)>::target() _NOEXCEPT { if (__f_ == 0) return (_Tp*)0; return (_Tp*)__f_->target(typeid(_Tp)); } template<class _Rp, class ..._ArgTypes> template <typename _Tp> const _Tp* function<_Rp(_ArgTypes...)>::target() const _NOEXCEPT { if (__f_ == 0) return (const _Tp*)0; return (const _Tp*)__f_->target(typeid(_Tp)); } #endif // _LIBCPP_NO_RTTI template <class _Rp, class... _ArgTypes> inline _LIBCPP_INLINE_VISIBILITY bool operator==(const function<_Rp(_ArgTypes...)>& __f, nullptr_t) _NOEXCEPT {return !__f;} template <class _Rp, class... _ArgTypes> inline _LIBCPP_INLINE_VISIBILITY bool operator==(nullptr_t, const function<_Rp(_ArgTypes...)>& __f) _NOEXCEPT {return !__f;} template <class _Rp, class... _ArgTypes> inline _LIBCPP_INLINE_VISIBILITY bool operator!=(const function<_Rp(_ArgTypes...)>& __f, nullptr_t) _NOEXCEPT {return (bool)__f;} template <class _Rp, class... _ArgTypes> inline _LIBCPP_INLINE_VISIBILITY bool operator!=(nullptr_t, const function<_Rp(_ArgTypes...)>& __f) _NOEXCEPT {return (bool)__f;} template <class _Rp, class... _ArgTypes> inline _LIBCPP_INLINE_VISIBILITY void swap(function<_Rp(_ArgTypes...)>& __x, function<_Rp(_ArgTypes...)>& __y) _NOEXCEPT {return __x.swap(__y);} #else // _LIBCPP_HAS_NO_VARIADICS #include <__functional_03> #endif //////////////////////////////////////////////////////////////////////////////// // BIND //============================================================================== template<class _Tp> struct __is_bind_expression : public false_type {}; template<class _Tp> struct _LIBCPP_TYPE_VIS_ONLY is_bind_expression : public __is_bind_expression<typename remove_cv<_Tp>::type> {}; template<class _Tp> struct __is_placeholder : public integral_constant<int, 0> {}; template<class _Tp> struct _LIBCPP_TYPE_VIS_ONLY is_placeholder : public __is_placeholder<typename remove_cv<_Tp>::type> {}; namespace placeholders { template <int _Np> struct __ph {}; _LIBCPP_FUNC_VIS extern __ph<1> _1; _LIBCPP_FUNC_VIS extern __ph<2> _2; _LIBCPP_FUNC_VIS extern __ph<3> _3; _LIBCPP_FUNC_VIS extern __ph<4> _4; _LIBCPP_FUNC_VIS extern __ph<5> _5; _LIBCPP_FUNC_VIS extern __ph<6> _6; _LIBCPP_FUNC_VIS extern __ph<7> _7; _LIBCPP_FUNC_VIS extern __ph<8> _8; _LIBCPP_FUNC_VIS extern __ph<9> _9; _LIBCPP_FUNC_VIS extern __ph<10> _10; } // placeholders template<int _Np> struct __is_placeholder<placeholders::__ph<_Np> > : public integral_constant<int, _Np> {}; #ifndef _LIBCPP_HAS_NO_VARIADICS template <class _Tp, class _Uj> inline _LIBCPP_INLINE_VISIBILITY _Tp& __mu(reference_wrapper<_Tp> __t, _Uj&) { return __t.get(); } template <class _Ti, class ..._Uj, size_t ..._Indx> inline _LIBCPP_INLINE_VISIBILITY typename __invoke_of<_Ti&, _Uj...>::type __mu_expand(_Ti& __ti, tuple<_Uj...>& __uj, __tuple_indices<_Indx...>) { return __ti(_VSTD::forward<_Uj>(_VSTD::get<_Indx>(__uj))...); } template <class _Ti, class ..._Uj> inline _LIBCPP_INLINE_VISIBILITY typename __lazy_enable_if < is_bind_expression<_Ti>::value, __invoke_of<_Ti&, _Uj...> >::type __mu(_Ti& __ti, tuple<_Uj...>& __uj) { typedef typename __make_tuple_indices<sizeof...(_Uj)>::type __indices; return __mu_expand(__ti, __uj, __indices()); } template <bool IsPh, class _Ti, class _Uj> struct __mu_return2 {}; template <class _Ti, class _Uj> struct __mu_return2<true, _Ti, _Uj> { typedef typename tuple_element<is_placeholder<_Ti>::value - 1, _Uj>::type type; }; template <class _Ti, class _Uj> inline _LIBCPP_INLINE_VISIBILITY typename enable_if < 0 < is_placeholder<_Ti>::value, typename __mu_return2<0 < is_placeholder<_Ti>::value, _Ti, _Uj>::type >::type __mu(_Ti&, _Uj& __uj) { const size_t _Indx = is_placeholder<_Ti>::value - 1; return _VSTD::forward<typename tuple_element<_Indx, _Uj>::type>(_VSTD::get<_Indx>(__uj)); } template <class _Ti, class _Uj> inline _LIBCPP_INLINE_VISIBILITY typename enable_if < !is_bind_expression<_Ti>::value && is_placeholder<_Ti>::value == 0 && !__is_reference_wrapper<_Ti>::value, _Ti& >::type __mu(_Ti& __ti, _Uj&) { return __ti; } template <class _Ti, bool IsReferenceWrapper, bool IsBindEx, bool IsPh, class _TupleUj> struct ____mu_return; template <bool _Invokable, class _Ti, class ..._Uj> struct ____mu_return_invokable // false { typedef __nat type; }; template <class _Ti, class ..._Uj> struct ____mu_return_invokable<true, _Ti, _Uj...> { typedef typename __invoke_of<_Ti&, _Uj...>::type type; }; template <class _Ti, class ..._Uj> struct ____mu_return<_Ti, false, true, false, tuple<_Uj...> > : public ____mu_return_invokable<__invokable<_Ti&, _Uj...>::value, _Ti, _Uj...> { }; template <class _Ti, class _TupleUj> struct ____mu_return<_Ti, false, false, true, _TupleUj> { typedef typename tuple_element<is_placeholder<_Ti>::value - 1, _TupleUj>::type&& type; }; template <class _Ti, class _TupleUj> struct ____mu_return<_Ti, true, false, false, _TupleUj> { typedef typename _Ti::type& type; }; template <class _Ti, class _TupleUj> struct ____mu_return<_Ti, false, false, false, _TupleUj> { typedef _Ti& type; }; template <class _Ti, class _TupleUj> struct __mu_return : public ____mu_return<_Ti, __is_reference_wrapper<_Ti>::value, is_bind_expression<_Ti>::value, 0 < is_placeholder<_Ti>::value && is_placeholder<_Ti>::value <= tuple_size<_TupleUj>::value, _TupleUj> { }; template <class _Fp, class _BoundArgs, class _TupleUj> struct __is_valid_bind_return { static const bool value = false; }; template <class _Fp, class ..._BoundArgs, class _TupleUj> struct __is_valid_bind_return<_Fp, tuple<_BoundArgs...>, _TupleUj> { static const bool value = __invokable<_Fp, typename __mu_return<_BoundArgs, _TupleUj>::type...>::value; }; template <class _Fp, class ..._BoundArgs, class _TupleUj> struct __is_valid_bind_return<_Fp, const tuple<_BoundArgs...>, _TupleUj> { static const bool value = __invokable<_Fp, typename __mu_return<const _BoundArgs, _TupleUj>::type...>::value; }; template <class _Fp, class _BoundArgs, class _TupleUj, bool = __is_valid_bind_return<_Fp, _BoundArgs, _TupleUj>::value> struct __bind_return; template <class _Fp, class ..._BoundArgs, class _TupleUj> struct __bind_return<_Fp, tuple<_BoundArgs...>, _TupleUj, true> { typedef typename __invoke_of < _Fp&, typename __mu_return < _BoundArgs, _TupleUj >::type... >::type type; }; template <class _Fp, class ..._BoundArgs, class _TupleUj> struct __bind_return<_Fp, const tuple<_BoundArgs...>, _TupleUj, true> { typedef typename __invoke_of < _Fp&, typename __mu_return < const _BoundArgs, _TupleUj >::type... >::type type; }; template <class _Fp, class _BoundArgs, size_t ..._Indx, class _Args> inline _LIBCPP_INLINE_VISIBILITY typename __bind_return<_Fp, _BoundArgs, _Args>::type __apply_functor(_Fp& __f, _BoundArgs& __bound_args, __tuple_indices<_Indx...>, _Args&& __args) { return __invoke(__f, __mu(_VSTD::get<_Indx>(__bound_args), __args)...); } template<class _Fp, class ..._BoundArgs> class __bind : public __weak_result_type<typename decay<_Fp>::type> { protected: typedef typename decay<_Fp>::type _Fd; typedef tuple<typename decay<_BoundArgs>::type...> _Td; private: _Fd __f_; _Td __bound_args_; typedef typename __make_tuple_indices<sizeof...(_BoundArgs)>::type __indices; public: #ifdef _LIBCPP_HAS_NO_DEFAULTED_FUNCTIONS _LIBCPP_INLINE_VISIBILITY __bind(const __bind& __b) : __f_(__b.__f_), __bound_args_(__b.__bound_args_) {} _LIBCPP_INLINE_VISIBILITY __bind& operator=(const __bind& __b) { __f_ = __b.__f_; __bound_args_ = __b.__bound_args_; return *this; } _LIBCPP_INLINE_VISIBILITY __bind(__bind&& __b) : __f_(_VSTD::move(__b.__f_)), __bound_args_(_VSTD::move(__b.__bound_args_)) {} _LIBCPP_INLINE_VISIBILITY __bind& operator=(__bind&& __b) { __f_ = _VSTD::move(__b.__f_); __bound_args_ = _VSTD::move(__b.__bound_args_); return *this; } #endif // _LIBCPP_HAS_NO_DEFAULTED_FUNCTIONS template <class _Gp, class ..._BA, class = typename enable_if < is_constructible<_Fd, _Gp>::value && !is_same<typename remove_reference<_Gp>::type, __bind>::value >::type> _LIBCPP_INLINE_VISIBILITY explicit __bind(_Gp&& __f, _BA&& ...__bound_args) : __f_(_VSTD::forward<_Gp>(__f)), __bound_args_(_VSTD::forward<_BA>(__bound_args)...) {} template <class ..._Args> _LIBCPP_INLINE_VISIBILITY typename __bind_return<_Fd, _Td, tuple<_Args&&...> >::type operator()(_Args&& ...__args) { return __apply_functor(__f_, __bound_args_, __indices(), tuple<_Args&&...>(_VSTD::forward<_Args>(__args)...)); } template <class ..._Args> _LIBCPP_INLINE_VISIBILITY typename __bind_return<const _Fd, const _Td, tuple<_Args&&...> >::type operator()(_Args&& ...__args) const { return __apply_functor(__f_, __bound_args_, __indices(), tuple<_Args&&...>(_VSTD::forward<_Args>(__args)...)); } }; template<class _Fp, class ..._BoundArgs> struct __is_bind_expression<__bind<_Fp, _BoundArgs...> > : public true_type {}; template<class _Rp, class _Fp, class ..._BoundArgs> class __bind_r : public __bind<_Fp, _BoundArgs...> { typedef __bind<_Fp, _BoundArgs...> base; typedef typename base::_Fd _Fd; typedef typename base::_Td _Td; public: typedef _Rp result_type; #ifdef _LIBCPP_HAS_NO_DEFAULTED_FUNCTIONS _LIBCPP_INLINE_VISIBILITY __bind_r(const __bind_r& __b) : base(_VSTD::forward<const base&>(__b)) {} _LIBCPP_INLINE_VISIBILITY __bind_r& operator=(const __bind_r& __b) { base::operator=(_VSTD::forward<const base&>(__b)); return *this; } _LIBCPP_INLINE_VISIBILITY __bind_r(__bind_r&& __b) : base(_VSTD::forward<base>(__b)) {} _LIBCPP_INLINE_VISIBILITY __bind_r& operator=(__bind_r&& __b) { base::operator=(_VSTD::forward<base>(__b)); return *this; } #endif // _LIBCPP_HAS_NO_DEFAULTED_FUNCTIONS template <class _Gp, class ..._BA, class = typename enable_if < is_constructible<_Fd, _Gp>::value && !is_same<typename remove_reference<_Gp>::type, __bind_r>::value >::type> _LIBCPP_INLINE_VISIBILITY explicit __bind_r(_Gp&& __f, _BA&& ...__bound_args) : base(_VSTD::forward<_Gp>(__f), _VSTD::forward<_BA>(__bound_args)...) {} template <class ..._Args> _LIBCPP_INLINE_VISIBILITY typename enable_if < is_convertible<typename __bind_return<_Fd, _Td, tuple<_Args&&...> >::type, result_type>::value || is_void<_Rp>::value, result_type >::type operator()(_Args&& ...__args) { typedef __invoke_void_return_wrapper<_Rp> _Invoker; return _Invoker::__call(static_cast<base&>(*this), _VSTD::forward<_Args>(__args)...); } template <class ..._Args> _LIBCPP_INLINE_VISIBILITY typename enable_if < is_convertible<typename __bind_return<const _Fd, const _Td, tuple<_Args&&...> >::type, result_type>::value || is_void<_Rp>::value, result_type >::type operator()(_Args&& ...__args) const { typedef __invoke_void_return_wrapper<_Rp> _Invoker; return _Invoker::__call(static_cast<base const&>(*this), _VSTD::forward<_Args>(__args)...); } }; template<class _Rp, class _Fp, class ..._BoundArgs> struct __is_bind_expression<__bind_r<_Rp, _Fp, _BoundArgs...> > : public true_type {}; template<class _Fp, class ..._BoundArgs> inline _LIBCPP_INLINE_VISIBILITY __bind<_Fp, _BoundArgs...> bind(_Fp&& __f, _BoundArgs&&... __bound_args) { typedef __bind<_Fp, _BoundArgs...> type; return type(_VSTD::forward<_Fp>(__f), _VSTD::forward<_BoundArgs>(__bound_args)...); } template<class _Rp, class _Fp, class ..._BoundArgs> inline _LIBCPP_INLINE_VISIBILITY __bind_r<_Rp, _Fp, _BoundArgs...> bind(_Fp&& __f, _BoundArgs&&... __bound_args) { typedef __bind_r<_Rp, _Fp, _BoundArgs...> type; return type(_VSTD::forward<_Fp>(__f), _VSTD::forward<_BoundArgs>(__bound_args)...); } #endif // _LIBCPP_HAS_NO_VARIADICS template <> struct _LIBCPP_TYPE_VIS_ONLY hash<bool> : public unary_function<bool, size_t> { _LIBCPP_INLINE_VISIBILITY size_t operator()(bool __v) const _NOEXCEPT {return static_cast<size_t>(__v);} }; template <> struct _LIBCPP_TYPE_VIS_ONLY hash<char> : public unary_function<char, size_t> { _LIBCPP_INLINE_VISIBILITY size_t operator()(char __v) const _NOEXCEPT {return static_cast<size_t>(__v);} }; template <> struct _LIBCPP_TYPE_VIS_ONLY hash<signed char> : public unary_function<signed char, size_t> { _LIBCPP_INLINE_VISIBILITY size_t operator()(signed char __v) const _NOEXCEPT {return static_cast<size_t>(__v);} }; template <> struct _LIBCPP_TYPE_VIS_ONLY hash<unsigned char> : public unary_function<unsigned char, size_t> { _LIBCPP_INLINE_VISIBILITY size_t operator()(unsigned char __v) const _NOEXCEPT {return static_cast<size_t>(__v);} }; #ifndef _LIBCPP_HAS_NO_UNICODE_CHARS template <> struct _LIBCPP_TYPE_VIS_ONLY hash<char16_t> : public unary_function<char16_t, size_t> { _LIBCPP_INLINE_VISIBILITY size_t operator()(char16_t __v) const _NOEXCEPT {return static_cast<size_t>(__v);} }; template <> struct _LIBCPP_TYPE_VIS_ONLY hash<char32_t> : public unary_function<char32_t, size_t> { _LIBCPP_INLINE_VISIBILITY size_t operator()(char32_t __v) const _NOEXCEPT {return static_cast<size_t>(__v);} }; #endif // _LIBCPP_HAS_NO_UNICODE_CHARS template <> struct _LIBCPP_TYPE_VIS_ONLY hash<wchar_t> : public unary_function<wchar_t, size_t> { _LIBCPP_INLINE_VISIBILITY size_t operator()(wchar_t __v) const _NOEXCEPT {return static_cast<size_t>(__v);} }; template <> struct _LIBCPP_TYPE_VIS_ONLY hash<short> : public unary_function<short, size_t> { _LIBCPP_INLINE_VISIBILITY size_t operator()(short __v) const _NOEXCEPT {return static_cast<size_t>(__v);} }; template <> struct _LIBCPP_TYPE_VIS_ONLY hash<unsigned short> : public unary_function<unsigned short, size_t> { _LIBCPP_INLINE_VISIBILITY size_t operator()(unsigned short __v) const _NOEXCEPT {return static_cast<size_t>(__v);} }; template <> struct _LIBCPP_TYPE_VIS_ONLY hash<int> : public unary_function<int, size_t> { _LIBCPP_INLINE_VISIBILITY size_t operator()(int __v) const _NOEXCEPT {return static_cast<size_t>(__v);} }; template <> struct _LIBCPP_TYPE_VIS_ONLY hash<unsigned int> : public unary_function<unsigned int, size_t> { _LIBCPP_INLINE_VISIBILITY size_t operator()(unsigned int __v) const _NOEXCEPT {return static_cast<size_t>(__v);} }; template <> struct _LIBCPP_TYPE_VIS_ONLY hash<long> : public unary_function<long, size_t> { _LIBCPP_INLINE_VISIBILITY size_t operator()(long __v) const _NOEXCEPT {return static_cast<size_t>(__v);} }; template <> struct _LIBCPP_TYPE_VIS_ONLY hash<unsigned long> : public unary_function<unsigned long, size_t> { _LIBCPP_INLINE_VISIBILITY size_t operator()(unsigned long __v) const _NOEXCEPT {return static_cast<size_t>(__v);} }; template <> struct _LIBCPP_TYPE_VIS_ONLY hash<long long> : public __scalar_hash<long long> { }; template <> struct _LIBCPP_TYPE_VIS_ONLY hash<unsigned long long> : public __scalar_hash<unsigned long long> { }; template <> struct _LIBCPP_TYPE_VIS_ONLY hash<float> : public __scalar_hash<float> { _LIBCPP_INLINE_VISIBILITY size_t operator()(float __v) const _NOEXCEPT { // -0.0 and 0.0 should return same hash if (__v == 0) return 0; return __scalar_hash<float>::operator()(__v); } }; template <> struct _LIBCPP_TYPE_VIS_ONLY hash<double> : public __scalar_hash<double> { _LIBCPP_INLINE_VISIBILITY size_t operator()(double __v) const _NOEXCEPT { // -0.0 and 0.0 should return same hash if (__v == 0) return 0; return __scalar_hash<double>::operator()(__v); } }; template <> struct _LIBCPP_TYPE_VIS_ONLY hash<long double> : public __scalar_hash<long double> { _LIBCPP_INLINE_VISIBILITY size_t operator()(long double __v) const _NOEXCEPT { // -0.0 and 0.0 should return same hash if (__v == 0) return 0; #if defined(__i386__) // Zero out padding bits union { long double __t; struct { size_t __a; size_t __b; size_t __c; size_t __d; } __s; } __u; __u.__s.__a = 0; __u.__s.__b = 0; __u.__s.__c = 0; __u.__s.__d = 0; __u.__t = __v; return __u.__s.__a ^ __u.__s.__b ^ __u.__s.__c ^ __u.__s.__d; #elif defined(__x86_64__) // Zero out padding bits union { long double __t; struct { size_t __a; size_t __b; } __s; } __u; __u.__s.__a = 0; __u.__s.__b = 0; __u.__t = __v; return __u.__s.__a ^ __u.__s.__b; #else return __scalar_hash<long double>::operator()(__v); #endif } }; #if _LIBCPP_STD_VER > 11 template <class _Tp> struct _LIBCPP_TYPE_VIS_ONLY hash : public unary_function<_Tp, size_t> { static_assert(is_enum<_Tp>::value, "This hash only works for enumeration types"); _LIBCPP_INLINE_VISIBILITY size_t operator()(_Tp __v) const _NOEXCEPT { typedef typename underlying_type<_Tp>::type type; return hash<type>{}(static_cast<type>(__v)); } }; #endif #if _LIBCPP_STD_VER > 14 template <class _Fn, class ..._Args> result_of_t<_Fn&&(_Args&&...)> invoke(_Fn&& __f, _Args&&... __args) { return __invoke(_VSTD::forward<_Fn>(__f), _VSTD::forward<_Args>(__args)...); } #endif // struct hash<T*> in <memory> _LIBCPP_END_NAMESPACE_STD #endif // _LIBCPP_FUNCTIONAL